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Abstract

The stability of nonlinear systems and nonlinear delay systems is investe-
gated in this paper via the methods of Carleman linearization and inequality
analysis. Some new criteria for stability are obtained.
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1 Introduction

The stability of nonlinear systems has been widely studied, particularly via
the Liapunov approach(LaSalle and Lefschetz [6],1961).More recently, global
linearization techniques(Banks[2],1988) and the nonlinear variation of param-
eter formula(Alakseev[1],1961, and Brauer[5],1966) has been used in deriving
new stability and limit cycle results (Banks|[3],1986,and Banks[4],1988). In
this paper, we shall combine the latter two methods and derive some further
new stability criteria for nonlinear ordinary and delay differential equations.

The method will be based on an analysis of an infinite-dimentional dif-
ferential inequality considered in section 2. In section 3 we shall apply the
results of section 2 to nonlinear ordinary differential equations by using Car-
leman linearization. Combining the results of section 2 and the nonlinear
variation of parameters formula, in section 4 shall derive stability criteria for
nonlinear delay equations. Finally in section 5, some examples will be give

to illustrate the theory.



2 Inequality Analysis

In this section,we shall establish some inequalities, which will be used in the
stability analysis of nonlinear systems.
Theorem 2.1. Assume that v;(t),i € I are nonnegative continuous func-

tions defined on [to, +00), which satisfy

Ui (1) < —ri(t)uilt) + D aii(t)vi(t) (1)

i€l
where r;(t), a;;(t) are nonnegative continuous functions, I is a countable index

set. If there exist constants A > 0,6 > 0, and d; > 0 such that

T"(t) <h<0

1 a,-j(t)
T2 <0<t

sup p)

] < 400
i€l

for all ¢ < ¢; and all z € I. Then, there exist constants A and m > 1 such

that

vi(t) v;(to) e
< m-su J . a—A(t—10)
& ~ 5 [ 4 |°°

for all t > t5 and all 2z € 1.

Proof: Since § < 1,h > 0, it follows that for sufficently small A > 0, the



inequality
A
1—2
7 6>0
holds.
Define

Qi(t) = vi(1)eX®) [d; t > to,i € 1

Then, we have

Q: (1) < =ni(Q() +2Qu(t) + 7 X dias()Q; (1)

1 JEI

for allt > t; and all 7 € I.

Integrating (2), we have
t . + ’ p
Qi(t) < Qg(io)e_ ft" R + A Q:’(S)eju ri(T)dT g
to
1 1 -
=+ ] _Zdiaij(S)Qj(S)e-faT'(T)deS
to di je1

Let

Q) = sup | sup [Qf(s)]]

i€l |to<s<t

Then we get

Q) S Qo) +3Q()

t_:_l'__ _a,--(s) ) - l'r'.'('r)d'r
+ d.-,-?’ r:(s) ri(s)e” s dsQ(t)

< QUio) +3Q(0)+6 [ o) e asq)
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Noting that

for ¢t > to, We have

t t -
/ r.—(s)e_fa s < 1

to

Qi) < Qo) + (7 +6) Q)

for all ¢ > t; and all 7 € I. Hence,

and

Therefore, we get

£ W -BEp | ——

v;(t) vi(to) e~ Mt-to)
d; el | d;

for all t >, and all ¢ € I, where m = 1/(1 — 2 — §). This completes the

proof.

Theorem 2.2. Assume that S(t) is a nonnegative continuous function

defined on [to, +00), which satisfies

oo

S(t) < ~r(1)S(t) + 3 bi(1)S7(t)

i=1



for ¢ > to, where r(t), b;(f) are nonnegative continuous functions.

exist constants d; > 0,(: = 1,2,...) such that

1 o0
d; - r(1) ;bj(t)'da+t 156<1
i)
sup ls to)] < 400
i<1 | d

If there

for all 4 > 1 and all ¢ > ¢, then, there exist constants A > 0 and m > 1 such

that

S(t) < md; - sup [Sj(to)] . e~ AMt=to)

21| d;
ford =1y
Proof: Define

u(t) = §'(1),(: =1,2,...)
We have
o(t) = i§7Y(t) - S(2)
< —ir(t)S(t +sz (-1

= —ir(t)v(t) +1 ; bi(t) - vj4i-1(2)

Then, the theorem 2.1 applies.



