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Abstract

In this paper we introduce a new concept of k-exponential stability. The
k-exponential stability of nonlinear delay systems is investigated via the non-
linear variation of parameters formula and nonlinear inequality analysis.
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1 Introduction

The stability of delay systems has been investigated by many authors. In the
past years, the Liapunov approach has been developed to study delay sys-
tems(see, Hale[5] 1977, Kolmanovskii and Nosov[6] 1986 and Gopalsamy[4]
1984). However, finding Liapunov functions or Liapunov functionals is not
particularly easy, and so other methods need to be developed. Lakshmikan-
tham and Leela[7] 1966, Driver[3] 1977, Zhang Yi[8] 1988, introduced in-
equalities to study delay systems, many practical stability results have been
obtained.

In this paper, we shall introduce a new concept of k-exponential sta-
bility. Using the nonlinear variation of parameters formula and nonlinear
inequalities, we shall investigate the k-exponential stability of nonlinear de-
lay systems. This paper will be organized as follows. In section 2, we shall
give the nonlinear variation of parameters formula. In section 3, some non-
linear inequalities will be established. Combing the nonlinear variation of
parameters formula and nonlinear inequalities in section 4 we shall drive k-
exponential stability criteria for nonlinear delay systems. Examples will be

given in section 5 to illustrate our theory.



2 Variation of Parameters Formula

Consider the systems

(1) = f(t, (1)) + g(t, 2(t)) (1)

and

y(t) = f(t,y(2)) (2)
Let z(t,%0,20), y(t, to, 2o) denote the solutions of (1) and (2) through (¢, zo),
respectively. Then, the relation between z(1,to, 7o) and y(t, o, o) is known

as the nonlinear variation of paprameters formula (Alekseev([1] 1961, Brauer|2]

1966) and can be expressed in the form

:
z(t,to, zo) = y(t,t0, z0) + /: ®[t, s, z(s, 10, z0)] - g[t, z(s,t0,z0)]ds
0

where
3]
D(t,s,z) = Ey(t, 8,7)
is the fundamental solution of the variational system

Z — 8f(t9 y(ta S, 'T))

oy Z.

From Brauer 1966, we can get the result



Lemma 2.1. Let o,y € R™ and denote by 8 the straight line between

Zo and yyo, i.e.
0(A) = o+ A(yo — o)

for 0 < X < 1. Then the system (2) has solutions through zo,yo, which

satisfy

| 9t to, o) — y(tsto,v0) I gmax. || @(t,t0,6(N)) || - | 200 ||

3 Inequality Analysis
In this section, we shall establish some nonlinear inequalities which will be

used in the stability analysis of nonlinear delay systems.

T'heorem 3.1. Let S(t) be a nonnegative continuous function defined on

[to — 7, +00), which satisfies

S(t) < r(2) (—S(t) + iéjsf)

for t > 1o, where r(%) is a nonnegative continuous function , 7 > 0, b; > 0 are

constants and S, £ Sup,_,<p<:[S(0)]. If there exist constants r > 0,k > 0

such that

r(t)2r>0



Z 5]_;{_}'—1 <1
J=1

then, Sy, < k implies that
S(t) € S, e Mi—t)

for t > 1y, where A > 0 is a constant.

Proof: Since r > 0, YT, 6;k'-1 < 1, it follows for sufficiently small

A > 0 that
A i ; ;
-1+ "; -+ Z(Sjkj_le'\” <0 (3)
1=1
Define

Q) = S(t)eX ™),  t>t—7

Then, we have

Q) < Q) +r(t) (—Q(t) 4 e-t0) 3 @-Sf’)

i=1

[FAN

r(t) (—Q(t) +200)+ iéjew@f) (4)

for t > ty, where @, = SUPt_fgagt[Q(G)]-

Let I € (1,k/S;,) be an arbitrary constant,we shall prove that

Q) <IS, &M (5)



for t > to. In fact, if (5) does not hold, then there must exist a ¢; > o such
that

Qi) =M, QR)<M, ti—7<t<t
This follows from Q(t) < M for t € [to — 7,t). Hence, Q(¢;) > 0. However,

from (4) by (3) ,we have

Q(tl) < r(ty) (—JM + -;}M-{_ iéjeATjﬂ{j)

i=1

A g anigia M
< r(ty) (—1+;+jz=;6j6 ¥ -kj_])M
AR TR
< r(ty) ‘-l+;+26j€ R -l ¥ §
i=1
< 0

This yields a contradiction. Hence, the inequality (5) holds. Letting I — 1,
we get

Q(t) S Sfo

for t > t,, that is

S(t) < S, et

for t > to. The proof is complete.

