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SELF-ORGANISING FUZZY LOGIC CONTROL AND ITS
APPLICATION TO MUSCLE RELAXANT ANAESTHESIA

Linkens, D.A & Hasnain, S.B
Department of Control Engineering, University Of Sheffield

ABSTRACT

In this paper the authors describe the use of Self-Organising
Fuzzy Logic Control (SOFLC) for automated drug delivery in mus-
cle relaxant anaesthesia. The self-elicitation of a knowledge base is
shown to be robust in the presence of model uncertainity, noise
contamination, and parameter changes. Being computing intensive,
SOFLC is considered for parallel implementation on transputers,
both via use of Lisp interpreter and direct Occam coding. SOFLC
in Occam code gave a fast implementation, which could be further

speeded up using multiple transputers.

1. INTRODUCTION

Control theory has made remarkable progress from its tentative origins to
the mathematically formalised discipline that it is today. Modern control theory
has proved to be very successful in areas where the systems are well defined
either deterministically or stochastically. Many systems involving man-machine
interaction are characterised by a high degree of performance but they cannot be
analysed to a comparable degree of accuracy. The human involved is often an
adequate controller because he is able to construct in his mind a model of the
process which is just accurate enough to carry out the task in hand. This model
includes all the essential features of the process required by him to do the job.
The control engineer does not always have the ability to extract the essential
details from a process when he is replacing the human by an automatic con-
troller. Considerable insight into such systems can be gained by modelling the

method of human decision making in these situations. The human is also capable



of learning through experience which makes him less dependent on an accurate
knowledge of his environment before he carries out a task. So, any attempt to
automate the role of a human-being must, to some extent, model his powers of

expression and reasoning as well as learning capabilities.

To support the translation of the more vague, non«numeﬁc statements that
might be made about such a control strategy a semi-quantitative calculus is
required. It was against this background that Zadeh introduced and developed
fuzzy set theory[Zadeh 1965] and approximate reasoning[Zadeh 1973]. The later
paper introduced the concept of fuzzy linguistic variables and the fuzzy set,
which seemed to provide a means of expressing linguistic rules in such a way

that they can be combined into a coherent control strategy.

Since its introduction by Zadeh in 1965, fuzzy logic has been used success-
fully in a number of control applications. The first application of fuzzy set theory
to the control of dynamic processes was reported by Mamdani and Assilian
[1974]. They were concerned with the control of a small laboratory scale model
of steam engine and boiler combination. The control problem was to regulate
engine speed and boiler pressure. Despite the nonlinearity, noise and the strong
coupling in the plant, they managed to get acceptable control, using a fuzzy logic
controller. Kickert and Lemke [1976] applied fuzzy logic to design a controller
for a laboratory scale warm water plant. The water tank was divided into several
compartments. The aim was to control the temperature of water in one of the
compartments by altering the flow rate through a heat exchanger contained in the
tank. A secondary control task was to ensure fast response to step changes in
outlet water temperature set point. The first experiment on an industrial plant
with a fuzzy logic controller was undertaken by Rutherford and Carter [1976].
They developed a controller for the permeability at the Cleveland sinter plant,

and showed that the fuzzy logic controller worked slightly better then the PI con-
troller.

Tong applied fuzzy logic to a pressurised tank containing liquid [Tong
1976]. His problem was to regulate the total pressure and level of liquid into the
tank by altering the rates of flow of the liquid into the tank and the pressurising

air. Good control was achieved despite the nonlinearity and strong coupling,



however it was no better than that obtained by a controller designed using con-
ventional techniques. Tong et al [1980] also examined the behaviour of an exper-
imental fuzzy logic control algorithm on an Activated Sludge waste water treat-
ment Process (ASP). He concluded that a fuzzy algorithm based on practical
experiance can be made to work on this difficult process. Thé success obtained
by Mamdani and Assilian in the control of a steam engine led them to study
temperature control of a stirred vessel which formed the batch reactor process - a
non-linear time varying gain and time delay process[Mamdani and Assilian
1975]. The results obtained showed that process can be controlled effectively
using heuristic rules based on fuzzy control, but to achieve good control the
fuzzy rules must be correctly formulated, to take account of time delays when
they occur. In the same decade the techniques of fuzzy logic were applied by
independent groups over a.wide variety of processes: Ostergaard[1976] applied it
successfully on a heat exchanger; Van Amerongen[1977] applied fuzzy sets to
model the steering behaviour of ships. Larsen[1979] reported work to implement
fuzzy logic control on a coal-fired wet process umax-cooler kiln. Sheridan and
Skjoth [1983] attempted to replace kiln operators at the Durkee plant of the Ore-

gon Portland cement company using fuzzy algorithms.

