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- Radial basis function identification -

Abstract

A wide class of discrete-time nonlinear systems can be represented by the nonlinear
autoregressive moving average model with exogenous inputs or NARMAX model. This
paper develops a practical algorithm for identifying NARMAX models based on radial
basis functions from noise corrupted data. The algorithm consists of an iterative
orthogonal-forward-regression routine coupled with model validity tests. The orthogonal-
forward-regression routine selects parsimonious radial-basis-function models while the
model validity tests measure the quality of fit. The modelling of a liquid level system and
an automotive diesel engine are included to demonstrate the effectiveness of the

identification procedure.

Key words. Nonlinear systems identification; radial basis functions; orthogonal least squares™ -

algorithms.

1. Introduction

Most systems encountered in the real world are nonlinear to some extent and in many
practical applications nonlinear models may be required to achieve an acceptable prediction
accuracy. The NARMAX model (Leontaritis and Billings 1985, Chen and Billings 1989a)
provides a unified representation for a wide class of discrete-time nonlinear systems. In 2
NARMAX description, the system is modelled in terms of a nonlinear functional expansion
of - lagged inputs, outputs and prediction errors. Two considerations are of practical
importance for the application of the NARMAX approach. The functional describing a
real-world system can be very complex and the explicit form of this functional is ususally
unknown so-that any practical Ihodelling of a real-world process must be based upon =
chosen_ m.ch\cl Set of known functions. Obviously this model set should be capable of
approximéting the underlying process to within an acceptable accuracy. Secondly an
efficient identification procedure must be developed for the selection of a parsimonious
model structure because the dimension of a nonlinear model can easily become extremely
large. Without efficient subset selection, the identification would entail excessive

computation and the resulting model will have little practical value.

Previous research (Billings et al 1989b, Chen et al 1989) has investigated the
polynomial NARMAX model. The set of polynomial functions is known to be dense in the
space of continuous functions. This means that a system can be approximated to within an

arbitrary accuracy by a polynomial model. By augmenting and modifying well-known
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3.

orthogonal least squares methods, an iterative orthogonal-forward-regression (OFR) routine
(Chen et al 1989) has been derived to select parsimonious polynomial models. This
identification algorithm when coupled with some model validity tests (Billings and Voon
1986, Bohlin 1978, Leontaritis and Billings 1987) provides a practical means for fitting

parsimonious polynomial models to structure-unknown real systems.

The present study considers an alternative approach for fitting NARMAX models
based on radial basis functions (RBF). The method of RBF has traditionally been used for
strict interpolation in multi-dimensional space and has been shown to be superior to many
existing methods (Powell 1985, Micchelli 1986). The generalization due to Broomhead and

Lowe (1988) provides a more suitable basis for system modelling. The maj.or problem

2

-
i

however remains of how to select an appropriate set of RBF centres. In order to utilize the

advantages of the linear-in-the-parameters formulation, the centres are often chosen to be""a:

subset of@'::-za\. Although researchers are well aware  that the fixed centres should suitably'"‘-i_‘l,;
sample the input domain, most published results simply assume that some mechanism exists
to select centres from data points and do not offer any real means for choosing centres.
I—ibwever, bj/ interpretting the RBF as an extended model set (Billings and Chen 1989b),
Chen et al (1990) have shown that a suitable set of centres can be readily identified in a
relatively straightforward manner by employing the OFR algorithm. Because these resulis
were only valid for the unrealistic case of additive white noise, the present study extends
the previous results by the authors further and develops an identification procedure for
fitting parsimonious NARMAX models using the RBF expansion in the presence of
correlated noise. The techniques employed in the current study are very similar to those
used for the polynomial NARMAX model. The OFR routine is utilized for the selection of
subset RBF models and the adequa<y  of the fitted model is determined using the moce.
validity tests developed previously for other nonlinear models. A brief comparison with the
polynomial approach is also given. Finally the identification results for two real processes

are presented to illustrate the approach of RBF modelling.

The single-input single-output case is studied throughout for notational simplicity.
However the NARMAX representation and the RBF model are both valid for multi-input
multi-output systems (Leontaritis and Billings 1985, Broomhead and Lowe 1988).

2. The NARMAX representation

The successful development of identification and many other application procedures
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for discrete-time linear systems is largely based upon the linear difference equation model

¥ ()= S by (t =)+ S byu(t —i)+ Sbe(t—i)+e(r) (1)
i=1 i=1 i=1

where y (1), u(1) and e(z) are the system output, input and noise respectively; n,, n, and

n, are maximum lags in the output, input and noise respectively; and {e ()} is assumed to

be a white sequence. Model (1) is commonly known as the ARMAX model.

It is natural to extend the highly successful approach of the difference equation model
to the nonlinear case. Under some mild assumptions it has been rigorously proved that a
wide class of discrete-time nonlinear systems can be represented by the following nonlinear

difference equation model (Leontaritis and Billings 1985)

y (t)=f (y(I —1),-“;); (I —ny)su (t _1)7"'!“ (t -n, )se (t —1)?"'78 (I —n, ))+e (l) (2)
where f(.) is some nonlinear function. Model (2) is often referred to as the NARMAX
model because of its resemblance to (1). Notice even in the case that noise source enters

the system purely as measurement white noise, the system model cannot be simplified as

y(@O)=f O =1),...y (e =ny)u(t =1),...,u(t =n,))+e(z) €)
This can be readily shown as follows. Assume that the noise-free underlying system is

governed by

Ys (I)=f_r (}’, (r _1)?"‘53’: (f _ny)!u (‘[ —1),...,11 (t —ny, )) (4)

and the measured system output is a noise corruption of y, (1)

y()=y,(1)+e(r) (5)
Substituting (5) into (4) yields the model (2) rather than (3)

The input-output relationship (2) is obviously very general. The functional form f (.)
for a real-world system can be very complicated and is rarely known a priori. A model
must therefore be constructed based on some known simpler functions and some examples
are the output-affine model (Sontag 1979, Chen and Billings 1988), the polynomial mode!
(Chen et al 1989) and the rational model (Sontag 1979, Billings and Chen 1989a). The
present study employes an alternative RBF expansion to model the input-output

relationship (2).

