
promoting access to White Rose research papers

White Rose Research Online
eprints@whiterose.ac.uk

Universities of Leeds, Sheffield and York
http://eprints.whiterose.ac.uk/

This is an author produced version of a conference paper published in
Proceedings of the UK e-Science All Hands Meeting 2007.

White Rose Research Online URL for this paper:

http://eprints.whiterose.ac.uk/id/eprint/78328

Paper:
Wood, J, Riding, M and Brodlie, KW (2007) A user interface framework for Grid-
based computational steering and visualization. In: Proceedings of the UK e-
Science All Hands Meeting 2007. UK e-Science All Hands Meeting 2007, 10-13
Sept 2007, Nottingham, UK. NeSC . ISBN 978-0-9553988-3-4

http://www.allhands.org.uk/2007/proceedings/

A user interface framework for Grid-based computational
steering and visualization.
Jason Wood1, Mark Riding2 and Ken Brodlie1

1University of Leeds, 2University of Manchester

Abstract
This paper describes a flexible and extensible user interface tool for interacting with simulations and
visualization applications running on the Grid. It uses an XML description of the visualization pipeline to
provide parameter and location information with which to configure the user interface and connect it to
remote applications using the gViz library. Messages in this XML format allow for the dynamic alteration
of the interface in response to user and system behaviour. A framework is provided into which user cre-
ated widgets can function alongside or replace the system widgets. This framework also allows alternate
communication mechanisms to be added to allow the encapsulation of a broad set of applications within a
single pipeline.

1. Introduction

Grid computing [FK99] offers the potential for
users to access large distributed computing re-
sources on demand. This may be in the form of
job submission to batch queues, timed access
managed through advanced reservation, or inter-
active access. The latter two options should offer
the potential for performing interactive visualiza-
tion tasks on high performance Grid computers
using standard or specialist visualization software.
However, in addition to the scheduling hurdle,
visualization on the Grid provides us with a num-
ber of other challenges.

In typical Grid computing, irrespective of the
scheduling arrangements, the physical resources
provided to satisfy a request may well be different
each time the request is made. In the worst case,
this means a different cluster or supercomputer
comprised of different hardware and with differ-
ent software installed. This then limits the user’s
access to Grid resources for visualization if they
need to wait for the right combination of resources
to become available in order to run a specific
piece of visualization software. Alternatively, if
users were able to provide a system-independent
description of the visualization they wished to
achieve, then different software tools could be
substituted. This would reduce the dependence on
the specific hardware.

Another challenge of Grid computing is that by
design all or most of a Grid application is execut-
ing remotely from the user’s desktop. In general
this is unimportant. A simulation which generates
data as files that are retrieved at the end of a run
does not require any interaction with the user

while it executes. This is entirely different for
visualization whose very purpose is to present
information to the user in a graphical form, pro-
viding greater benefits if driven by the user for
interactive exploration. This then provides a re-
quirement for a user interface that not only dis-
plays the graphical output of the visualization but
also allows the user to drive the remote visualiza-
tion pipeline from their desktop.

The e-Viz project [RWB*05] has been
investigating the area of high performance
visualization. The system is designed to guide the
user through a series of screens to help them
choose the visualization techniques they wish to
use for visualizing their data. From this process
the e-Viz system generates an XML description of
that pipeline and finds available hardware and
software resources on which to implement it. The
system then starts two tools on the user’s desktop
to provide a local user interface to remote running
visualization applications. One tool is for
displaying the remotely rendered graphical output,
and the other is to act as a user interface for
interacting with the dynamically constructed
application. This paper describes the e-Viz Client user inter-
face tool. It gives details of how the XML descrip-
tion in the e-Viz system is used to automatically
configure the user interface, how XML messages
can be used by remote visualization or simulation
components to modify the interface, and how user
preferences can be used to personalise it. The
paper also describes the e-Viz Client’s plug-in
architecture that allows user contributed commu-
nications and interface components to be inte-
grated and selected at run-time.

2. Related Work

A range of strategies for delivering control of
remote visualization processes to the user’s desk-
top have been developed. One is to split the user
interface from the computationally intensive visu-
alization components in a client- server model.
The user interface (client) component executes on
the user’s desktop while the visualization (server)
components can be run on one or more remote
compute resources. The two components are then
joined by a communications protocol. This is the
approach taken by Paraview [Par] which uses
VTK [VTK] for visualization and Tk [Tkt] for the
user interface. It operates as a turnkey system
presenting the user with a simple interface to a
subset of the VTK library routines. Since it is a
turnkey system, the interface required is well
defined and the communications mechanism to
the distributed visualization components is pro-
prietary.