Corollary 2.1. If there exist a constant k£ > 0 such that

I =
— > K lb(t)<b<1
r(t)j=1 :

S(to) <k
Then, there exist A > 0,m > 1 such that
S(t) < m - S(tp) - e~At=t)

for i 2 t().

Proof: Chose d; = k! in theorem 2.2 and note that

S(to) 2 —

for all 2 > 1. Then, the result follows.

3 Nonlinear Systems

We shall assume that an n-multi-index is an n-multiple i = (i4,... ,in) of
nonnegative integers, 4 + ... + i, = i, > 0(k = 1,...,n). The sum of
two multi-indices i and j is defined as ¢ + j = (4; + ji,..., 0 + Jn). We

say that ¢ > j if ¢4 > jp for k = 1,...,n. When ¢ > j, we define j — i as



(J1 = %1y -5 Jn — tn).We also define

LS 01 1 i »
r=2zy...2,, |z = 1?};;(' zs |)

for = (z1,...,2,) € R". Also,1(k) will denote the n-multi-index with 1 in
the kth place and zero elsewhere.

Consider the nonlinear system
z(t) = f(t,.’l:(f)), m(to) = Zo (3)

where z € R" and f : D x R* — R™ is an analytic function for ¢ > ¢,
where D = [to, +00), f(t,0) = 0. We shall assume that the solution of (3)
exists and is unique.

De fination 3.1. The zero solution of (3) is said to be K-globally expo-
nentially stable, if there exist A > 0,7 > 1 such that || z, ||< K implies
that

| z(,0,20) | 7 || 2o || -1
for t > t,.

Since f(t,z(t)) is analytic, we may write

filt,2(t)) =Y fit)-2'(t), 1<k<n

i>1



Define the functions
bi(t) = 22 (t)..ain(t) = 2i(t),  i21
and differentiate ¢;(t) along the trajectories of (3). Then, we have

B = 31O () (1)

k=1

= Y O £, 2(1)
k=1

= zn:ik;c“—l(*”(t)fo(t)mj(f)
k=1

i>1
=;;§%ﬁmmmﬂﬂ
where we define ff(t) =0, if I < 0.
Hence,
i6) = aD60) + Tel(06,(0 @)
where
ﬂﬂ=§uJLNMH (5)

Theorem 3.1. If there exist constants h > 0,6 > 0 and K > 0 such that

ai(t) < —h <0

j-.‘_|af(t)|
JZ#I{ T2 ] <é<1



for all © > 1 and all ¢ > ¢,. Then, the zero solution of (3) is K-globally
exponentially stable.

Proof: From (4), by the method of parameter variation, we have
4(t) = ilto)ela 1T 1 3 [ al(a)es (el A
J# “
so that
T)dT T
| 8) 1] dutta) | fo T 4 32 [ ai() || g5(6) | et
i#

Let

o®) =1 6i(t0) [ bt 1 5 [ ai(6) |- 656 | <k 07

¥
then, | ¢;(t) |< vi(t) for all : > 1 and all ¢ > t,. Moreover,
oi(t) < aj(t)ui(t) + 3 [ al () | v(t) (6)
i

Choose d; = K*™,i > 1, then, if | (%) ||< K, we have

vito) _ | i(to) | _ | 25 (to) ... zir (to) | < =) |
di - d; - Ki-1 = Ki-1 <|| w(tﬁ) ”

Hence

sup
i21

J

] <l 2(to) |
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By theorem 2.1, there exist A > 0, m > 1 such that

vi(?) vito) | aq-
< m-sup [-=—=]| e*t~t)
Ki 1 = J>II) o

for all ¢t > 1, and all : > 1. Then, we have

| $1(2) [< m- || 2(to) || e
for all £ > ¢.
Therefore, we get
| 2(2) | m- || 2(to) || e2E%)

for all t > 15, whenever || z(to) ||< K . This shows that the zero solution of
(3) is K-globally exponentially stable and the proof is complete.