Theorem 3.2. Let S;(t)(: = 1,2) be nonnegative continuous functions



defined on [tg — 7,+00), which satisfy

m

Si(t) < —rSi(t) + Y (6;8% + ;%)
i=1
Sa(t) < Y (a; 8%, + d;8;)
j=1

for ¢t > to, where 7 > 0,7 > 0,b; > 0,¢; > 0,a; > 0,d; > 0 are constants and

Sit 2 SUP:--rgngSi(g)]- If there exist constans a; > 0,3 > 0,k > 0 such

that
1> : -
— > (bjag + )k < 1 (6)
ar.io
1™ . o
— > (a0 + djep) ' < 1 (7)
09 j=y
then, 371;& + %—;"- < k implies that

for ¢t > to, where A > 0 is a constant.

Proof: From (6) and (7), it follows that for sufficiently small A > 0, the

inequalities
—r+A+;1—1§e”j(bja{+Cja§)kj'1 <0 (8)
and
aiz gef\f-f(bja{ + ekt < 1 (9



hold.

Defining
Qi(t) = i) /oy, t>t—1, (i=1,2),
we have for ¢t > ¢4 that

Q1(t) < —rQ1 (1) + AQ1(2) +-—Ze“f biedQly + c;edQ%)  (10)
and
Qilt) < — i M (0;00Q3, + djad Ql) (11)

Let l € (1, 5'1:0/014—52:0/02) e an arbitrary constant; we assert that

Qi(t) < 1 (SL + Si) 2 M (12)

a; Qs
for t > ¢p and i = 1,2. Suppose (12) does not hold, then there exist a t; > 1

and some z such that
Qi(t) =M;  Qi(t) <M, to—7<t<ty;
Q;(t) SM,j#i,tg—7 <t <t

Case 1: 7 = 1.

Then, we must have Q,(¢;) > 0. However, frome (10) by (8), we have

Qi(t1) < —rM+IM+ £ Y- e*i(bjod + ;) M?

1 =1



< —r+A+—}-ZeW(bja{+cjo{,)ki"1 M

1 j=1

< 0

This is a contradiction.

Case 2: i = 2.

That is Q4(t;) = M. From (11) by (9), we have

17 . o
@q(t;) < — Ze)‘”(ajaf{ + djag) M?

Q@2 ;=

< aiz > € (a;04 + djad)ki - M
i=1
< M

This 1s also a contradiction.

Hence, our assertion is correct. Let | — 1 in (12), then we have

Q:(t) < (5;10_ + ét—o)

Qg (85)

for t > tp and 1 = 1,2. Thus,

$1(8) + Salt) < (o + ) (2o 4 T2 ¢ie-n0

a5} Qo

for all ¢ > 1y and the proof is complete.



4 Stability Theorems

Consider the nonlinear delay system described as follows
(13)
z(t) =(t), to—T<t<t
where f: I x R* — R",I = [to,4+00), is continuously differentiable in the
region I x R*, f(t,0) =0, g¢g:IxR"xR"— R"is a continuous function
with ¢(£,0,0) = 0 and ¢(?) is continuous on [to — 7,%0]. The delay ’r(t). is a
nonnegative continuous function, which satisfies 0 < 7(¢) < 7, where 7 is a
constant. Define || ¢ [|= supy_, <, (Il #(2) |-
Definition 4.1. The zero solution of (13) is said to be k-exponentially

stable if there exist A > 0,7 > 1 such that || ¢ ||< k implies that

“ m(tvtﬂv ‘P) ”S m ” ¥ ” 'e—/\(t-to)

for t 2 io.

Let ®(t,s,z) be the solution of

0®(t, s, z) of(t,z)

o(t,t,z)=1

where [ is the identity matrix.

10



Theorem 4.1. If the system (13) satisfies the conditions
(1). || @(,s,2) ||< he_f:'(p)dp, for all (t,s,z) € I x I x R", where
h>1,r(t) > r > 0,r,h are constants.

