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Abstract: We present a waveguide-coupled photonic crystal H1 cavity
structure in which the orthogonal dipole modes couple to spatially separated
photonic crystal waveguides. Coupling of each cavity mode to its respective
waveguide with equal efficiency is achieved by adjusting the position and
orientation of the waveguides. The behavior of the optimized device is
experimentally verified for where the cavity mode splitting is larger and
smaller than the cavity mode linewidth. In both cases, coupled Q-factors up
to 1600 and contrast ratios up to 10 are achieved. This design may allow for
spin state readout of a self-assembled quantum dot positioned at the cavity
center or function as an ultra-fast optical switch operating at the single
photon level.

© 2014 Optical Society of America

OCIS codes: (230.5298) Photonic crystals; (230.5590) Quantum-well, -wire and -dot devices.
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1. Introduction

Scalable all-optical quantum information processing (QIP) has been shown to be possible using
only single-photon sources, linear optical elements and single-photon detectors [1–3]. The two-
level spin system of a self-assembled quantum dot single-photon source is one of the leading
candidates for a static qubit implementation [4], with long dephasing times [5] and possibility of
optical coherent control [6]. On chip integration using this solid state implementation requires
a static to flying qubit (spin-photon) interface to exchange quantum information between dif-
ferent static nodes [7]. Recent demonstrations of the entanglement between a QD and single
photon [8, 9] and the mapping of QD spin states to path-encoded photons [10] are important
milestones in the development of QD-based solid-state QIP.

For many purposes, path encoding with indistinguishable photons is desired [11] which could
be achieved by inclusion of a unpolarized optical cavity [12]. The two TE dipole modes form a
Poincaŕe-like sphere with statesα |X〉±β |Y〉 which have a one-to-one correspondence to the
in-plane QD spin statesα |x〉±β |y〉, whereα andβ are complex [12]. In addition, due to the
low mode volume (V) of these dipole modes, the H1 cavity possesses one of the highest Q/V
ratios of any PhC cavity [13]: the resulting high degree of spontaneous emission enhancement
has been shown to provide indistinguishable single photon emission [14], strong coupling [15]
and entangled photon pairs [16]. On-chip coupling of the hexapole [17] and quadrupole [18]
modes of the H1 cavity to waveguides has been investigated previously, but a demonstration of
the selective coupling of the dipole modes to separate waveguides remains to be demonstrated
as required for in-plane transmission of spin [10]. We propose a scheme whereby the Poincaré-
like states of the H1 cavity are mapped into two separate propagating photon channels, allowing
information encoding the QD spin state to be transferred to the waveguides via the cavity.

In this paper we use FDTD simualations to design a waveguide-coupled H1 device which
exhibits selective coupling of each of the two dipole modes to its respective PhC waveguide,
and then demonstrate its operation using ensemble QD photoluminescence (PL) measurements
for near-degenerate and non-degenerate cavities. We use the QD ensemble as an internal light
source to characterize the cavity modes.

2. Device design and optimisation

2.1. Design principles

Fig. 1. (a) Optimized H1 cavity structure withrc = 0.91r andac = 1.09a. (b) Line-defect
(W1) photonic crystal waveguide.

The optimization of the device was performed by using the finite-difference-time-domain
(FDTD) computational method via the freely available software package MEEP [19]. The H1
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cavity consists of an omitted air cylinder from a triangular-lattice photonic crystal (PhC) slab
with lattice constanta, cylinder radiusr = 0.31a, slab thicknessh= 0.71a and refractive index
n = 3.4. To maximize the cavity Q-factors, the six nearest-neighbor cylinders have reduced
radii rc = 0.91r and increased displacementac = 1.09a, as shown in Fig. 1(a), producing cal-
culated Q factors for the dipole modes of 30,000 with a mode volumeV = 0.39(λ/n)3 [20].
The near-field profiles of the dipole modes are shown in Figs. 2(a) and 2(b) where the modes
are labeled according to the orientation of the Hz dipole at the cavity center. Herein referred to
as the X and Y-dipole modes, the X-dipole has an Hz dipole along the x-axis and the Y-dipole
along the y-axis. With careful geometric arrangement of two photonic crystal waveguides, we
show that it is possible to selectively couple these cavity modes to the guided modes of two
separate waveguides.