The major shortcoming of previous work is the slow response time of the
fuzzy logic controller, due to the large calculations essential for the algorithm.
This makes it unsuitable for dynamic operations. In this work an attempt is made
to speed up the calculation time by splitting the fuzzy logic controller in
different processes and running them in parallel on one or a combination of tran-
sputers. A novel technique to store the linguistic rules in Lisp (an AI language)
and use it by the fuzzy logic controller on a transputer network is also presented.

The Self-Organising Fuzzy Logic Algorithm (SOFLC) initially presented by
Procyk [1977] for a single input/output process provides an adaptive rule-
learning capability to complement a fuzzy logic control strategy. Yamazaki and
Mamdani [1982] examined the problems of poor settling time and occasional
instability associated with SOFLC and proposed an improved version which
overcomes these problems, by applying it on single input/output and multiinput
multioutput processes. The main problem which restricted application of SOFLC

over a wide area was the unclarity of the rule learning and storing procedure. It

-4 .



was later modified by Daley [1984] and applied on a process of greater complex-
ity and higher mathematical dimension Le, attitude control of a space craft.
Recently Larkin(1985) has applied SOFLC to aircraft control and Harris and
Moore (1989) have applied it to the control of autonomous guided vehicles.
Here a description is given of an attempt to control the non-linear muscle relax-
ant model of Pancuronium with SOFLC. The simulations were first performed on
a sequential machine and then parallelism was introduced in the SOFLC to
extend its implementation to a multi-processor system. The robustness of SOFLC
1s examined with consideration of parameter changes in the process model and

inducing white noise to the process.

2. MUSCLE RELAXANT PROCESS MODELS

Muscle relaxant drugs are used by anaesthetists who, based on their own
experience, determine the adequate dose in order to obtain a predefined degree of
relaxation resulting often in a large consumption of drugs by the patients. A safe

and fast method for designing closed-loop infusion systems is to replace the

patient with a mathematical model.

The pharmacology of muscle relaxant drugs comprises two important parts,
pharmacokinetics and pharmacodynamics. Pharmacokinetics concerns the absorp-
tion, distribution and excretion of drugs, whereas pharmacodynamics is a term

employed in drug pharmacology to describe the relationship between drug con-
centration and the therapeutic effects of these drugs.

2.1 Pharmacokinetics

For the drug Pancuronium the body is considered to consist of two compart-
ments between which reversible transfer of drugs can occur. The drug is injected
into compartment 1 which represents the plasma volume and the perfused tissues
such as heart, lung, lever etc., from which it is excreted into urine. The drug is
exchanged between the 1st compartment and the connecting peripheral compart-

ment. The plasma concentraton of drug versus time is given by the bi-

e



exponential equation.
c(t) = Ale @V 4 A2g 02 (1)

where; _
Al and A2 are complex functions
Ale™! reflects the distribution phase

A2 reflects the elimination phase.

2.2 Pharmacodynamics

It is known that the interaction between the injected drug and the com-
ponents of the body induce a certain therapeutic effect. The steady state plasma
concentration of the drug is proportional to the amount of drug at the site of

action. The plasma concentration of drug versus effect relationship can be

form;

:
B . C¥

= 2
C* + C%, @

where;

E represents the drug effect

E ax the maximum drug effect
C the drug concentration

Csp The drug concentration corresponding to a 50% effect.

Using previous pharmacological identification studies[Linkens et. al.
1982(a)], the drug Pancuronium can be modelled as a two-time-constant linear
dynamic system with a dead-time in series with a non-linear part comprising a
dead space and a limiting device or a Hill equation as illustrated in Fig 1. For

the drug Atracurium a three compartment model is considered and the transfer
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function is 3rd order as shown in Fig 2 [Linkens and Mahfouf 1989].

3. FUZZY LOGIC THEORY

In conventional set theory, there is a distinct difference between elements
which belong to a set and those which do not. Thus, for example, if the space on
which the sets are defined is ‘the range of speed between 50 m.p.h and 100
m.p.h, then the non fuzzy set for the speed of the car greater than or equal to 70
m.p.h is given by Fig 3(a). The function p is called the membership function of
the set and takes values either O or 1. In this case U is a step function with those

speeds for which it is zero being outside the set, and those for which it is one

being inside the set.