The parsimonious principle is particularly critical in nonlinear systems identification
because a nonlinear model can easily involve an excessive number of parameters. Without
an efficient subset selection, the identification problem is almost certainly ill-conditioned

and the parameter estimation will require excessive computation. Furthermore the resulting
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model has little practical value due to its high dimensionality. It is shown below that the
linear-in-the-parameter structure of the RBF expansion can be exploited for subset model
selectizn and the OFR algorithm (Chen et al 1989) can readily be applied to the RBF

model.

3. Radial basis functions

The RBF approximation "is a traditional technique for interpolating in multi-
dimensional space (Powell 1985, Micchelli 1986) and the theoretical properties of the
method have been carefully investigated. By relaxing the original restriction on strict
interpolating, Broomhead and Lowe (1988) introduced a generalized form of the RBF
expansion. For many practical applications such as image processing, signal processing and

control problems, this generalization provides a more convenient basis to work with.

A RBF expansion with n inputs and a scalar output implements a mapping f,:R"-R

according to

Frx)=Xe+ N 8(] [x—c; | ]) (6)
i=1
where x €R", ¢(.) is a function from R* to R, |[|.|| denotes the Euclidean norm, X,

0=i=n, are the weights or parameters, c; €R" 1={=n, are the RBF centres and n, is the
number of centres. The functional form ¢(.) is assumed to have been given and the centres
¢, are some fixed points in n-dimensional space. The centres ¢; must appropriately sample
the input domain and they are usually chosen either to be a subset of the data or

distributed uniformly in the input domain. Typical choices for ¢(.) are the thin-plate-spline

function

¢(v)=v3log(v) (7)
the Gaussian function

¢(v)=exp (—v¥/p?) (8)
the multi-quadric function

¢(v)=Vvi+p? %)

and the inverse multi-quadric function

1
= 10
$0)= 7o (10)
where B is a real constant. Why such choices of nonlinearity form gcod RBF

approximations can be found for example in the work (Powell 1987).



3.1. Connections with neural networks

Current interests on RBF within the engineering community are largely motivated by
the realization that there are strong connections between RBF and neural networks. Indeed
equation (6) can be implemented in the two-layered network structure depicted in Fig.1.
Given fixed centres the first layer performs a fixed nonlinear transformation which maps
the input space onto a new space, and the output layer implements a linear combiner on
this new space. This is basically how a RBF network operates. If the centres are not pre-
determined and are regarded as adjustable parameters, the structure represented in Fig.1.
then becomes a two-layered feedforward neural network (Lippmann 1987, Cybenko 1989).
Each term ¢(||x —c;||) forms a basic component of the network called‘{lzdden neuron.
The relationship between RBF and two-layered neural networks was discussed in detail by

Broomhead and Lowe (1988).

Because the centres are adjustable parameters in a two-layered neural network, there
15 more freedom -Fvu- designing the network to suit given application tasks. Due to this
flexibility, neural networks prove to be highly successful in dealing with complex data.
Ttaere is however a heavy price to pay for this. The structure of the neural network is
highly nonlinear in the parameters. By carefully pre-fixing centres, it is hoped that RBF
networks can closely match the performance of two-layered neural networksand yet have a
linear-in-the-parameter formulation. It is important to emphasize that the performance of

RBF networks depends critically upon the given centres.

3.2. Capabilities of radial basis functions

This subsection briefly discusses how the RBF expansion (6) can be used to realize or
to approximate some unknown and complicated nonlinear mapping f :R"~R. Although
the approximation capabilities of RBF have been established by researchers working in
multi-dimensional interpolation techniques (e.g. Powell 1987), the strong connections

between RBF and neural networks offer a heuristic explanation.

Assume for the time being that the centres are adjustable parameters and consider the
two-layered neural network represented by Fig.1. The surface generated by the Gaussian
neuron (8) looks like a "bump" as illustrated in Fig.2 (a) in the two-dimensional case. If the
first layer of the network consists of enough neurons sufficient "bumps"” can be generated in
appropriate positions by adjusting the parameters of the first layer. A variety of continuous

surfaces from R”-R can thus be well approximated by adding up a series of such "bumps".
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Lapedes and Farber (1988) used these ideas to explain how feedforward neural networks
are able to approximate a large class of functions. In a RBF network, the centres arr :ll
fixed. If however a sufficient number of centres are used and they are suitably distributed
in the input domain, it is possible that the much simpler RBF model will also provid- &
reasonable representation for various functions. Obviously a sim\ar conclusion can be

reached for the inverse multi-quadric nonlinearity (10).