While in essence we are also providing a client
side GUI, our motivation is to provide a more
general purpose system. We wish to create an
interface that can sit above a range of visualiza-
tion systems, even within the same pipeline, and
be able to provide a suitable interface on the fly.
Since the systems that make up the pipeline are
different, the way that they send and receive user
interface parameters may also be different and so
our interface framework provides a plugin archi-
tecture for communications mechanisms. A fur-
ther requirement for a GUI is that its appearance
can be changed by the application in response to
user input or internal state changes of the applica-
tion. This is a difficult problem for a distributed
system sitting above a variety of visualization
systems but we have tackled it through the use of
XML messages that allow a visualization compo-
nent to update its portion of the GUI.

Another project, GAPtk [NS05], takes a similar
approach to ParaView in having user interface
applications running locally on the desktop to
control remote processes. GAPtk is based on a
service-oriented architecture and provides a num-
ber of visualization and data manipulation serv-
ices which can be run on remote Grid resources. A
client library is provided in a number of common
languages that can be built into user interface
software. It provides a simplified API through
which to communicate with the remote services
that make up the application. In this approach,
tailored user interfaces are created by developers
for use with a single Grid application, i.e. a spe-
cific selection and arrangement of the services
provided by the GAPtk project.

A second approach is as follows. Rather than
running the actual user interface code for a remote
application locally, an image of the user interface
running on a remote machine is provided on the
user’s desktop. The user interacts with the image
as though it were the actual interface and the un-
derlying technology, VNC [VNC] for example,
translates this as interactions with the real user
interface. This approach has been taken by
TeraGrid at the Texas Advanced Computing Cen-
tre (TACC). Here users are allocated a Grid re-
source with a graphics card and a VNC session is
started, exporting the desktop of that machine.
The intention is to allow users access to remote
high performance hardware, visualization soft-
ware and their own large data sets. While this
gives reasonable performance, requiring only
moderate bandwidth to appear interactive, and
provides access to common visualization tools, it
may not utilise the Grid to the best effect. Unless
the visualization tools themselves are coded to
take advantage of more than a single resource
(multiple processors, multiple graphics cards),
then the user is merely presented with desktop
tools but through a less interactive medium. In
contrast we provide a user interface tool that runs
on the desktop, so is always interactive, and is
able to sit above the visualization software that is
selected at runtime by the e-Viz system. This
gives a uniform interface to a range of underlying
visualization tools.

Finally, a third approach is the common strategy
of using a web browser as a portal to access Grid
resources for computational tasks is common
[MYG]. This mechanism has been extended to
visualization by projects such as nanoHub [Nan].
Here a complete environment has been created for
researchers in the field of nanotechnology. It pro-
vides users with simulations that they are able to
execute on remote resources and allows them to
subsequently visualize the results on a remote
graphics card with the image returned to the desk-
top. As well as being able to use the simulations
provided by the system, users are able to upload
their own simulations. However, these must first
be integrated by the system providers before they
are available. nanoHub is tailored to a specific
application area where the choices of visualization
have been made by the system’s creators. By
contrast, the e-Viz approach has been to guide the
user through the creation of their own visualiza-
tion pipeline and then provide a user interface that
is tailored to this resulting pipeline. Also, in
nanoHub the interface elements are provided by
the portal, while in our system users are able to
write their own interface widgets and override
system choices at run time with their own.