A similar fuzzy set'might be "speed much greater then 70 m.p.h" and
"speed about 70 m.p.h", shown respectively in Fig 3(b) and Fig 3(c). In both
these cases [(r) takes all the values on the closed interval (0,1) and indicates the

degree of membership within the given range.

Fuzzy sets can be manipulated in the same way as non-fuzzy sets with
operations of union, intersection and complementation being defined by simple

arithmetic operations on the set of membership functions. The following example

is used to define the fuzzy operations.

IF

A = { speed is much greater then 70 m.p.h)
B = { speed is about 70.m.p.h}
represented by Fig 3(b) and Fig 3(c),then

(i) UNION

The union of fuzzy sets A & B of the universe of discourse e is denoted

by A\B and the membership function is given by,
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Hap (€ = max [ Pue ;5 Hp ] & E 3)

This corresponds to the connective "OR" and is shown in Fig 4(a) for prior

example.

(ii) INTERSECTION

The intersection of fuzzy sets A & B is denoted by A~\B with the member-

ship function given by,
Ha~p (€ = min [ fae) ; Lpg ] ec E )

This corresponds to the connective "AND" and is shown in Fig 4(b) for

prior example.

(iii) COMPLEMENT

The complement of fuzzy set A is denoted by A with a membership func-

tion defined by,

by (@ = 10 — 1, (o) s)

This corresponds to the negation "NOT" and is shown in Fig 4(c) for prior

example.

3.1 COMPOSITIONAL RULE OF INFERENCE

In general, several rules in the form of logical statements, are required to
give adequate control. However it is impractical to have a rule for every possible
situation and so one further step is required so that the collection of logical state-
ments can be fully exploited. The composition rule of inference allows the rules
to be used in situations which don’t normally occur. This is an important feature
of fuzzy controllers, since it enables, for example, an interpretation of the ques-
tion " given the control shown above, what is the change in pressure of an

accelerator pedal if the speed is much greater then 100.m.p.h?"

The membership value of each rule for a given controller input is calculated

by fuzzy implication. Let us take the following example where the rule R; is

'
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expressed as,

R;:If e is E; then output is U,
Fuzzy implication is expressed by,
R,=E; x U, 6)
where
x: Fuzzy implication.

The controller output is inferred from the input and the control rule by com-

positional rule of inference.
U=R;0E )]

where

E = Fuzzy set of the actual controller input
0 = Composition

U; = inferred Controller input

using the max-min rule.
Ky () = max, min [ Wg(e) ; Hple,u) ] ()

when there is more than one rule the maximum of the membership values of
those rules is usually taken, which means ELSE in rules is interpreted as taking

the maximum of the membership values.

Hy(u) = 3 Wy (1) = max; max, min [ Lgle) ; ppleu) ] ©)

4 FUZZY LOGIC CONTROLLERS
4.1 SEQUENTIAL FUZZY LOGIC CONTROL

The simple fuzzy logic controller described here is designed to regulate the
output of a process around a given set-point. The output at regular intervals is
sampled and sent to the controller. The controller in Fig 5 shows the

configuration in relation to a single-input/output process. In general there are two
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inputs and one output to the controller. One of the inputs is the process error E,
the other input CE is the change in error, obtained by subtracting the error at the
last sampling instant from the present one. Movements toward the set point are

positive changes in error, and movements away are negative change in error. The

control action U is the change in input to be applied to the process.

The linguistic synthesis of the fuzzy controller relates the state variables, E
and CE to the action variable U, by means of the linguistic protocol. This
linguistic protocol consists of a set of fuzzy rules which define individual control
situations to form a fuzzy conditional sentence or algorithm. A section of such

an algorithm might be,
If Eoor is ...
then If Change in Error is ...
then Qutput is...
Else
If Error is ...
then If Change in Error is ...

then Output is...

Each rule is a fuzzy conditional statement connecting the output to the
input.

In the fuzzy controller the universe of discourse is discrete, thus member-
ship vectors rather than membership functions are considered. The variables are

therefore defined by Fuzzy subsets in the following manner.

Error E =(e, nge) , €€ F
Change in Error CE = (c, Lep(c) , ce CE
Change in Inpur U = (u, L) , ue U

Error and its rate of change are first calculated and then converted into
fuzzy variables after being scaled. Zadeh’s rule of inference is used to infer the

fuzzy output. The deterministic input is then calculated by defuzzifying the input

9.



using the mean of maxima method..