The approximation capabilities of the RBF expansion (6)are highly related to its
localization properties (Powell 1987). The weights A; are generally computed based on
observed data f(x). Let DCR" be the domain of the approximation and D, be any pa'"
of D. f,(x) is said to have good localization properties if the contribution to f,(x) fror
{f (X): X €D} is small for x €D that are far away from D,. Notice that for nonlinea;.:.;~
(8) and (10), ¢(v)-0 as v—=. For these two choices of nonlinearity the RBF approximaiicr
(6) has good localization properties. The surface generated by the thin-plate-spline function
(7) in the two-dimensional case is illustrated in Fig.2 (b). It is apparent that for this
nonlinearity and for the multi-quadric nonlinearity (9), ¢(v)~> as v-e. The surprising
results of Powell (1987) indicate that these kinds of RBF approximations can have gcod
localization properties and, in fact, the success of approximation is easier to achieve if
¢(v)-x= as v-». These results suggest that the choice of the nonlinearity ¢(.) is not crucia!

for performance.

Cybenko (1989) has rigorously proved that the two-layered feedforward neural
network can uniformly approximate any continuous function. By choosing centres
appropriately, it is possible that the simpler RBF model can offer similar approximation
capabilities. The crucial problem is th_en how to select centres appropriately. In practice the
centres are normally chos;ﬁ f£o-mr the data points. In a real problem the number of data are
often large, say, a few hundred. To include all the data as centres would give rise to an
extremely complex and possibly useless model. On the other hand, arbitrarily chocriny
some data points as centres may not always satisfy the requirement that centres should
suitably sample the input domain. Fortunately it can readily be shown that the OFR
algorithm (Chen et al 1989) can be employed to select centres so that adequate and
parsimonious RBF models can be obtained. In order to apply this technique to fit RBF
models in the NARMAX expansion, an iterative procedure is required and this is discussed

next.
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4. Identification in the presence of correlated noise

The objective of the present study is to use the RBF expansion for modelling

nonlinear systems described by (2). Define the centre dimension as

n=n,+n,+n, (11)

and the data vector at sample r as

x (£)=[y ( =1) -y (¢ =, Ju (¢ =1)+u (¢ =, e (1 =1)-+-e (¢ =, )J" (12)
The RBF expansion f,(x(r)) is then a one-step-ahead prediction for y(r). The
identification thus involves determining centres ¢; and values of \; based on the input-
output observations {u(z),y(¢)}}L,, where N is the data length. Because the system noise
e (1) is generally unobserved, it can only be substituted by the prediction error or residual

€(r) and x (r) must be modified accordingly

x (£)=D(r—1)=yQ —n,Ju Qe —1)~u(s—n, Je(z —1)-=e(z =5, )1 (13)
First a general linear regression model which includes the RBF expansion as a special

case 1s introduced as

y@kﬁﬁﬁmﬁdﬂ (14)

where the 6, are the parameters, the p;(r) are known as the regressors which are some

fixed nonlinear functions of lagged outputs, inputs and prediction errors. That is

P (1)=pi(x (1)) (15)
with x (1) defined in (13). A constant term is included in (14) by setting the corresponding
p:(1)=1. y (1) is also called the dependent variable. e(r) is assumed to be uncorrelated
with the regressors p;(r). The set that contains a variety of p;(z) is referred to as the
extended model set (Billings and Chen 1989b). The model (14), although linear-in-the-
parameters, provides a very rich description of nonlinear systems. Effective modelling can

be achieved by selecting a parsimonious subset model from the extended model set.

It is obvious that a given centre ¢; with a fixed nonlinearity ¢(.) corresponds to a
regressor p;(¢) in (14). The RBF expansion is therefore a particular choice of the extended
model set representation. The problem of how to select a subset of centres from a large
number of candidate centres can thus be regarded as an example of how to select a subset
of significant regressors from a given extended model set. An efficient technique for
selecting a subset model from (14) has previously been developed (Chen et al 1989), and is

briefly described belews -



4.1. Orthogonal forward regression

Equation (14) for t=1 to N can be collected together in the matrix form

y=PO+E
where
) . r X .
y(1) 6, (1)
Y= * ’ P=[P1"'Pu], 0= : 3 E=
y(N) B e(N)
and

p.=[p.(1)p;(N) 1=i=M

P, known as the regression matrix, can be decomposed into

P=WA
where
1 ap apy © 0 0 oy
1 Qo = ° Qopg
A=
1 apyoim
1

is an M XM unit upper triangular matrix and
W=[w;wy]

is an N XM matrix with orthogonal columns that satisfy
WTW=H

Here H is a positive diagonal matrix

1, 0|

0 Iy,
with

N
h=wlw,=Sw ()w,(1) 1si=M

=1

Equation (16) can be rearranged as

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)



y= [PA“] [A®]+E=Wg+E (25)
where

AO=g (26)

Because €(r) is uncorrelated with the p; (), it is easy to show that

g=HWTy (27)
or
w ]y .
8= ——— l=i=M (28)

Techniques for solving for the parameter estimate © from the triangular system (26)
are commonly known as orthogonal least squares methods. The classical Gram-Schmidt and
modified Gram-Schmidt methods (Bjt‘:l"ck 1967) can be used to derive the triangular system
(26). A similar orthogonal decomposition of P can be obtained using the Householder

transformation method (Golub 1965).