Fig. 2. (a) & (b) Normalized Hz near-field amplitudes of the (a) X & (b) Y-dipole modes.
The modes are labeled according to the orientation of the Hz dipole. A linear red-white-
blue color scale is applied to represent fields up to 50% of the maximum value. Values
above this have a saturated red or blue color. (c) Normalized Hz field amplitude of the odd
parity guided mode of the W1 waveguide, using a full range linear red-white-blue color
scale.

In the spectral region of the cavity modes, the linear defect (W1) waveguide shown in Fig.
1(b) sustains a single, propagating TE mode [21], the Hz field profile of which is shown in Fig.
2(c). The cavity modes will couple to the waveguide provided that there is good spatial overlap
and the cavity mode field symmetry matches that of the waveguide mode [17,22–25].

The Hz fields of the cavity modes in Figs. 2(a) and 2(b) decay evanescently into the sur-
rounding photonic crystal, exhibiting significant penetration into the PhC along the dipole axis
and vanishingly small fields orthogonal to it. For the X-dipole mode the field symmetries match
those of the waveguide mode in Fig. 2(c), both possessing odd parity in the y=0 plane and even
parity in the x=0 plane, whilst the cavity mode field symmetries are opposite for the Y-dipole
mode. Therefore, a W1 waveguide brought into close proximity to the cavity along the x-axis
will couple well to the X-dipole but poorly to the Y-dipole. The same selection principle holds
for coupling along the Y-axis, except the PhC lattice symmetry forbids a W1 waveguide along
this axis. In this case, a waveguide at 30◦ to the vertical can be employed however, such that the
waveguide terminates on a line along the y-axis that passes through the cavity center as shown
in Fig. 3(a). Along this line, the waveguide field overlap remains high for the Y-dipole and low
for the X-dipole mode.

It should be noted that although the cavity modes also exhibit significant penetration depths
at 45◦ to the mode axis, these are common to both modes and are therefore unsuitable for
selective coupling.
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2.2. Optimisation procedure

For optimal device operation, the modes must couple to the waveguides with equally high
efficiencies, whilst maintaining the highest Q-factor possible to provide maximum spontaneous
emission enhancement to the QD. The coupling efficiency was calculated for each mode as a
function of the number of holes separating the cavity and waveguide, Nx & Ny for the x & y-
waveguide respectively, as illustrated in Fig. 3(a). We define the x(y)-waveguide as that which
principally couples to the X(Y)-dipole. The coupling efficiency is defined as [22]

η(Nx,y)≡
Qwg(Nx,y)

−1

Qc(Nx,y)−1 = 1−
Qc(Nx,y)

Qu
(1)

whereQc(Nx,y) andQu are the Q-factors of the coupled and uncoupled cavity respectively and
Q−1

wg is the loss rate into the waveguide, given by

Qwg(Nx,y)
−1 = Qc(Nx,y)

−1−Q−1
u (2)

Fig. 3. (a) Coupled cavity-waveguide structure defining Nx and Ny. (b) Waveguide cou-
pling efficiency and (c) Q-factor of the cavity modes as a function of the number of holes
separating them.

The coupling efficiencies to each waveguide, calculated separately, are shown in Fig. 3(b),
with the corresponding Q-factors shown in Fig. 3(c). As expected, the coupling efficiency de-
creases with an increase of the cavity-waveguide separation, due to a reduction in the evanes-
cent tunneling. The exceptions of Ny=5 and 7 for the Y-dipole are due to the path taken when
adjusting the cavity-waveguide separation, resulting in the waveguide moving in and out of
the evanescent tail. The mechanism is different for the X-dipole at Nx=5, since the cavity and
waveguide modes share the same axis: this phenomenon is attributed to fluctuations in the over-
lap integral of the two modes [22,26].