The fuzzy sets are formed upon a discrete support universe of 14 elements
of error; 13 elements of error rate and 15 elements of the controller output.
Appropriate membership functions are assigned to each element of the support

set. The resulting sets representing the linguistic terms are listed in Table 1.
Table 1: The Fuzzy set definitions

(a) ERROR

PB 0 0 0 0 0 0 0 0 0 0 01| 04 )08 | 10
PM 0 0 0 0 0 0 0 0 0 02 | 07 | 1.0 | 0.7 | 0.2
PS 0 0 0 0 0 0 0 03|08 |10} 05|01 0 0
PO 0 0 0 0 0 0 0 10 | 0.6 | 0.1 0 0 0 0
NO 0 0 0 0 0.1 | 0.6 | 1.0 0 0 0 0 0 0 0
NS 0 0 01|05 |10 |08 03] 0 0 0 0 0 0 0
NM (|02 | 07 | 1.0 | 0.7 | 0.2 0 0 0 0 0 0 0 0 0
NB ||1.0 | 0.8 | 0.4 | 0.1 0 0 0 0 0 0 0 0 0 0

o T0a



(b) CHANGE IN ERROR

-6 -5 -4 -3 -2 -1 -0 +1 | +2 | +3 | +4 | +5 | +6
PB 0 0 0 0 0 0 0 0 0 011 04 08 | 1.0
PM 0 0 0 0 0 0 0 0 02 | 07 | 1.0 | 0.7 | 0.2
PS 0 0 0 0 0 0 0 09 | 1.0 | 0.7 | 0.2 0 0
ZO 0 0 0 0 0 05| 1.0 | 0.5 0 0 0 0 0
NS 0 0 0.2 | 0.7 | 1.0 | 0.9 0 0 0 0 0 0 0
NM (02 | 07 | 1.0 | 0.7 | 0.2 0 0 0 0 0 0 0 0
NB || 1.0 | 0.8 | 0.4 | 0.1 0 0 0 0 0 0 0 0 0
(c): OUTPUT
Tl 6 | 5| 4 | 3| 2 1| -0 | 41|42 43| 44|45 46| 7
PB 0 0 0 0 0 0 0 0 0 0 0 01|04 |08 ] 10
PM 0 0 0 0 0 0 0 0 0 02 |07 | 1.0 | 07 | 0.2 0
PS 0 0 0 0 0 0 it 6.4 | 1.0 | 0.8 | 04 | 0.1 0 0 0
zZ 0 0 0 0 0 0 0.2 | 1.0 | 0.2 0 0 0 0 0 0
NS 0 0 0 |01 04|08 ]| 10|04] 0 0 0 0 0 0 0
NM 0 02 | 07 | 1.0 | 07 | 0.2 0 0 0 0 0 0 0 0 0
NB || 1.0 [ 0.8 | 0.4 | 0.1 0 0 0 0 0 0 0 0 0 0 0

The linguistic elements used are the same as those used in most applications

and these items have the following meaning:

- 11 -



PB Positive Big NO Negative Zero

PM Positive Medium NS Negative Small
PS Positive Small NM Negative Medium
PO Positive Zero NB Negative Big

Z0 Zero

The terms NO and PO are introduced to obtain finer control about the
equilibrium state, NO being defined as values slightly below zero and PO terms

slightly above zero.

4.2 PARALLEL FUZZY LOGIC CONTROL

The fuzzy control of a process is quite complex as indicated by Fig 5.
Fuzzification, defuzzification and scanning of the control rules to find the
appropriate one makes the system very slow. Parallel processing presents a possi-
ble solution. In order to experiment with a transputer-based system, an experi-
mental process(muscle-relaxant drug model), the fuzzy control logic and the con-
trol rules were all coded in Occam and run on a single transputer. The results
were encouraging, with considerable gain in speed. Trials showed that since the
control rules are linguistic and Occam is not suitable for handling linguistic

problems some alternative language should be used.

There are many problem-solving systems that are based on matching simple
rules to given problems. They are often called rule-based expert systems, and
sometimes they are called situation-action Systems or production-rule systems.
Lisp is a powerful language to implement rule-based systems with great potential
to handle linguistic rules and commands. The available transputer Lisp system
was originally written in C’ and capable of running on a single transputer. In
order to implement it as an interactive system which can advise the control algo-

rithm on other transputers it has to be linked with Occam.

Inside the TDS(Transputer Development System) 'C’ is considered as an
alien language. The facilities provided for linking it with an Occam program
results in slow communication to the knowledge base files required by the Lisp
program. The 3L Parallel *C’ complier provides the necessary software needed to

link "C* programs with Occam outside the TDS. The Occam program is

2 13 .



compiled using a stand alone compiler and then linked to the *C’ compiled pro-
grams. A configuration file which explains the physical description of the links
and processor descriptions connects the 'C’ and Occam programs and produces

an object file which can be executed on a transputer network.