3. XML for visualization pipeline descriptions

A traditional approach to describing a visualiza-
tion task is to use the Haber and McNabb data
flow reference model [HM90]. This represents the
visualization task as a sequence of connected
processes that transform data from its raw state to
an image. A number of commercial (IRIS Ex-
plorer [Wal04]]) and open source (openDX
[OPE]) systems implement this model to provide
users with an environment in which to create
visualization pipelines. The eViz system too uses
this reference model as the basis for describing its
visualization tasks. In contrast to the systems
above which use proprietary file formats to en-
code their pipelines, eViz uses XML and outputs
its pipelines using an extended version of skML
[DS05] from the gViz project [BDG*04].

skML is made up of a hierarchy of elements
where a single skML document may contain one
or more named map elements. A map is the skML
name for a data flow pipeline which contains a
collection of modules and links. Each map ele-
ment contains one or more named module ele-
ments and zero or more link elements. Link ele-
ments link output data ports to input data ports on
referenced module elements. Each module ele-
ment contains zero or more named param ele-
ments.

skML goes beyond just describing a static snap-
shot of the system, it provides a mechanism to
dynamically change the visualization pipeline.
These changes are achieved by the provision of an
action attribute associated with the module and
link elements. These attributes allow for creation
(default), destruction and modification of these
elements.

In addition to the skML component with its mul-
tiple maps, a document can also contain an RDF
[RDF04] section. This is used to add “run-time”
information such as the resource allocated, or the
name of the software tool used for a particular
component of the pipeline. This is useful in a Grid
context given that hardware and software re-
sources may vary between uses of the same visu-
alization pipeline.

To allow the eViz client tool to generate user
interfaces for the dynamically created pipeline, it
has been necessary to extend the original skML
description in the following ways:

• We add a type attribute to the parameter ele-
ment of skML so that an appropriate widget can
automatically be selected and presented in the
user interface.

• We add an interaction attribute to the pa-
rameter element to allow the distinction be-
tween parameters that are for user input, and
those that are for system output only. Its values
can be steer (input and output) or view (output
only)

• We also add a widgetType attribute to the pa-
rameter element, allowing a specified choice of
widget to be included rather than the automati-
cally selected one.

• We add an action attribute to the parameter
element, allowing dynamic changes to the way
parameters are presented in the user interface -
for example, this allows the parameter to be
hidden in the interface, or visible but inactive.

Further additions are added to the RDF section
as they either represent runtime information, or
are system specific details and do not aid in the
description of the dataflow pipeline. We have
extended the RDF in the following ways:

• For communications we add a CommsType tag to
specify the mechanism to be used when com-
municating with specific components. We also
add a ContactPoint tag so that a port number
can be specified for those communications
mechanisms that require it. These apply at both
the map and the module level.

• To enhance the automatic layout of control
panels we have added Layout and LayoutEle-
ment tags. This allows for a basic grid arrange-
ment of parameters to be described to give the
control panel some structure and organisation.

skML is not the only XML format for visualiza-
tion pipeline description, VisTrails [BCC*05] for
example provides an alternative transactional style
XML format. The choice of skML was based on
past experience with the language and the knowl-
edge that it required only minimal changes.

4. Implementation
4.1. Architecture

The e-Viz Client is an application written in Java
that takes a skML document and uses it to enable
the generation of a user interface for remote simu-
lations and visualization tools. The e-Viz Client
takes either a filename or a URL to the skML
document.

In addition to the XML parser component, a
number of basic widgets are provided. These
include: text boxes; integer and floating point
sliders; menu boxes; radio buttons; simple colour
and transparency editors. These are selected as
appropriate when the interface is constructed
based on the information provided about the pa-

rameters in the skMl descrption. As well as pro-
viding a widget set, a Java interface (e-Viz Client
Widgets Interface in Figure 1) is defined that
allows widgets to be created and added to the e-
Viz system. They can be referenced by name as
the widgetType attribute of a parameter in the
skML document or defined in a local configura-
tion file. Conforming to the interface allows the
widget to interact seamlessly with the e-Viz Cli-
ent.

Figure 1: Architecture of the user interface tool.

Communications are provided by default
through a Java implementation of the client side
component of the gViz library. It is assumed that
the remote components have been integrated with
the server component of this library. For tools that
are already integrated with other communications
libraries, a Java interface (e-Viz Client Parameter
Interface in Figure 1) is provided for accessing
parameter values on the e-Viz Client. This allows
plugins to be created that sit between the e-Viz
Client and the remote component to provide
communications in the native format. These are
referenced in the RDF section of the skML file on
a per module basis and are instantiated at run
time.