Corollary 3.1. If there exist constants > 0,6 > 0 and K > 0 such that

figt) £ —h <0

3 If+1(l)()|
2o T S8l

for all ¢ > #p and 1 < I < n, then, the zero solution of (3) is K-globally
exponentially stable.
Proof: To prove corollary 3.1, we only need to check that conditions in

theorem 3.1 is satisfied. Indeed, from (5), we have
a(t) =3 ik~ fig(t) = 2ir fi(t) S —hi < —h < 0
=1 =1

11



and

il af(t) |
2D

w o la
= 1+ Ia:-'it) | [a:f(t)+j§1ff"" | al(t) I}
< +}%[§irf1[(z) +§KJ 1 Z“ |f"'+1(” H]
< iz | fin® —1+§K""“%}
r l
< -E_Z:I |f1r) _—1+§I{j'%ﬁ%;)_ll]
< 1- (
2
=
< 1

This completes the proof.

Now, let zPl, p > 1, denote N (n, p)-dimensional vector

N(n,p) = (””‘1)

n
of homogeneous p-forms in the components of z. The elements of the vector

zl”! are of the form gt .. .zf with p; +...p, =p,p; 20,1<i:<n.

12



Write f(t,z(t)) as
=2 X fem®- )20
r=1pi1+...4pn
Similarly as disscussed by Sira-Ramirez[7] (1988), we may write
_mlp] ZFP -2l (2) (1)
I=p

where F'(t) is an N(n,p) x N(n,l) matrix (I > p) defined as

n " 2:;1 Pi=p
FP(t) = (Z zkfh-p1,...,lk—pk-l-l,...,ln—pn(t))
k=1 ZLJ L=l
In the space of RN(™?), we define
I ¥ |=  sup [|2f'...2P" ]

P1t..+pn=p
where, z € R".
Suppose that ®,(t, s) satisfies

8(I)P(tas) . )
5 = Lr(t) Dp(t:s)

®,(t,t) = I,

where I, is an indentity matrix. We also suppose there exist a nonnegative
continuous function r,(t) such that
1@y (t,5) [|< e Ju e

13



for t > s > 1.

Theorem 3.2. If there exist h > 0,6 > 0 and K > 0 such that

rp(t) > h >0

o P

Z I{I—p.lI_E—(‘t).”_’S‘g(l
I=p+1 Tp t)

for all p > 1 and all ¢t > #;,. Then, the zero solution of (3) is K-globally
exponentially stable.

Proof: From (7), by the method of parameter variation, we have

2 = 8, (1, to)eP (1) + 3 [ @t F7 ()25} ds

I=p+1 10

Taking norm no both sides, we have

- :r T)dT
28ty < e do | 2blit) |

b % [ S B o als) [l ds

I=p+171%0

Let

= Ir'r',,('r)t:h'
w(t) = e da | 2Blgy) |

o0 i t
+ Y [ e L B s) - | 2Ws) | -ds

I=p+1 710

Then, choose d, = K?~! and note that

| <Pto) = sup _[laf(te)...a(0) [} < (to) P

14



As in the proof of theorem 3.1, it follows that the zero solution of (3) is

K-globally exponentially stable. This completes the proof.

4 Nonlinear Delay Systems

Consider the nonlinear delay system described as follows

&(t) = f(t, (1)) + h(t,2(t),2(t — 7))

z(t)=p(t), to—T<t<to (8)

where f : I x R* — R™, I = [to,+o0), is continuously differentiable in
the region I x R*, f(¢,0) =0, h:Ix R* x R* — R" is a continuous
function with %(¢,0,0) = 0 and ¢(t) is continuous on [ty — 7,to]. We define
| @ ll= 5uPsy_rercsolll ©(2) [I]. We shall always assume that the solution of
(8) exists and is unique.

Defination 4.1. The zero solution of (8) is said to be K-globally ex-
ponentially stable if there exist A > 0,7 > 1 such that || ¢ ||< K implies

that
| z(t,t0, 0()) IS 7 || @ || -2 10)

for ¢ Z 0.

15



To analyse the stability of (8), we need to consider the system

y(t) = f(2,4(1)) (9)

Let y(t) = y(t,t0, ¢(to)), (t) = z(t,t0,o(t)). Using the Alekseev nonlinear
variation-of-constants formula (cf. Brauer 1966), we have the following result.

Lemma 4.1. The solutions of (8) and (9) are related by the formula
. y(t)+ fi ®(t,s,2(s))h(s,z(s),z(s — 7))ds t < 1o
z(t) =
@(t) to—7<t< 1

where @ is the matrix function given by

0
‘I)(t: tOJ yD) = B_ygy(t’ to, yD)

and it is the fundmental solution of the variational system

Z = fy[t, y(tvtﬂa yO]Z

We also have from Brauer(1966) the result:
Lemma 4.2. Let zo,y0 € R™ and denote by @ the straight line between
Zo and yp,l.e.