It is worth mentioning at this point that the major limitation of the fuzzy
algorithm was the off-line calculation of the rule map. Any change in the control
rules were to be observed by the operator first, and then followed by the change
in the fuzzy linguistic algorithm and calculation of the rule map, which is subse-
quently applied to the process. The whole procedure is repeatedly performed
until an acceptable level of control is achieved. This leads us to the concept of a

self-organising fuzzy logic controller.

4.3 SELF-ORGANISING FUZZY LOGIC CONTROL

The Self-Organising Fuzzy Logic Controller (SOFLC) is an extension of
the simple fuzzy logic controller as shown in Fig 6. The SOFLC must be able to

assess its performance in order to improve its control strategy. The basic func-

tions of SOFLC can be summarised as follows

1. To issue appropriate control action whilst evaluating the performance.
2 To modify the control action based upon this evaluation.

The performance of the controller in relation to the process output is meas-
ured by the deviation of the control response from the desired one. The TeSponse
of an output can be monitored by its error and change in error. The performance
index takes the form of a decision maker which assigns a credit or reward based
on the knowledge of error and change in error. This credit value is obtained by
the fuzzy algorithm which linguistically defines the desired performance. The
performance index matrix used for muscle relaxant control using Pancuronium

is shown in Table 2.

- 18-
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Table 2: SOC PERFORMANCE INDEX MATRIX

CHANGE IN ERROR
ERROR

NB | NM | NS Z PS | PM | PB

NB NB NB | NB [ NM | NM | NS | ZO

NM NB NB | NM | NM | NS | ZO | NS

NS NB NB NS NS Z0 | PS | PM

NO NB | NM | NS 20 | ZO | PM | PB

PO NB | NM | ZO | ZO PS | PM | PB

PS NM | NS | ZO PS PS PB | PB

PM NS 0O PS | PM | PM | PB | PB

PB 70 PS PM | PM | PB PB PB

If the input states are assumed to be fuzzy singletons i.e, fuzzy sets with
membership function equal to zero every where except at the measured value
where it equals 1, the linguistic performance rules can be transformed into a

lookup table (Table 3) using the standard techniques of fuzzy calculus.

-14 -



Table 3: PERFORMANCE INDEX LOOK UP TABLE

CHANGE IN ERROR

ERROR

-6 -5 -4 -3 -2 -1 -0 +1 +2 +3 | +4 +5 | +6
-6 10 | <65 | <70 | -5.0 | 7.0 | 7.0 | 4.0 | 40 | 40 | 25 | -1.0 | 0.0 0.0
-5 -6.5 65 | 65 | -50 | 65 | <65 | -40 | 40 | -4.0 | -25 | -1.5 | 0.0 (I
-4 70 | 6.5 | 7.0 | -5.0 | 4.0 | 4.0 | 4.0 | -1.0 | -1.0 | -25 | 0.0 | 1.5 | 10
-3 6.50 | -6.5 | 40 | 4.0 | 4.0 | 3.0 | 25 |25 0.0 | 00 | 1.5 | 25 | 25
-2 70 | 65 | <70 | 40 | -1.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 40 | 40
-1 65 | <65 | -65 | 40 | -15 | <15 | -1.5 | 00 | 0.0 | 25 | 1.5 | 40 | 40
-0 70 | <65 | 40 | 3.5 | 1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 25 | 40 | 65 7.0
+0 7.0 | 65 | 40 | 25 00 | 00 | 00 | 1.0 | 1.0 | 35 | 40 | 65 7.0
+1 40 | 4.0 | -15 | =25 | 0.0 | 0.0 1.5 | 1.5 | 1.5 | 40 | 65 | 65 | 65
+2 -40 | 40 | -1.0 | 0.0 | 0.0 | 0.0 1.0 | 1.0 | 1.0 | 40 | 7.0 | 65 | 7.0
+3 25 |25 | L5 00 | 0.0 | 25 | 25 | 30 | 40 | 40 | 40 | 65 6.5
+4 ;1.0 | 15| 0.0 25 | 1.0 | L0 | 40 | 40 | 4.0 | 50 | 7.0 | 65 | 7.0
+5 0.0 0.0 L5 | 25 | 40 | 40 | 40 | 65 | 65 | 50 | 65 | 65 | 65
+6 0.0 0.0 1O | 25 | 40 | 40 | 40 | 70 | 70 | 50 | 7.0 | 65 7.0

- 15 -




4.3.1 RULE MODIFICATION PROCEDURE

The rule modification procedure can be described as follows [Daley and
Gill, 1986].