4.2. Generating the Interface

The e-Viz Client starts as a blank template upon
which a user interface for a particular application
is constructed using a skML document. A tabbed
interface is created where each component of the
pipeline is represented as a separate tab. Widgets
that represent the parameters of a visualization
component are placed on that component’s tab.
Figure 2(a) shows the effect of parsing the simple
skML example shown below which is in the non
extended skML format. The Threshold parameter
is represented as a text box since no type attribute
is present in this default skML description. With
the addition of type information, more sensible
choices of widget can be made automatically.
Figure 2(b) shows the result of the same skML but
with a type=”Float” attribute added to the

Threshold parameter. This time a float slider is
selected as the appropriate widget.
<skml>
 <map id=”isosurface”>
 <module id=”DR” name=”ReadData”
 out-port=”Output”>
 <param name=”Fname”>Dglazing.dat</param>
 </module>
 <module id=”IS” name=”isoSurface”
 in-port=”DataIn” out-port=”Geomtery”>
 <param name=”Threshold”>65.0</param>

 </module>

 <link id=”DRtoIS”>
 <module ref=”DR” out-port=”Output” />
 <module ref=”IS” in-port=”DataIn” />
 </link>

 </map>
</skml>

 (a) (b)
Figure 2: Two images showing the same tab of

the user interface, (a) is using original (b) is gen-
erated from the extended skML

Types that exist are text, float, int, textArray,
floatArray, intArray and enum. The type enum
has a second attribute of labels which allows text
to be presented to the user for choice widgets.
This type is represented either as a set of radio
buttons, or if the number of options is large then it
switches to using a drop down menu. All widgets
have a label to identify them which comes directly
from their name attribute in the skML file. A fur-
ther attribute associated with widgets is interac-
tion which can be one of two values, steer or
view. Most user interface widgets are of type
steer (to indicate they can be altered by the
user), but view would be used to indicate they can
only be changed by the system and are for infor-
mation only - for example, a parameter such as the
current time-step of a simulation.

The e-Viz Client is only capable of basic lay-
outs. If the number of widgets is small then the
layout is set as a row; if the number is large then it
forms the widgets into a grid to try and keep the
interface square. To generate interfaces with a
particular arrangement of widgets, a Layout tag
can be supplied with the RDF section for a mod-
ule.

4.3. Reactive User Interfaces

User interfaces to applications are not static, they
change in response to changes in the application,
or changes made by the user. One novel feature of
our system is that we seek to replicate this behav-

iour but through the use of the XML description
of the system. By this we do not just mean
changes to the pipeline by adding or removing
modules, or by simply changing parameter values.
These features are offered by systems such as
VisTrails or the skML pipeline editor. We wish to
use the XML description to change the representa-
tion of the parameters in response to user or sys-
tem behaviour, hence the addition of the action
attribute described in section 3.

In terms of user behaviour, for example, it is
useful to reduce the cognitive load on users by
dynamically modifying the list of options shown
to users based on their past behaviour. For exam-
ple if a user never modifies the decimate parame-
ter for a Marching Cubes module then its widget
can be hidden from the control panel:
<map id="MCMap" >
 <module id="2" name="MarchingCubes"
 action="modify">
 <param name="Decimate" action="hide" />
 </module>
</map>

(a) (b)

Figure 3: XML messages are used to control the
appearance of widgets on the user interface, (a)
enabled or (b) disabled.

The e-Viz Client also allows changes in re-
sponse to application behaviour. This can be done
either at the whole interface level, where mes-
sages from some external controlling agent inform
the e-Viz Client that a new pipeline component
has been started and therefore requires a tab on
the interface and communications to be imple-
mented; or at an individual module level where a
component in the current pipeline is able to mod-
ify its own parameter representations.

In computational steering, for example, there are
typically parameters associated with the setting up
of the numerical solution that must not be changed
during the course of a run. An example might be
the grid size over which the solution is computed;
or some parameter defining the problem, such as
pressure under which a simulation is carried out.
In contrast, other parameters (such as frequency of
output of results) are changeable at any time. Thus
the interface needs to react in response to informa-
tion from the simulation, concerning its present
state: for example, is it at its initial step or mid-
way through?

<map id="PollSim">
 <module id="2" name="PollutionSim"
 action="modify">
 <param name="Grid Size” action="disable"/>
 <param name="Topography" action="disable"/>
 </module>
</map>

Here we have set the action attribute to be dis-
able to allow the user interface to display these
widgets, but indicate that they are not currently
active (see Figure 3). As well as being able to hide
and change the interactive state of a widget, the
system allows for replacing the representation of a
widget being used, or even modifying the layout
of a whole module.