When both waveguides were introduced, the coupling efficiencies for X(Y)-waveguide sepa-
rations for 2(4) hole separation were found to be comparable at 89(93)%. The Hz field profiles
of the coupled modes are shown in Figs. 4(a) and 4(b). Hz fields were chosen so that both
waveguide modes could be observed simultaneously and any cross talk would be evident by
visual inspection. The cross talk coupling was calculated to be<10% for the separation values
given above, highlighting that each waveguide has little perturbation on the other.

Whilst discrete adjustment of the number of holes between cavity and waveguide produces
comparable coupling efficiencies, a continuous adjustment is needed to equalize these values.
This is achieved by displacing the first hole in the Y-waveguide along the waveguide byδSy,
as defined in Fig. 5(a). This reduction in coupling efficiency for the Y-dipole equalizes both
efficiencies at 89% forδSy = 0.08a as shown in Fig. 5(b).

The W1 waveguide is known to produce slow-light phenomena near to the band edge [27],
leading to increased scattering losses [28] and spectral cut-off of the cavity modes [29]. The
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Fig. 4. Normalized Hz field amplitudes of the coupled systems usingNx = 2,Ny = 4 for (a)
X & (b) Y-dipole modes, respectively. The color scale is the same as used in Fig. 2(c).

resonant frequency of the cavity modes is coincident with the band edge of the waveguide
dispersion as shown in Fig. 5(c). To avoid this the waveguide mode is red-shifted by displacing
the first row of holes perpendicular to the waveguide byδW = 0.08a, Fig. 5(a), ensuring the
cavity mode is coincident with a higher group velocity region of the waveguide dispersion
[17, 18] as shown in Fig. 5(c).δW was applied to both waveguides, but is only illustrated for
the X-waveguide in Fig. 5(a) for clarity.

Fig. 5. (a) Schematic definingδSy andδW. δW was applied to both waveguides, but is
only illustrated on the X-waveguide for clarity. (b) Coupling efficiency of the cavity modes
to their respective waveguides as the first hole in the Y waveguide is shifted. (c) Disper-
sion of waveguides as inner hole rows are displaced outward. The dispersion curves were
calculated using the frequency domain iterative eigensolver MPB [30].

3. Experimental results

3.1. Experimental arrangement

The samples used in this study were grown by molecular beam epitaxy (MBE) on undoped
GaAs (100) wafers. The wafer consisted of a 140nm GaAs layer containing a layer of self-
assembled InAs QDs at its center, above a 1µm thick sacrificial Al0.6Ga0.4As layer on an
undoped GaAs substrate. The photonic crystal was patterned by electron beam lithography,
followed by an inductively-coupled plasma etch to define the pattern into the GaAs membrane.
The Al0.6Ga0.4As layer was removed by an isotropic hydrofluoric acid etch to leave a free-
standing air-clad GaAs slab. A scanning electron microscope image of the fabricated device is
shown in Fig. 6(a). Semicircularλ/2n air/GaAs grating outcouplers were added to the end of
the waveguides to scatter light out of the device plane into the detection apparatus [31].

#200400 - $15.00 USD Received 30 Oct 2013; revised 12 Dec 2013; accepted 12 Dec 2013; published 28 Jan 2014

(C) 2014 OSA 10 February 2014 | Vol. 22,  No. 3 | DOI:10.1364/OE.22.002376 | OPTICS EXPRESS  2381



Fig. 6. (a) SEM image of fabricated device. OH & OV denote the vertical and horizontal
outcouplers respectively, C is the cavity. (b) PL map obtained from a raster scan of the
excitation spot whilst keeping collection fixed at the cavity. The spectrometer was used to
filter PL from the center wavelength of the cavity modes. A contour of the device structure
is overlaid.

Photoluminescence measurements were performed with a confocal scanning microscopy
setup with the sample mounted in a liquid helium bath-cryostat at 4.2K [32]. The sample
was excited with an 850nm CW Ti:Sapphire laser focussed to a spot of 1µm by a 0.62NA
objective lens. The QD PL was collected using the same objective before being filtered by a
900nm long pass filter and dispersed by a 0.55m single spectrometer onto a liquid nitrogen
cooled charge-coupled device (CCD) camera or passed through additional slits and incident
upon a fast avalanche photodiode (APD). A motorized scanning mirror was employed in both
the excitation and detection paths which allows for spatially selective excitation and detection
from the sample [28]. Fig. 6(b) shows a typical PL map obtained when the excitation spot is
rastered across the device whilst the APD collects spectrally filtered PL at the cavity peak from
a fixed collection spot over the cavity position: the cavity modes are efficiently coupled and
transmitted by the waveguides. The different positions used for excitation and collection are
defined in Fig. 6(a): OH and OV are the horizontal and vertical outcouplers, respectively and C
is the cavity. We define a notation to identify these positions of excitation and collection spots
as excitation/collection. For example, excitation of the cavity and collection from the horizontal
outcoupler is denoted C/OH.