1 Let the input to the controller be e(kT) and ce(kT) and output of the
controller be u(kT)

2 At some instant kT the process input reward is p;(kT)

3. If the process input T samples earlier contributed most to the present

state,

4. Then the controller output due to the measurements e(kT — rT) and
ce(kT — rT) should have been u(kT — rT) + p,(rT).

The rule modification can be approached by forming fuzzy sets around the

above single values:

E(T - rT) = F(e(kT — rT)) (10)
CE(KT — rT) = F,(ce(kT — rT)) (11)
UGKT — rT) = F,(u(kT — rT)) (12)

where F, is the fuzzification procedure.

The controller is modified by replacing the rules that most contributed to the pro-

cess input rT samples earlier with the rule:
E (kT = rT) = CE(T — rT)——U (kT — rT) (13)

If the controller is empty then an initial rule must be created, further rules will
be generated when required by the modification procedure. The initial rule will
be formed by the fuzzification of the initial condition é’,ce! and p', and controller
outputs %', This is done by forming a fuzzy kernel to provide a spread of values

about the single support element, thus creating the following fuzzy sets:

- 16 -



E = (e — x),lle — x) (14)

CE = (ce — x),l(ce — x) (15)
U=+ P; = x),(u+ P,—x) (16)
where
(e — x) (1.0, x=+0
He 07, x=+1
dee =2 = lop,  x=x2
We(u + P; — x) 00, 3<x<-3

The single elements and the input and output of the controller are stored for
use by the modification procedure. To reduce computation time, Daley suggested
storage of each element of the rules in 3x5 sub-locations of the rule matrix con-
taining,

(1) A single value giving the number of non-zero membership values in

the set

(i) The desired support value of the set

(iii) The membership value of the set.

Thus if the present instant is kT and the modification is made to the controller

output rT samples earlier, the rule to be included results from the fuzzification of

e(kT — rT),ce(kT — rT),u(kT — rT) + p(kT)

The output U is obtained from the rules by using a modification procedure

as follows:

A control rule written as:
IF "E" THEN IF "CE" THEN "U"
is a fuzzy relation
R=ExCExU
then,

u(e’ce:u') = min { H'E(e)= “CE(Ce)a H‘U(u) } (17)

- 17 -



If the measured fuzzy sets at some instant are £ and CE then an implied
output set I/ can be obtained by the above rule using the process of fuzzy com-

position.
U={Eo[CEo(ExXCExU)]} (18)
which has a membership function given by
() = max, min ([ max,, min (u(ece), tp(ce)) I, k@) (19)

For several control rules the output set U° is characterised by the membership

function;

I“LU"(M) = MaXyy s [H(j(u)} (20)

and the deterministic control action is obtained from I/° by the 'mean of max-

ima’ procedure.

5. SIMULATION STUDIES
(i) SIMPLE FUZZY LOGIC CONTROL

The fuzzy linguistic algorithm, for the muscle relaxant process of Pancu-
ronium is written by studying the general behaviour of the process under
different conditions, to provide fast convergence and high steady state

accuracy(Table 4).
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Table 4:SYSTEM STATE ACTION DIAGRAM

CHANGE IN ERROR
ERROR

NB | NM | NS Z PS | PM | PB
NB
NM
NS PS
NO PS | PS Z
PO PS | PS | PS
PS PB | PS
PM PB | PM
PB PB | PS PB

The rules are written in the form of a matrix and interpreted as:
If "Error is NO" and "CE is NS" then controller output is "PS™"

The non-linear muscle relaxant process model for Pancuronium was used to

test the fuzzy logic controller. Both the process and controller were first imple-

mented on a Perkin Elmer mini computer.

The theory of fuzzy logic calls for a large amount of computation i.e, mult-
plication of A x (B x C xD) matrices, where A is the number of rules given in
the fuzzy linguistic algorithm (state action diagram Table 4). For the Pancu-
ronium process 14 rules were selected initially. B, C and D are matrices
representing the fuzzy sets error, change in error and controller output (Table 1).
This induced a calculation of 14 x (14 x 13 x 15) matrices, to calculate the Tule
map. Two Fortran programs were written, one to calculate the rule map and the
second to implement the fuzzy logic controller using the rule map. The process
was simulated using PSI (an interactive simulation package [1980]) and con-

nected to the Fortran program using a special communication routine written for
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PSI called PSICON.MES[Linkens et. al. 1982(b)].