The number of all the candidate regressors, M, can be very large as for example in
the case of the RBF expansion. Adequate modelling may only require M, (<<M)
significant regressors. These significant regressors can be identified using the OFR
algorithm (Chen et al 1989) derived by modifying and augmenting the orthogonal least
squares methods. From (25), the sum of squares of y () is

yTy=Sglwlw, +ETE (29)
i=1
It is seen that each w, explains a proportion of the dependent variable variance. Therefore

the error reduction ratio due to w,; is defined as

Leii T
giwfwl'

yTy

The error reduction ratio offers a simple and effective means of selecting a subset of

lerr]i= lsisM (30)

significant regressors from a large number of candidates in a forward-regression manner. At
the j-th step, a regressor is selected if it produces the largest value of [err]; from amongst

the rest of the candidates. The selection procedure is terminated when

M

1= [err];<p (34)
j=1
where 0<p<1 is a chosen tolerance. The parameter estimate O, for the resulting subset

model is then computed from
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A 3 G.T = g I (32)
where A, is the M, XM, unit upper triangular matrix. The detailed selection procedure is

described in (Chen et al 1989, Billings and Chen 1989b).

The desired tolerance p can actually be learnt during the forward-regression procedure
so that the regressor selection becomes an automatic procedure. This aspect is discussed in
(Billings and Chen 1989b). Alternatively the forward-regression procedure can be
terminated using the Akaike’s information criterion and the detailed implementation of this

is also given in (Chen et al 1989, Billings and Chen 1989D).

4.2. Model validity tests

If modelling is adequate, the residual e(z) should be unpredictable from (uncorrelated
with) all linear and nonlinear combinations of past inputs and outputs, and this can be
tested by means of the following correlation functions (Billings and Voon 1986, Billings and
Chen 1989a)

V. (k)=5(r) an impulse function
Vv, (k)=0 for all k

¥ )(k)=0 k=0 . (33)
W 5 (k)=0 for all k
‘I’uz-tz(k)=0 for all %

/
where W_ (k) indicates the cross-correlation function between x(r) and =z(r),

eu(t)=e(t+u(r+1), u¥(t)=u?(r)—u*(r) and u*(r) represents the time average or mean

value of u?(r).

The tests (33) were developed based on the fact that ¥ (k) and ¥, (k) alone are not
sufficient to validate nonlinear models and may even give misleading information regarding
the adequacy of the fitted model. The higher order correlation tests are thus included. In
general if the correlation functions in (33) are within the 95% confidence intervals

+1.96/VN , the model is regarded as adequate.

Alternatively a chi-squared statistical test (Leontaritis and Billings 1987) can be
employed to validate the identified model. Define §(z) as an s-dimensional vector-valued
function of the past inputs, outputs and prediction errors, and let

Ir= %%Q(r)ﬂr(r) (34)

1=1

Then the chi-squared statistic is calculated from the formula
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{=Nu"(TT) (35)
where
1N
p= FEIQ(I)E(I Yo, (36)
and o2 is the variance of the residual €(r). Under the null hypothesis that the data are
generated by the model, the statistic { is asymptotically chi-squared distributed with s

degrees of freedom. A convenient choice for Q(r) is

Q(t)=[w()w( -1)o(-=s+1)]" (37)
where w(t) is some chosen function of the past inputs, outputs and prediction errors. If the
values of [ for several different choices of w(r) are within the acceptance region (95%),

that is

L<x7(e) | (38)
the model is regarded as adequate, where x?(a) is the critical value of the chi-squared
distribution with s degrees of freedom for the given significance level a (0.05). The choices

of w(z) should generally include some nonlinear functions.

4.3, Iterative procedure

By combining the OFR routine and the model validity tests, an iterative procedure
can be formed to identify NARMAX models using the RBF expansion. The nonlinearity
#(.) in the RBF expansion will be chosen as the thin-plate-spline function (7). Apart from
its good global interpolating property, the thin-plate-spline function does not require the
extra parameter B and, therefore, is slightly more convenient to use in the regressor
selection compared with the other choices (8) to (10). The identification procedure can be

summarized as follows:
(i) Choose n,, n, and n,. Initially the set of candidate centres are all the
X (0)=[y (e =1)y (=, u(r =1)-u(t—n,)] (39)
A subset RBF model f,© is selected using the OFR algorithm and this initial model is

used to generate the initial prediction error sequence {€O(1)}.

(ii) An iterative loop is then entered to update the model. At the k-th iteration, the set of

candidate centres are all the

x ®(r)=[y (1 =1)--y (¢t =n, Ju (t =1)+-u (t =n, Je® (e =1)--“ D =n,)]" (40)
The subset RBF model f,*) is selected by the OFR algorithm and this gives rise to the
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prediction error sequence {e®)(1)}. Typically two to four iterations are sufficient.

(iii) The model validity tests are performed to assess the model. If the model is considered

as adequate the procedure is terminated. Otherwise goto step (i).

Some refinements to the above procedure are also possible. Whenever there are
sufficient data points, the data should be partitioned into 2 fitting set and a testing set. The
former is used in the subset model selection and the latter is used to validate the selected
model. If modelling complex data is regarded as performing a curve fitting in a high
dimensional space, the two basic concepts in neural networks, namely learning and
generalization, becomes relevant to systems identification. From this viewpoint, learning

corresponds to producing a surface in multi-dimensional space that fits the set of data in

some best sense, and generalization is equivalent to interpolating the test data set on this - -

fitting surface (Broomhead and Lowe 1988). The performance of generaiizatidn is a moré
"genuine" indicator for the "goodness" of the model. As discussed in (Chen et al 1990), the
regressor selection can be terminated using the following alternative criterion. The subset
model is chosen on the fitting set and the variance of the residuals over the testing set is
computed based on the selected model. The selection is terminated when this

generalization error is minimized.