3.2. Non-degenerate cavity

The H1 cavity is highly sensitive to the symmetry of the surrounding photonic crystal. In fab-
rication, random disorder commonly leads to reduction of the cavity symmetry and lifting of
the degeneracy of the dipole modes. Schemes have been demonstrated to remedy this by ad-
justing the ellipticity of the holes in the photonic crystal [33] and applying uniaxial strain to the
wafer [34]. We did not apply these techniques to our devices, however, as an average spectral
splitting of ∼1.5nm facilitates mode identification, allowing spectral measurements to reveal
the coupling behavior.

The quality factor of the cavity was first assessed by measuring the cavity modes using the
C/C configuration. A typical coupled device spectrum is shown as the black line in Fig. 7(a).
Two cavity modes are clearly visible at 943.9nm and 945.2nm, with coupled Q-factors (Qc)
of 1500 & 1600 respectively. Polarization-sensitive measurements of the cavity, shown in Fig.
7(d), reveal that the modes are orthogonal: the peak at 943.9nm is horizontally (x) polarized
and 945.2nm is vertically (y) polarized. To verify the selectivity of the cavity mode coupling to
the waveguides, the C/OH & C/OV configurations are used. As can be seen from Fig. 7(b), the
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Fig. 7. PL spectra obtained when (a) collecting from the cavity (b) exciting the outcouplers
and collecting from the cavity (c) exciting and collecting from the vertical (solid black)
and horizontal (dashed black) outcouplers. (d) polarization dependence of the two cavity
modes when collecting from the cavity. The green curve (square markers) corresponds to
the peak centerd at 943.9nm and red (circular markers) to the peak at 945.2nm.

peak at 943.9nm is principally observed from OV and the 945.2nm peak from OH, confirming
the behavior predicted by simulation.

The additional peaks observed at longer wavelengths (947.4nm for C/OH and 946.2nm for
C/OV) are Fabry-Perot modes in the waveguides which are excited due to overlap with the
cavity modes [35]. This was determined by measuring both OH/OH and OV /OV , shown in Fig.
7(c). In this geometry the Fabry-Perot modes of the waveguides are directly excited by QD
PL and appear significantly brighter than the cavity modes. The additional peaks observed in
Fig. 7(b) each spectrally coincide with a Fabry-Perot mode in Fig. 7(c) from the corresponding
waveguide.

Further proof of the selective coupling is observed in the OH/C and OV /C configurations,
shown by the red and green curves in Fig. 7(a). The selective coupling behavior is maintained
and the cavity modes are excited with comparable intensity to direct excitation of the cavity
(black curve). Due to the spectral filtering by the cavity, the Fabry-Perot modes in the waveg-
uides are heavily suppressed in this geometry.

Measurements of uncoupled cavities (without waveguides) on the same sample yield typical
Qu = 2400. These are much lower than the simulated Q-factors, implying significant disorder
losses in the photonic crystal, leading to large scattering losses. Using this value for Qu, the
values of Qc for each of the cavity modes above, and Eq. 1 the coupling efficiencies of the X
and Y-dipole modes respectively are 36% & 37%. These are much lower than the expected value
of 89% due to the large scattering loss rate of the cavities dominating over in-plane coupling
rates in determining the total Q factor: this results in a small change in the Q-factor when the
waveguides are introduced. Further improvements to fabrication are expected to improve the
device efficiency by reducing these scattering losses, increasing the Q-factor of the uncoupled
cavity.