The parameters selected for the muscle relaxant transfer function

Ke T

6 =17 Tos)(L + T59)

@1

were as follows.
Ty =1 min;T, = 2 min;T5 = 20 min
A sampling interval of 1 minute was used with a total experiment length of
200 minutes for each simulation. The initial fuzzy linguistic rules were written
based on the required response of the process with step input. In order to get
acceptable results these rules were modified by close observation during the sub-

Sequent runs. The final rule matrix gave an acceptable response for a constant set

point.

The parallel version of Fuzzy Logic as described in section 4.2, was imple-
mented on an array of transputers (Fig 7). The Lisp code containing the
rules(knowledge) was loaded on the root transputer, and the process which was
the muscle relaxant model(in this case) along with the fuzzy control algorithms
was loaded on the slave transputers. Whenever a decision point is reached by
any slave transputer it can gain advice from the Lisp system by communicating
over the channels. An example of the Lisp-based fuzzy control applied to the
muscle relaxant model is shown in Fig 8. The output response to a step com-
mand shows an adequate rise-time, but with some steady state offset which could

be detrimental in certain cases.

5.2 SELF-ORGANISING FUZZY LOGIC CONTROL

The SOFLC algorithm was used next to control the muscle relaxant mode]
for the drug Pancuronium. The simulations were first performed on a Sun Unix-
based coding in Fortran, system and then repeated on a transputer system with a
parallel version of the SOFLC, to compare the timing details.

Results are presented for time delay of Ty=Imin, and time constants of

Ty=Imin and T5=10min in the equation of the Pancuronium anaesthetic model
(21).
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The scaling factors were determined by trial and observation starting from
an initial scaling factors, selected by the procedure described by Procyk [1977].
The simulation started with a completely empty controller and subsequently the
entire control protocol was learned. Constant and varied set points were used

(Fig 9, Fig 10)and convergence was indicated when the number of rule changes

fell to zero.

The parallel implementation of fuzzy logic has been demonstrated in section
4.2. Here the SOFLC and the Pancuronium process were coded in Occam. A
sample run with parameters of T =1,T; =1 and T3= 10 in equation 21 of the
Pancuronium process was first performed on a T414 (without floating point
hardware) transputer and then repeated on the T800 (with floating point
hardware) transputer. The result of this simulation is presented in Fig 11. The
timing details in Table 5 compares the execution time for the same controlled
process on different machines, showing that the parallel implementation of

SOFLC is ten times faster then on a sequential machine.

Table 5 :TIMING DETAILS
Processor Fuzzy Logic S.0.C
SUN Unix System 51.00 sec
T414 Transputer 11.455 sec
T800 Transputer 5.119 sec

5.3 ROBUSTNESS STUDIES

Critics of fuzzy logic control have argued that it should not be considered
as an alternative algorithm to conventional techniques but only adopted when all
else has failed. But application studies presented in sections 5.1 and 5.2 have
shown that it is robust to process parameter changes. This is a desirable charac-
teristic since in most control applications the accuracy of the plant model is not
guaranteed, and plant operating characteristics may change randomly, making it

essential to employ a robust controller.
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In the simulations performed in section 5.2 SOFLC was able to control the Pan-
curonium process but with a change in the scaling factors as the parameter of
the controlled process changed. In order to put SOFLC to more stringent tests,

two experiments were performed, the details of which are as follows.

EXPERIMENT 1: Starting with an empty controller SOFLC was trained on the

following parameters for equation (21) representing the Pancuronium process:

Ty=1 min
T5 = 1 min
T3 = 10 min
The scaling factors used were,
GE = 10
GC= 10
GU = 0.0365

The rules generated were stored and used as initial rules with the same scaling

factors for a new combination of parameters in the controlled process, i.e,

T3 = 20 min

The results of this experiment, for step change in set point is shown in Fig 12,
These results show better convergence than in the simulations performed earlier

without a training session.

EXPERIMENT 2: In the second experiment a different model for the anaesthetic
drug Atracurium was used. First, the SOFLC was applied to the Atracurium pro-

cess, starting with no rules, so that the control rules were learned. The scaling

factors used to control the process were as follows:

GE = 12
GC=12
GU = .14

The resulting response for a step and change in set points is shown in Fig 13

The next step is similar to experiment 1. The rules were learned starting from an
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empty controller for the time constants of Ty =1 and T3 = 10 of the Pancu-
ronium process for a step input and these rules were applied as initial rules to
control the Atracurium process. The rtesult is shown in Fig 14, which is an
acceptable output considering the fact that the process has been significantly

changed and the rules of a different model were used as starting rules.