5. Comparison with fitting polynomial NARMAX models

The iterative procedure for fitting subset RBF models is very similar to that for fitting
subset polynomial models (Chen et al 1989). Here we do not attempt to assess which model
is superior to the other in representing nonlinear systems. Rather a brief comparison of the

two models is discussed from the practical identification viewpoint.

For a polynomial expansion, the number of all the candidate regressors or monomials

is determined by the formula

!
m=3m (41)
i=0
where | is the polynomial degree and

mo=1; m;=m;_y(n,+n,+n +i=-1)1 1=i=l (42)
It is obvious that the number of monomials increases exponentially as / increases. In
practice, therefore, / must be restricted, say, to 3. As an example, assume that
n,=n,=n,=7 and /=3, then m=2024. Although the OFR algorithm is very efficient in

subset selection, choosing a subset model from such a large set is still computationally
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intensive. The dimension of the candidate set for RBF modelling, on the other hand, is
determined by the data length N, which is typically a few hundred. Increasing n,, n, or n,
does not affect the number of candidate regressors. This gives the RBF approach

advantages in fitting nonlinear systems with large lags in the input, output or noise.

NARMAX modelling requires the substitution of the unobserved noise e(r) by the
prediction error (r). The issue of invertibility (Chen and Billings 1989b) or whether it is
possible to compute €(r) using the model and given system inputs and outputs becomes
crucial. The authors’ experience suggests that the RBF expansion is less likely to produce

explosive €(r) sequences than the polynomial expansion.

The polynomial approach has its advantages. Polynomial modelling often requires
fewer terms or is more parsimonious than RBF modelling. A subset polynomial model with
less than 20 terms is usually sufficient to capture the dynamics of highly nonlinear processes
while a subset RBF model typically requires 30 to 40 terms. Given the same number of
terms or parameters, the computation of the RBF mapping f, is obviously more expensive

than that of the polynomial mapping.
6. Identification of two real processes

Example 1. The process considered is a liquid level system. The system consists of a DC
water pump feeding a conical flask which in turn feeds a square tank. The system input is
the voltage to the pump motor and the system output is the water level in the conical flask.

500 points of data generated in an experiment are shown in Fig.3.

The iterative procedure described in Subsection 4.3 was used to identify a subset RBF
model. The lags n,, n, and n, were all chosen to be 3 and the number of all the candidate
regressors was M =501 (500 data vectors plus constant term). Three iterations were
involved in the identification procedure and an appropriate tolerance p=0.0068 was learnt
during the identification. The selected subset model included a constant term and 33

centres. The final model thus takes the form

5=, () =Rot Shia(] lx()=e. D)
where ¢(.) is defined in (7) and

||x(2)—c;||= ‘\/ti](y (1 —k )—cy )2+t§6_:4(u (t =k +3)—cy )*+ ﬁ;(e(r —k+6)—c,;)?
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for 1=i=33. The coefficients X, and the centres ¢, are listed in Appendixes 1.a and 1.b
respectively.

The model response are shown in Fig.3, where the one-step-ahead prediction y (r) is

defined as

@) =f,(x)=f, @ -1),....y (¢ —n,),u(t —1),...,u (t—n,),e(r=1),...,e(t =n,)) (43)

The prediction error or residual is given by

€(t)=y @)=y () (44)

The model deterministic output y,(¢) is defined as

yd(r)=fr(xd(t))=fr(y(t _1)""1y(t —n,),u(t-—l),...,u(! —n,,),O,...,O) ) (45)

and the deterministic error is accordingly given by

€ (1)=y(1)—Ya(r) (46)
The correlation tests are dipected in Fig.4. It is observed that only at an isolated point
V¥, (k) is slightly outside the confidence bands and this was judged as a good result

considering that the data was from a real system.

Example 2. The data was collected from a turbocharged automotive diesel engine in a low
engine speed test. The input was the fuel rack position and the output was the engine
speed. A detailed description of the experiment design can be found in the work (Billings
et al 1989a). The data set contains 410 points and has been shown to be inherently
nonlinear. Previous results also indicated that it was very difficult to fit an adequate model

to the data. |

The dimension of the RBF centres was set to n=n,+n,+n,=3+3+3 and the
dimension of the regressor set was M =411. Only two iterations were involved in the
identification procedure and the appropriate cutoff learnt during the identification was

p=0.000023. The final model containing a constant term and 32 centres takes the form

()=, (x(1))=Re+ ﬁli.-qs(l Ix()—¢, | 1)

where

3 6 9
% (2)=¢; | ;=\/z O (1 —k)=cu >+ 3 (u (e =k +3)—cy 2+ T (e(t —k +6)—c,)?
k=1 k=4 k=17

for 1=i=32. The coefficients X, and the centres c, are listed in Appendixes 2.a and 2.b

respectively. As a comparison, the subset polynomial model identified by Billings et al
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(1989a) is also given in Appendix 2.c. The data set and the model response are shown in
Fig.S, and the correlation tests and some chi-squared tests are illustrated in Figs. 6 and 7

respectively. The model validity tests confirm that the model is adequate.