(ii).

ot 2(0) 2t 7)) I 380 [ sup |l 2(0) ||}

t—7<6<t
where b;(t) is a nonnegative continuous function.

(iii).

where 6; is a constant.

(iv).There exist a constant k > 0 such that

RS 6 (hk)! < 1.
J=1

Then, the zero solution of (13) is k- exponentially stable.

Proof: By the nonlinear variation of parameters formula, we have

oy < | YO+ Fo B(tia,2(6) - g(s,2(6),a(s — 7())ds 12 4
() to—T<t<tg

By lemma 2.1 and conditions (i) and (ii), it follows that

=@ I < [yl

11



+ [ 05,26 -1 gs,2(s),als — () | d

< g e om®

£ hY [l ) [ sup | 2(0) [ds.

=171 s-7<0<s

Let

t m t t .
SO =lelle ko @4 3 [ Lm0 ). [ sup |l2(0) Fids
F1 to s—7<0<s
for ¢ > 4o and S(t) =|| ¢ || for to — 7 < ¢ < to. then, || z(t) |< AS(2) for

t>1y— 7 and

$() < —r(®)S@)+ 3 bi(t)- 4 - i

Jj=1

< r(t) (—S(t) + i 6; - hi- S{)

j=1

for ¢ > to. Using theorem 3.1, we get that S;, < k implies that

S(t) € Sy, - e Xt-t0)

for ¢ > to, where A > 0 is a constant. That is || ¢ ||< k implies that
| 2@) IS b | @ || e Xt

for t > to. Hence, the zero solution of (13) is k-exponentially stable. The
proof is complete.

12



Now, consider the nonlinear neutral delay system

2(t) = flt,2(t),2(t — (1)), 2(t — 7(2))]
(14)
z(t) = @(t),2(t) = @(t),to— T <t < 1y
where f € C[R x R" x R* x R*, R"], f(t,0,0,0) = 0,0f(t,z,0,0)/0z and
0f(t,z,z,0)/0z exist and are continuous, 7(t) is a nonnegative continuous
function, 0 < 7(t) < 7, T is a constant and (t), (¢) are continuous initial
functions.

De finition: The zero solution of (14) is said to be k-exponentially stable

if there exist A > 0,7 > 1 such that

lell® sup [ |+l ¢@) [l <k

to-r<t<to
implies that

l2(t) || + 1| &(t) ||< mem %)

for t > 1,.

We shall assume that

” f(t7$17$21 1'3) - f(taylay2yy3) ”
< Y(asllzi—w P 48l 22 =g | +c;llzs—ys II)) (15
Jj=1

where a;, bj,c; are constants.

13



Suppose that ®,(¢,s,z) is the solution of

B‘I’l((;;saiﬂ) = l:af(ta(‘;‘: 0:0)] N q)](t,s,l')

Ql(t,t,fﬂ) =17

Theorem 4.2. If the system (14) satisfies the conditions
Q). @1(t,s,2) ||< hpema(t-9), for all (t,s,z) € I x I x R™, where
hy 2 1,7 > 0 are constants.

(ii).There exist constants a; > 0,2 > 0,k > 0 such that

f: [ h1a1 + Cj 0’2] nluj—l <1

=1

Q[._.a Q

Z (@54 8) - (haea) +¢; - f] 1 < 1

Then, the zero solution of (14) is 222k _exponentially stable.

a1+oz

Proof: Rewrite (14) in the form
z(t) = f[t,z(¢),0,0]
+ (flt,2(1),z(t — (1)), 2(t = 7(£))] - f[t,2(2),0,0]).
By the nonlinear variation of parameters formula, we have
[2@) ] < R o]

+ m Y [ (5 als = 7(9) IF +e; ] 6ls = 7(s)) IF) s

7=1

14



for ¢ 2 1o

From (14) and (15), we have

| 4(t) f:( N 2(t) IF +b; || (= 7(0) IF +e; 1| &t = 7() ).
for t > 1.