The lifted degeneracy and low coupling efficiency of this cavity precludes its use as a spin-
photon interface. However, since the coupling selection mechanisms rely upon spatial and not
spectral discrimination, the selective coupling behavior of the cavity is maintained. Although
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some cross talk is observed, the background-subtracted contrast ratio (∼ 5 for OV and∼ 10
for OH) is sufficiently high to distinguish between the two. We believe the overlap of the FP
mode in the Y-waveguide is responsible for the reduced contrast ratio, since the overlap region
encompasses the X-dipole mode: when subtracted from the spectrum, this value increases to
∼ 7. Whilst unsuitable as a spin-photon interface, the non-degenerate cavity may be suitable
for electrically-controlled single-photon switching applications. With application of a time-
varying electric field [36–38] to a single QD at the cavity center, the emission wavelength can
be tuned from resonance with one mode to another via the quantum confined Stark effect. The
emission rate into one mode is enhanced whilst the orthogonal component is suppressed [12]
and the QD emission should be switched between the two waveguides on the timescale of the
electric field modulation period.

3.3. Near-degenerate cavity

Amongst the range of cavity mode splittings produced during fabrication, there are cavities
which exhibit a mode splitting that is on the order of, or less than, the cavity mode linewidth.
PL measurements on such a cavity are shown in Fig. 8(a). The C/C configuration shows a
single spectral feature centerd at 935.2nm. polarization measurements show this is comprised
of two orthogonal modes as shown in Fig. 8(c), with a splitting of 0.18nm. The Q-factors of the
X(Y)-dipole modes are 1600(1200) which, using the value of Qu=2400 determined previously,
result in corresponding coupling efficiencies of 37(48)%. This small splitting is reflected in the
spectral measurements in Fig. 8(b) for the C/OH and C/OV configuration. To assess the cross-
talk, one outcoupler was excited whilst collecting from the other (OH/OV and OV /OH), shown
in Fig. 8(b): as can be seen from the data, the cross-talk is comparable to the background signal
at∼20% of the peak intensity.

Fig. 8. PL spectra obtained when (a) exciting and collecting from the cavity (b) collecting
from the outcouplers. In (b) the curves are offset for clarity. (c) polarization dependence of
the two cavity modes when collecting from the cavity.

From these measurements, we conclude that this near-degenerate cavity also exhibits selec-
tive coupling of the orthogonal dipole modes to two separate waveguides, since the observed
cross-talk is very low. Although this device also suffers from relatively low coupling efficiency,
the Q factors remain sufficiently high to provide a high degree of spontaneous emission en-
hancement [14].

The out-of-plane emission of a single QD positioned at the cavity center which is spectrally
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resonant with the cavity modes would be unpolarized if orientated with the cavity modes, since
it would couple to both dipole modes. We have demonstrated that these cavity modes couple
to separate waveguides and hence only the corresponding orthogonally polarized components
of the QD emission should be present in the waveguides; likewise, excitation via the waveg-
uides will only couple the principle polarization components to the QD. This is similar to the
result in [10], with the possibility of spontaneous emission enhancement of the QD to produce
indistinguishable single photons.

4. Conclusion

We have presented designs of an unpolarized photonic crystal cavity which exhibits selective
coupling of the two orthogonally polarized dipole modes of an H1 cavity to two separate waveg-
uides. Using FDTD simulations, the cavity-waveguide separation was optimized for equal cou-
pling efficiencies of 89%, coupled Q-factors exceeding 2000 and the waveguide dispersion
adjusted to reduce propagation losses of the coupled cavity emission.

The selective coupling of the orthogonal dipole modes was experimentally demonstrated for
a device with non-zero splitting of the cavity modes and for a device with a small splitting to
linewidth ratio. The former may offer functionality as an electrically-controlled single-photon
switch; the latter is expected to act as a spin-photon interface for a resonant QD positioned
at the cavity center. This provides a one-to-one correspondence between the Bloch sphere of
the excitonic spin states of the QD and the Poincaré-like sphere of the cavity modes, encoding
this information in a which-path regime. The device maintains selectivity when excited via
either the cavity or the waveguides, such that several devices coupled together may realize
a scalable quantum spin network, although single QD measurements remain to fully confirm
these predictions.
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