7. Conclusions

If the response of the system is dominated by nonlinear characteristics it is often
necessary to use a nonlinear model. The NARMAX representation gives a concise
description for a large class of discrete-time nonlinear systems. A practical idenn‘ﬁcation
algorithm for the NARMAX system has been developed based on the RBF expansion. It
has been shown that the iterative identification algorithm derived by coupling the OFR
routine and the model validity tests provides a powerful procedure for fitting parsimonious

RBF models to real-world systems in the presence of correlated noise.
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Appendix 1.a. Subset RBF model of Example 1

i weight estimate error reduction ratio
1 -3.59759e-01 7.2175%e-01
2 3.15711e-02 2.43152e-01
3 -7.56932¢-03 1.22606e-02
4 8.71656e-02 2.60421e-03
5 -6.28845e-01 3.40850e-03
6 -2.61171e-02 1.90152e-03
7 1.09946¢-01 1.92118e-03
8 -2.93926e-01 1.36604e-03
9 -1.44274e-01 3.50552e-04

10 -1.11876e-01 5.20098e-04

11 -5.62868e-01 3.18867e-04

12 -2.31590e+00 1.39608e-04

13 1.94153e+00 1.75716e-04

14 -1.31791e+00 1.91326e-04

15 2.24206e-01 1.15201e-04

16 3.41577e-01--- 9.53731e-05

17 6.15907e-01 1.35794e-04
0 1.63431e+00 1.87789%¢-04

18 -1.11642¢-01 2.48672e-04

19 2.01416e-01 7.19119e-04

20 4.74203e-01 2.61420e-04

21 -5.93372e-02 1.91899e-04

22 7.04118e-01 1.12029¢-04

23 1.27583e-01 1.15415e-04

24 -8.54994e-02 1.37082e-04

25 -1.26371e+00 8.72300e-05

26 1.07860e+00 1.51230e-04

27 2.77538e-01 2.34625e-04

28 1.62097e-01 4.73117e-05

29 2.39621e-01 6.19713e-05

30 9.95672e-01 5.88282e-05

31 -1.47061e-01 5.05323e-05

32 -7.23539¢-02 8.14058e-05

33 1.19353e-01 7.36802e-05

a? | 2.56156€-03
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Appendix 1.b. Subset RBF centres of Example 1

Cy; Cu € Cyqi Csi
C i Cai Csi Co;
1 7.61719e-01 7.03125e-01 5.46875e-01 5.85940e-02 4.29688e-01
5.17578e-01 3.31253e-02 1.00582e-01 -1.34814e-03
2 | -8.20313e-01 0.00000e+ 00 0.00000e+00 -4.68750e-01 0.00000e+ 00
0.00000e+00 -7.86912e-01 0.00000e+00 0.00000e+ 00
3 | -5.66406e-01 -3.12500e-01 -9.76560e-02 -7.51953e-01 -7.61719e-01
-4.98047e-01 1.82023e-02 -7.58298e-02 -2.14319e-02
4 7.03125e-01 5.46875e-01 4.88281e-01 4.29688e-01 5.17578e-01
4.19922e-01 1.00582e-01 -1.34814e-03 7.92319e-03
5 4.68750e-01 4.10156e-01 3.32031e-01 4.00391e-01 5.76172e-01
6.54297e-01 -2.48124e-04 -4.25553e-02 1.57459e-02
6 | -7.42188e-01 -6.44531e-01 -5.27344e-01 -4.68750e-01 -4.19922e-01
-2.05078e-01 7.27092e-02 -2.12200e-02 -2.26521e-03
7 3.32031e-01 2.73438e-01 2.34375e-01 2.05078e-01 3.12500e-01
1.66016e-01 -3.67755¢-03 -5.46013e-03 -8.74925¢-03
8 | -3.90625e-01 -2.53906e-01 -1.56250e-01 -9.76560e-02 -3.32031e-01
-3.22266e-01 -5.90254e-02 -1.16631e-02 -3.37688e-03
9 2.92969e-01 1.95313e-01 1.95313e-01 6.44531e-01 2.73438e-01
-1.85547e-01 6.11390e-03 4.42455e-02 2.98252e-02
10 | -7.42188e-01 -7.42188e-01 -7.42188e-01 -2.73438e-01 -8.78910e-0Z
-1.07422e-01 1.71060e-02 3.38346e-02 1.63228e-02
11 | 4.88281e-01 5.46875e-01 6.83594e-01 -1.95313e-01 -2.92969e-01
-2.05078e-01 1.05537e-02 1.24075e-02 2.62395e-03
12 | 2.73438e-01 1.95313e-01 1.17188e-01 2.44141e-01 2.73438e-01
2.83203e-01 2.59003e-02 8.6616%-03 1.09415e-02
13 2.73438e-01 1.95313e-01 1.95313e-01 3.32031e-01 3.12500e-01
1.66016e-01 1.08582e-02 -2.29179e-02 -1.96630e-02
14 | 3.32031e-01 2.53906e-01 2.73438e-01 3.22266e-01 2.24609e-01
1.75781e-01 3.05088e-02 -4.73855e-02 2.13513e-02
15 | 5.46875e-01 5.46875e-01 4.88281e-01 1.36719e-01 4.49219e-01
6.73828e-01 -6.09297e-03 -2.70075e-02 -1.59142e-03
16 | 3.71094e-01 3.32031e-01 4.10156e-01 3.90630e-02 2.92970e-02
-1.36719e-01 2.84963e-02 -4.50973e-02 5.01287e-02
17 3.32031e-01 2.53906e-01 1.36719e-01 2.63672e-01 4.88281e-01
4.78516e-01 -6.77300e-03 -2.77793e-03 1.00440e-01

continue
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18

19

21

24

26

29

30

31

32

33

-1.46484e+00
-7.03125e-01
-1.01562e+00
-1.46484e-01
3.90625e-01
-1.07422e-01
-6.64063e-01
-4.58984e-01
4.10156e-01
4.39453e-01
-3.51563e-01
6.54297e-01
-7.81250e-02
5.76172e-01
-1.95310e-02
-8.78910e-02
-9.76560e-02
-2.63672e-01
5.85940e-02
1.07422e-01
-8.20313e-01
-5.17578e-01
-1.30859e+00
5.85940e-02
1.95313e-01
2.73438e-01
-9.57031e-01
8.78910e-02
-1.87500e+00
4.88280e-02
-3.90625e-01
1.07422e-01