Define
Si(t) = et | o
m t | | |
i E~/io (bj | z(s = 7(s)) II” +c; || (s = 7(s)) ”3) emTi(t=3) 7
Jj=1
for t > to, S1(t) =|| ¢ || for to— 7 <t < ¢, and

(t t> 1,
Sa(t) = | &(2) | >

el to—7<t<tg

Then, we have

S1(t) < —rSy(t) + Yo (b;k3 - Siy + ¢ - Si)
=1
Sy(t) < Z[(aj + bj)h{ : ifi +c- Sgt]

i=1

for t > t,.
By the condition (ii), using theorem 3.2, it follows that (X +L) || ¢ [|< &

implies that

1

Qo

S1(0)+ 5:0) < (e + ) (-4 o) 1 [l 0

15



for t > to, where A > 0 is a constant. That is || o || < 22225 implies that

o1t

I 9(e) 1+ 1 6(0) 1< (s + aa) (5 + o ) 1 | 7

for ¢ > to.This shows that that zero solution of (14) is f}‘-ﬁi—%—exponenfziaﬂy

stable and the proof is complete.

Suppose that ®,(t,s,z) is the solution of

3@2(;;.5,::) _ [af(t,azm,:c,ﬂ)} B0 5.6

q)z(i,t,l‘) =1

where [ is the identity matrix.

Theorem 4.3. If the system (14) satisfies the conditions

(i). || @2(t,8,7) || hoe~m2(t=2), for all (t,s,z) € I x I x R", where
hy 2 1,7, > 0 are constants.

(ii).There exist constants a; > 0,2 > 0,k > 0 such that

! ST(b;mi 4 ¢)agki Tt < 1

T2 521

Z [("'j + bj)(hzal)j e Cjcrg] |

1
Q2 ;o

. . o k .
Then, the zero solution of (14) is 21%2*-exponentially stable.

Proof: Note that

lat—r@)—2z®)|| < | [ #(6)do ]

t—7(t)

16



A

IRECIL:

< 7. sup | 2(6) |
t—7<6<t

then the result follows as in the proof of theorem 4.2.

5 Examples

Ezample 5.1. Consider the system
&(t) = —=2(1 +sin®¢)z(¢) + (1 + sin’t) cos z(t) - z(t — 7(¢))  (16)

where 0 < 7(t) £ 7,7 is a constant.
Taking m = 1,7(t) = —2(1 4+ sin®¢),b:(t) = (1 + sin?(t)),6, = 3 in

theorem 4.1, it follows that for every k € (0,400) the zero solution of (16)

is k-exponentially stable.

Ezample 5.2. Consider the system
#(t) = —6de'z(t) + et . (1) - 22 (t — 7(t)) (17)
where 0 < 7(t) < 7,7 is a constant.
Taking m = 3,7(t) = 64e',by(t) = by(t) = 0,bs(t) = €'t §, = §, =

0,63 = 5; in theorem 4.1, we can get that for k € (0, 8) the zero solution of

(17) is k-exponentially stable.

17



Ezample 5.3. Consider the system

(t) = —a(t) + So'(t = (1)) = 55t~ 7(0) (18)

where 0 < 7(t) < 7,7 is a constant.

L
32

Taking m = 4,61 = bg = bg = 0,b4 = 'I%E,Cl =C3 =C4 = O,Cg = , a1 =
l,a=a3=a4=0,r; =1,h; = 1,01 =1, = 2 in theorem 4.2, we can get
that for k € (0,8/3) the zero solution of (18) is k-exponentially stable.

Ezample 5.4. Consider the system

. 1 1, 1
&(t) = 2z(t) — 3z(t — 6—0) - 65 (t— 66) (19)

Taking m = 2,a, = 2,0, = 0,b; = 3,b; = 0,¢; = 0,¢; = ﬁa,r =31 r=

1,hy = 1,01 = 3,00 = 2 in theorem 4.3. Then it follows that for k € (0,5)

the zero solution of (19) is k-exponentially stable.

6 Conclusions

In this paper we have studed the k-exponential stability of nonlinear delay
systems via the nonlinear variation of parameters formula and nonlinear in-
equality analysis. By k-exponential stability, we mean that in the ‘k region’
the solutions decay exponentially to zero. Obviously, this will be a useful

18



criterion in engineering. The stability theorems for nonlinear neutral delay
systems are expresed in the terms of some parameters, the opitmal choice of

these parameters needs further investigation.
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