Then the system (9) has solutions through zg,yo, which satisfy

Il 42,20, 90) — y(t: t0, o) 1< gmax || 2(2,20,6(1) || - || yo — o ||

16



Theorem 4.1. If the system (8) satisfies the following conditions

().l @(t,s,2) || mie ™ for all (t,s,z) € I x I x R*, where
r > 0,m > 1 are constants;

(i) h(t, (1), 2(t = 7)) 1S T2, (5 | 2(t) [ +5 || ot — 7) |F) , where
b;20, =20

(iii). There exist a constant K > 0 such that

DL S™b; + €Ki < 1
r

1=1

then the zero solution of (8) is mﬁ_l-globally exponentially stable.

Proof: From lemma 4.2, it follows that

20 11 9(e) 1+ [ 18t 5,2() 11 - 1| h(s, 2(5), s = ) | s

for t > t,.

By lemma 4.2 and conditions () and (i1), we have

Il < malle et
& i : ;
+ m ) [ e (b as) IF +e; [l o(s —7) IF) ds
j=17t

=} 1 .
< gl e bmy Yob; [ et | 2(s) | ds

=1 to

¥ "z:cJ [ e a(s) I ds

to—T

17



o to ;
= millelle D bmem e [T e | a(s) | ds
i=1

0o=T

= o] t .
+ i (b +e7e) [ e | a(s) | ds
i=1 2

IA

oo

oS+ e

for ¢ > t,.

When || ¢ ||< K, we have

=1

my || ¢ || €707 4

i ST P

j=1

t ’
| e | a(s) |1 ds
to

| ¢ |If

2l <ol
for j=1,2,.... Then,we get
mlerr oo i mler*r o - ” (19 ”_7
; < K.
r ;CJ ” ¥ ” —_ r ECJI{ KJ'_]
mler‘r (e o] .
< B S oK g
J=1
< el

(This follows from condition (iii)).

From (10), it follows that

lz@® | < (ma+1)|le| et

+ m (b +e7e) [ e | a(s) | ds

1
0

18
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for ¢ > 1o, whenever || ¢ ||< K.

Let

St) = (mi+1) || et
+ mi Y (b +ee) [0 | afs) | ds
i=1 0
We have || z(2) ||< S(2) for ¢t > ¢4, and
5(t) < —rS(t) +m1 Y (b; + €7 ¢;)S%(2)
=1
for t > 1.
Since S(to) = (m1+1) || ¢ ||, then, when || ¢ ||< m—f‘ﬁ, using corollary

2.1, we get

S(t) < m(my+1) || g || e~ t=%)

for t > to, where A > 0,m > 1 are constants.

Therefore, we have
[ () IS m(mi 4+ 1) || ¢ || 7201

for t > tg, whenever || ¢ ||< ;;fiﬁ This shows that the zero solution of (8)

K
mi+1

is -globally exponentially stable. The proof is complete.

19



5 Examples

Ezample 5.1. Consider the one-dimentional delay system

z(t) = f(z(t)) + h(z(t — 7)) (11)

where f(0) = h(0) = 0. Assume that f(z(t)) and h(z(t — 7)) are analytic.

Then, we may write

D=§ﬁwﬂm ha(t =) = 3oh; - 2i(t - 7)

3=1

Suppose that f; < 0, then, if there exist a constant K > 0 such that

|f| | by | |f1|’+2(f".,|+|h |61f1IT)K: Y
j=2

the zero solution of (11) is £-globally exponentially stable.

Ezample 5.2. Consider the delay system

(1) = —alt) + 553

z%(t — In2) (12)
It is easy to check that for every K € (0,10) the zero solution of (12) is
K-globally exponentially stable.

Ezxample 5.3. Consider the system

#1(t) = —18(t + 1) - z1(t) + 3t - sin? ¢ - z2(t) — tcost - 23(t) - z,(t)
(13)

2o(t) = €27t . £3(t) — 9et - zo(t)

20



Using corollary 3.1, we can get that for every K € (0,3) that zero solution

of (13) is K-globally exponentially stable.

21
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