-1.97266e+ 00
5.18907e-02
-1.09375e+00
-8.23599e-03
4.88281e-01
-2.30838e-02
-8.98438e-01
6.66557e-03
4.10156e-01
-2.26586e-03
-3.12500e-01
3.76687e-02
-3.90625e-01
4.29491e-02
-1.95310e-02
3.04733e-02

--0.76560e-02

1.75251e-02
5.85940e-02
1.09151e-02
-6.64063e-01
-3.1403%e-02
-1.52344¢+00
7.29334e-02
1.36719e-01
3.72316e-02
-1.25000e+00
5.80296e-02
-1.79688e+ 00
-3.79891e-03
-6.83594e-01
6.19762e-03

constant
-2.42188e+00
9.36738e-02
-1.09375e+00
2.16791e-02
4.88281e-01
3.95381e-02
-7.61719e-01
-1.09135e-01
3.51563e-01
3.59494¢-02
-4.49219e-01
4.47573e-02
-6.83594¢-01
6.19762e-03
0.00000e+00
4.49002e-03
-7.81250e-02
2.967278719.-02
5.85940e-02
6.15147e-03
—4.49219¢-01
-1.43116e-02
-1.66016e+00
4.52477e02
1.17188e-01
-8.05099e-03
-1.46484e+00
-2.95929¢-02
-1.75781e+00
-6.15757e-02
-9.37500e-01
1.02739e-01

8.78910e-02
-1.48592e-01
9.76560e-02
1.00404e-02
-3.32031e-01
-3.29906e-02
4.98047e-01
2.92522e-02
1.95313e-01
2.59324e-02
-2.44141e-01
-2.61394¢-02
8.39844e-01
1.02739¢-01
4.88280e-02
-5.26021e-03
-4.88280e-02

) 3.46041e-02

1.56250e-01
1.29895e-02
-3.32031e-01
7.48491e-02
1.75781e-01
2.34002e-02
2.05078e-01
-1.27434e-02
7.61719e-01
5.18907e-02
-1.95313e-01
-9.60702e-02
8.98438e-01
-1.28458e-02

-4.29688e-01

-3.90630e-02

-2.4414]1e-01

5.76560e-02

3.12500e-01

2.53906e-01

8.98438e-01

-5.85940e-02

-8.78910e-02

1.26953e-01

-4.78516e-01

9.76560e-02

1.95313e-01

5.07813e-01

-1.17188e-C:

5.76172e-01
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Appendix 2.a. Subset RBF model of Example 2

i weight estimate | error reduction ratio
0 4.86518e+00 9.74671e-01
1 2.89274e-03 2.43432e-02
2 -1.67923e-02 1.71149e-04
3 -8.31933e-02 3.85502¢-04
4 5.60050e-01 7.91428e-05
5 -8.85746e-03 1.17319e-04
6 6.00541e-02 6.33583e-05
7 -1.64703e+00 2.06132e-05
8 1.39768e+ 00 2.35189e-05
9 -1.70597e-02 9.05632e-06

10 -5.41178e-02 7.50023e-06

11 -2.62244e-03 1.57312e-05

12 -7.92890e-01 1.84051e-05

13 1.61505e-01 6.41244e-06

14 7.44306e-01 7.31515e-06

15 6.42142e-02 8.62033e-06

16 -1.51422e-01 4.33155e-06

17 2.63342e-01 3.78649¢-06

18 -6.78411e-01 3.35450e-06

19 2.19646e-01 2.45880e-06

20 2.27489¢-01 2.18753e-06

21 -1.61403e+ 00 2.07859e-06

22 1.42335e+00 1.84200e-06

23 -6.57795e-01 1.07429¢-06

24 -5.47704e-02 2.21430e-06

25 -9.54563e-01 9.12473e-07

26 2.03376e-01 6.40319e-07

27 4.37858e-02 1.01682e-06

28 7.30585e-01 7.67175e-07

29 -8.72148e-02 6.81383e-07

30 -2.25814e-01 9.00494e-07

31 9.23551e-01 1.06634e-06

32 5.54911e-02 1.08590e-06

o7 3.50978e-04
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Appendix 2.b. Subset RBF centres of Example 2

Ci €2 Ci; €4 Cs;
Cei Co Cyi Cy;

0 constant

1 3.11380e+00 0.00000e+00 0.00000e-+00 3.72450e+00 0.00000e+ 00
0.00000e+ 00 -7.37578e-04 0.00000e+00 0.00000e+00

2 3.06030e+00 2.87700e+00 2.77010e+00 3.76330e+00 3.76330e+00
4.53940e+00 -2.50678e-02 -2.35328e-02 2.08644e-03

3 3.02980e+00 3.22840e+00 3.20540e+00 3.74390e+00 3.74390e+00
3.74390e+00 7.53651e-03 1.08585e-02 -2.16087e-02