4.4. Personalised Interfaces

It is important to be able to adapt the user inter-
face to the experience and preferences of individ-
ual users. We address this in two ways with the e-
Viz Client. Firstly, the user can create a configura-
tion file in which they can record preferences for
default settings. This can also be used by the sys-
tem to record recently unused widgets so that a
compact version of the interface can be displayed
as an option (as discussed above). Secondly, the
system is extensible and allows for the addition of
user created widgets (see architecture in Figure 1).
An interface specification is provided and any
widget that conforms to that specification can be
used. The configuration file contains a list of
mappings from module/parameter name combina-
tions to widget names. When a skML document is
parsed and the system finds an occurrence of a
module/parameter name combination it substitutes
the widget chosen by the user in place of the sys-
tem-prescribed widget. This substitution happens
at run time.

Figure 4: The Wind Direction parameter repre-

sented by a user supplied 2D compass widget
capable of delivering a vector of 3 floats.

 An example of this is illustrated in Figure 4,
where by default three sliders would be provided
to represent a vector of three floats, used to im-
plement the parameter called Wind Direction.
These have been replaced by a simple 2D com-
pass type widget plus an elevation control. As
well as being able to substitute individual widgets

at run time, the user can elect to remove widgets
from the control panel or even edit the layout of a
control panel through directives set in the local
configuration file.

4.5. Communications Mechanism

The e-Viz Client is designed to be an interface for
Grid-based visualization applications. This neces-
sarily means that it will be interacting with re-
motely executing components and must therefore
provide a communications mechanism. By default
the system uses the gViz library [BDG*04] for
parameter communications and locates visualiza-
tion components through information provided by
their PhysicalLocation and ContactPoint tags
in the RDF section of the skML document.

While we use the dataflow pipeline model to ab-
stractly define the visualization that we wish to
achieve, in reality it may not be implemented as a
series of independently executing modules linked
together. A single piece of software may have
been identified that could implement all or many
of the individual steps in the pipeline and may
have been started on the remote server. This
means that in the RDF section the PhysicalLoca-
tion and ContactPoint tags for all or many of the
pipeline components will actually be the same. In
these situations, rather than generating many
communications channels to the same piece of
software, the e-Viz Client groups these compo-
nents together and manages their communications
through a single connection.

Although gViz is the default communications
mechanism, an interface is provided to allow other
communications libraries to be used. The
CommsType tag in the RDF section is used to indi-
cate, on a per module basis, the mechanism that is
to be used. This allows maximum flexibility when
adding new remote visualization components.
Rather than recoding the remote application, a
plugin can be written for the e-Viz Client, using
the parameters interface, to link the two together.
Two other communications mechanisms have
been implemented for the e-Viz Client. One is for
the RealityGrid [PHP*04] steering library and the
other is for a web services based system called
NOCOV [WBH*06].

5. The gViz Computational Steering Library

Work done in the gViz project [BDG∗04] looked
at allowing users to interact with and visualize
data from simulations running on Grid resources.
The outputs from this project included a Grid
enabled version of IRIS Explorer, the skML visu-
alization pipeline description language (described
in section 3) and the gViz steering library.

The extension to IRIS Explorer allowed compo-
nents of the pipeline to be placed on selected Grid
resources, authenticated through a Globus [Fos05]
certificate. This allowed visualization processes to
be moved to the location of the data, rather than
bringing the data to the desktop. In the context of
computational steering, the gViz library was used
to connect modules in the visualization pipeline to
running numerical simulations for steering of
parameters, while the data was directed to the
remotely executing visualization components.

While IRIS Explorer was used as the main ex-
emplar in the gViz project, the gViz library was
intended to be system independent. It was de-
signed to be easily integrated with simulations
written in C/C++/Fortran to: allow the simulation
to present multiple parameter and data streams;
handle connections to streams from multiple cli-
ents; transfer data and parameters to clients when
made available by the simulation; accept parame-
ter changes from clients and queue them until
requested by the simulation; provide standard
TCP socket connections as well as authenticated
connections through the Globus API; and provide
a web services interface.

This functionality worked well for computa-
tional steering, but further work has been done to
allow this API to be used in the more general
setting of user interface communications. Much of
the work has been to implement a native Java
implementation of the client component of the
gViz library. This allows the e-Viz Client to
communicate with components instrumented with
the original C implementation. We have also ex-
tended parameter XML schema to include enu-
merated types and array types as well as provide a
commit flag (described later).