To study the behaviour of SOFLC under noise conditions, white noise was
added to the anaesthetic drug process. Fig 15 and Fig 16 for Pancuronium and
Atracurium respectively illustrate the capability of SOFLC to handle noise
without significant deterioration in the output response. The final rules obtained
for the Atracurium process are provided in Table 6. It should be noted that the
number of rules increased, with an increase in noise variance, for example
changing from 6 to 13 when a variance of 10% was used. SOFLC can give

acceptable control if the variance is less than 20% of the set point value.

Table 6: FINAL RULES (FOR ADDED NOISE)
Sample No: 600

CHANGE IN ERROR
ERROR
6| 5|43 2 -1 0 +1 +2 | 43 | +4 | +5 +6

-6

-5

-4

-3

-2 20

1 3.0 | -1.0

] 7.0 | 7.0
+0 50 | 5.0
+1 7.0 | 7.0
+2
+3 7.0
+4
+3
+6 7.0 | 7.0 7.0
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6. CONCLUSIONS

The application of fuzzy logic to the control of industrial processes has had
considerable exposure and success, as described briefly in the introduction. In the
area of biomedicine, however, it is only recently that it has been applied. This is
surprising, since living systems are often hard to model mathematically and exhi-
bit extensive non-linear behaviour for which fuzzy logic could appear to be a
promising candidate for control purposes. Thus Linkens and Mahfouf [1988]
described the application of a simple fuzzy logic controller to the case of
automated drug infusion for muscle relaxant anaesthesia. Extensive simulation
studies using a non-linear model illustrated good transient response performance,
but also highlighted two problems. These were the difficulty in eliciting a suit-
able set of rules, and the sensitivity of the system to the fuzzy logic scale fac-
tors. Since that time, other applications in biomedicine have been reported,
mainly in the area of blood pressure management in intensive care units. Thus
Ying et al [1988], used a fuzzy logic ’inference shell’ to produce a controller for
artrial blood pressure, and Vishnoi and Gingnich [1987] report an application for
gaseous anaesthetic agent delivery. The problem of knowledge elicitation
motivated the work of this present paper into Self-Organising Fuzzy Logic Con-
trol (SOFLC) for the same application of muscle relaxant administration. It was
found that SOFLC with a simply chosen performance index table could give
good control with the nominal model for Pancuronium commencing with a zero
rule based-set. This represents a particularly challenging set of conditions , and
the resulting fast transient response was impressive. A further experiment was
performed in which a rule-base found for Pancuronium was applied as the initial
conditions for another drug, Atracurium, which has a different dynamic model
structure and a different range of time constants. Good performance was also
obtained under these conditions. Tests were carried out to determine the effect of
noise contamination on the performance of SOFLC, and the results were good,
upto 20% added noise variance. Another trial involved changing parameters of
model during a run, to investigate the adaptive ability of the algorithm, with suc-
cessful results again. These experiments indicate the robustness of SOFLC under

a wide range of conditions.

- 24 -



SOFLC is a comparatively computing intensive algorithm, and this paper
has described initial attempts to employ parallel computing via transputers, for its
application. A simple fuzzy logic controller was coded in Occam and performed
satisfactorily with the non-linear drug model. Recognising the descirability of
using an A.l style language for a fuzzy rule-based system, the system was
mapped into a Lisp environment. Unfortunately, the Lisp available at the time
was an interpreter coded in ’C’, and did not provide a fast enough system,
although the principle has been verified. Thus, the full SOFLC algorithm has
been coded in Occam , and provides a fast execution time even for a single tran-

sputer.

With the impending availability of languages such as Prolog for multitran-
sputer system [Kascuk and Futo, 1989], future implementations of SOFLC could
be targeted using either A.I languages or Parallel C’ which is currently avail-
able. Further work is planned for multivariable control of anaesthesia, whereby
interactive effects between different drug administrations for uncouscioosness as
well as muscle relaxation will be considered. Fuzzy logic shows promise for
such applications, having been validated in industrial systems such as cement
kiln control where models are almost impossible to ascertain. Similar remarks
apply to multivariable control of blood pressure, which has been studied via
numerical algorithms of self-tuning control [Linkens and Mansoor, 1989]. This
will enable a comparative study to be made between self-adaptive methods based
on techniques (i,e SOFLC) and those based on quantitative approaches (such as
qualitative pole-placement self-tuning). These comparisons should prove useful in
advocating styles of control for processes with imprecisely-known models, such

being common in both industrial situations and the life sciences.
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