While the queue approach for parameters is ap-
propriate for simulations, where we need to guar-
antee that all parameter changes delivered are
received by the simulation, it can be a hindrance
for other applications. We use the gViz library to
connect not only the e-Viz Client to the back-end
visualization components, but also to connect the
viewer window to the back-end renderer. Here we
are delivering view position changes as the user
drags the mouse, and receiving images of re-
motely rendered results. Many mouse positions
can be generated in the time it takes to render and
deliver a single frame. These unrequired view
positions need to be ignored, taking only the most
recent view position for the next frame. Extracting
the last view position from the general queue of
parameters is problematic so an option was cre-
ated that allows the developer to nominate pa-
rameters to be ‘non-queuing’. The values of these

parameters are continuously overwritten with
newly arriving values so that when the renderer
requests a new viewpoint position it is guaranteed
to get the latest.

While the gViz library supports multiple con-
nections to parameter and data streams, it could
not be said to be providing a truly collaborative
environment. One user may become aware of
another’s actions only after the result of these
actions becomes apparent in the visualized output.
Work has been done [WW05] to extend the gViz
API to support a collaborative mode of working.
A commit tag has been added to the parameter
XML schema and a new committed parameter
stream added to the library. When this stream type
is used, any uncommitted parameters sent to the
simulation are merely reflected back to all con-
nected clients. This allows these parameter
changes to be seen by collaborators and discussed
before a final decision is reached. Once a new
parameter value has been agreed, it is submitted in
a committed state and is passed to the running
simulation.

To support the dynamic changes to the interface
by remote visualization components, XML mes-
sages need to be sent detailing these changes.
Rather than mixing interface and parameter up-
dates in the same XML message, a new stream
has been added to the gViz library labelled Inter-
face. This is activated by remote codes that wish
to use the interface stream through a gViz library
API call. The e-Viz Client simply makes a con-
nection to the Interface stream using the same
connection information as for the parameter
stream. Inputs that arrive from this stream are
directed by the gViz communications plugin to
the interface manager, rather than the parameters
manager. This functionality is provided as part of
the parameters interface so is therefore available
to other communications mechanisms.

6. Applications

6.1. Environmental Pollution

One of the motivating scenarios for the gViz
project was that of an environmental pollution
disaster. In this scenario an accidental release of a
chemical has taken place and it is necessary to
compute in faster than real-time the concentra-
tions of the pollutant in the environment, to in-
form decisions with respect to evacuation of
population centres. The pollutant is moved under
the action of the wind which may change as time
progresses and alter the levels of concentration in
different locations. This scenario is modeled using
a PDE-based numerical simulation generating
data that is visualized and presented to the user in

real time. The user is able to change the direction
of the wind while the simulation is running and
see the effects of these changes as they are com-
puted.

Figure 5: Environmental Pollution Demonstrator

In the gViz project a number of different visu-
alization systems were used as clients, each one
requiring a hand coded user interface to be created
for the demonstrator. By contrast Figure 5 shows
the automatically generated user interface for the
same pollution application. Any changes to the
underlying visualization pipeline do not require
re-coding of the interface, merely reading the new
description is enough to provide a new interface.

6.2. Molecular Visualization

Figure 6: Molecular Visualization using VMD

The RealityGrid library for computational steering
has been used by researchers at Penn State Uni-
versity to instrument a molecular dynamics code
used to simulate the annealing of crystalline sili-
con. At the end of each time step the simulation
sends molecular data over a socket to a remote
instance of the Visual Molecular Dynamics
(VMD) application for visualization [HDS96].
The VMD application has been modified using
the RealityGrid library to connect to a simulation
as a data source and using the gViz library to
expose visualization parameters.

By creating an XML description of this distrib-
uted visualization pipeline, the e-Viz client can be

used to automatically generate a single user inter-
face to both the simulation and the visualization,
using the RealityGrid and gViz communication
mechanism respectively. The simulation and visu-
alization appear as separate tabs in the user inter-
face, as depicted in Figure 6.

7. Conclusions and Future Work

This paper has demonstrated a user interface tool
for Grid-based visualization systems that is auto-
matically configured based on the XML descrip-
tion of the pipeline. This system is extensible to
allow users to: add layout information for control
panels; create and add their own widgets to the
system for instantiation at run-time; create com-
munications plugins to allow control of software
instrumented with communications libraries other
than gViz. It goes beyond just providing a static
interface from the original description, but allows
snippets of XML to update and manipulate the
interface.

The extension to skML allows for the generation
of interfaces, but the vocabulary used for the
modules is undefined. Work is needed to create an
ontology for visualization that will allow truly
system independent descriptions of visualization
pipelines. This will lead to improved automatic
selection of applications with which to implement
a user’s visualization request. With its parameter
and widgets interfaces, the e-Viz Client is flexible
enough to sit above any visualization application
that has an external means of control.

References

[BCC*05] BAVOIL L., CALLAHAN S. P., CROSSNO
P. J., FREIRE J., SCHEIDEGGER C. E., SILVA C.
T., VO H. T.: VisTrails: Enabling Interactive
Multiple-View Visualizations. In Proc. of IEEE
Visualization (2005).

[BDG*04] BRODLIE K., DUCE D., GALLOP J.,
SAGAR M., WALTON J., WOOD J.: Visualization
in Grid Computing Environments. In Proc.
IEEE Visualization 2004 (2004), pp. 155–162.

[DS05] DUCE D.A., SAGAR M.: skML: A Markup
Language for Distributed Collaborative Visuali-
zation. In Proceedings of Theory and Practice
of Computer Graphics (2005), pp 171-178.

[FK99] FOSTER I., KESSELMAN C.: The Grid:
Blueprint for a New Computing Infrastructure.
In Computational Grids, chapter 2, (1999).
Morgan-Kaufman.

[Fos05] FOSTER I.: Globus toolkit version 4:
Software for service-oriented systems. In Proc.

IFIP International Conference on Network and
Parallel Computing (2005), pp 2–13.

[HDS96] HUMPHREY W. DALKE A. SCHULTEN K.:
VMD Visual Molecular Dynamics. In Journal of
Molecular Graphics (1996)

 [HM90] HABER R. B., MC NABB D. A.: Visualiza-
tion Idioms: A Conceptual Model for Scientific
Visualization Systems. In Visualization In Scien-
tific Computing (1990), Shriver B., Neilson G.,
Rosenblum L., (Eds.), IEEE Computer Society
Press, pp. 74–93.

 [MYG] RENNICK EGGLESTONE S.: A portal inter-
face to myGrid workflow technology. In the
Proceedings of the NETTAB workshop on
Workflow Management (2005).

[Nan] nanoHub. http://www.nanohub.org/

[NS05] NAGELLA S., SASTRY L.: Visualization on
the UK National Grid Service using GAPtk, a
generic toolkit. In Proc. AllHands Conference
(2005)

[Ope] OpenDX. http://www.opendx.org/

[Par] ParaView. http://www.paraview.org

[PHP*04] PICKLES S., HAINES R., PINNING R.,
PORTER A.: Practical tools for computational
steering. In Proc. of UK e-Science All Hands
Meeting (2004).

[RDF04] Resource Description Framework
(RDF). http://www.w3.org/RDF/, 2004.

[RWB*05] RIDING M., WOOD J., BRODLIE K.,
BROOKE J., CHEN M., CHISNALL D., HUGHES C.,
JOHN N., JONES M., AND ROARD N.: e-Viz :
Towards an integrated framework for high per-
formance visualization. In Proc. of UK e-
Science All Hands Meeting (2005).

[Tkt] TK toolkit: http://www.tcl.tk/

[VNC] tightVNC. http://www.realvnc.com/

[VTK] VTK. http://www.vtk.org

[Wal04] WALTON J. P. R. B.: NAG’s IRIS Ex-
plorer. In Visualization Handbook (2004), John-
son C. R., Hansen C. D., (Eds.), Academic
Press.

[WBH*06] WANG H., BRODLIE K., HANDLEY J., WOOD
J.: Service-Oriented Approach to Collaborative
Visualization. In Proc. of UK e-Science All
Hands Meeting (2006).

[WW05] WOOD J., WRIGHT H.: Steering via the
Image in Local, Distributed and Collaborative
Settings. In Proc. of UK e-Science All Hands
Meeting (2005).

	WRROcoversheetBrodlie.pdf
	user_interface_grid_steering_vis.pdf