4 3.32000e+00 3.15200e+00 3.24360e+00 3.74390e+00 4.52000e+00
4.52000e+00 -2.17232e-02 -4.45968e-02 ° 3.73825e-02

5 3.22840e+00 3.12910e+00 3.35820e+00 5.80060e+00 5.80060e+00
3.74390e+00 3.62243e-02 -1.69932e-02 -1.63574e-02

6 3.15200e+00 3.24360e+00 3.43460e+00 4.52000e+00 4.52000e+00
3.74390e+00 -4.45968e-02 3.73825e-02 -1.83684e-02

7 3.16730e+00 3.35820e+00 3.35050e+00 5.80060e+00 3.74390e+00
3.74390e+00 3.12243e-02 -1.84543e-03 -9.11092e-04

8 3.15960e+00 3.36580e+00 3.35820e+00 5.82000e+00 3.74390e+00
3.74390e+00 9.75430e-03 1.06606e-03 -1.63189e-02

9 2.94580e+00 3.11380e+00 0.00000e+00 4.53940e+00 3.72450e+00
0.00000e-+00 1.74804e-03 -7.37578e-04 0.00000e+00

10 | 4.36630e+00 4.16770e+00 3.93100e+00 5.04390e+00 5.82000e+00
5.82000e+00 4.02729e-02 1.31542e-02 -5.12454e-02

11 | 4.29760e+00 4.35100e+00 4.36630e+00 5.04390e+00 5.04390e+00
5.04390e+00 -2.79905e-02 1.00483e-02 4.02729¢-02

12 | 3.39640e+00 3.20540e+00 3.24360e+00 3.74390e+00 4.52000e+00
4.52000e+00 7.08318e-03 9.57639¢-03 1.66295e-02

13 | 4.61070e+00 4.63360e+00 4.63360e+00 5.04390e+00 5.04390e+00
5.82000e+00 -2.99789e-02 1.85691e-03 -3.15593e-02

14 | 3.08320e+00 3.09850e+00 3.01450e+00 4.52000e+00 4.52000e+00
3.74390e+00 -1.14265e-02 -2.51918e-02 2.13655e-02

15 | 3.45750e+00 3.70190e+00 3.93100e+00 3.74390e+00 3.74390e+00
3.74390e+00 1.58350e-02 -4.67661e-02 7.53581e-03

16 | 4.71000e+00 4.73290e+00 4.63360e+00 5.04390e+00 5.04390e+ 00
5.82000e+00 3.58209e-02 7.76617e-03 2.05549e-02

continue




17

18

19

21

29

30

31

32

3.38870e+00
4.53940e+00
3.11380e+00
3.72450e+00
3.19780e+00
3.74390e+00
4.43080e+00
5.02450e+00
4.63360e+00
5.04390e+00
4.64120e+00
5.04390e+00
4.46560e+00
5.00510e+00
4.34340e+00
5.04390e+00
4.63360e+00
5.82000e+00
3.41160e+00
4.53940e+00
2.86940e+00
3.74390e+00
4.48850e+00
5.04390e+00
3.22840e+00
3.74390e+00
3.24360e+00
4.50060e+00
4.60300e+00
5.80060e+00
2.77010e+00
3.74390e+00

3.18250e+00
-8.71494e-03
3.10620e+00
1.97229e-02
3.41160e+00
-1.04871e-03
4.39680e+00
2.00877e-03
4.63360e+00
1.85691e-03
4.64120e+00
-1.66652e-02
4.50380e+00
2.46727e-02
4.25170e+00
3.65379¢e-02
4.64890e+00
-3.15593e-02
3.41930e+00
1.57596e-02
2.74720e+00
6.53485e-04
4.53430e+00
1.68135e-02
3.29710e+00
-4.34801e-03
3.24360e+00
8.15524e-03
4.61830e+00
-2.70984¢-02
2.82360e+00
3.57718e-02

3.22070e+00
-2.42880e-03
3.01450e+00
-1.64108e-02
3.41930e+00
1.57596e-02
4.45030e+00
9.52153e-03
4.64890e+00
-3.15593e-02
4.65650e+00
-1.01000e-03
4.46560e+00
1.79497e-02
4.28230e+00
-1.39611e-02
4.6489%0e+00
-5.14224e-03
3.15200e+00
-1.22219e-02
2.86940e+00
-1.25916e-02
4.48850e+00
2.47397e-02
3.41930e+00
-4.901869-02
3.32000e+00
2.77028e-04
4.62590e+00
-6.20406e-03
2.98400e+00
-1.16939e-02

3.74390e+ 00
-5.96622e-03
4.53940e+ 00
-4.70489e-04
5.82000e+00
-1.22219e-02
5.02450e+00
-1.29715e-02
5.04390e+00
-5.14224e-03
5.04390e+00
-5.10076e-03
5.80060e+00
1.02457e-03
5.82000e+00
-2.36748e-02
5.82000e+00
-3.59283e-02
3.74390e+00
-9.48673e-04
3.74390e+00
-1.28845e-02
5.82000e+00
-1.46066e-02
3.74390e+00
5.99918e-02
3.74390e+00
4.73018e-03
5.80060e+00
-3.75853e-02
4.50060e+00
-5.22487e-02

4.53940e-+00

4.53940e+00

3.74390e+ 00

5.80060e+ 00

5.82000e+00

5.82000e+00

5.00510e+00

5.82000e+00

5.04390e+00

__3.74390e+00

4.52000e+ 00
5.04390e+00
4.52000e+ 00
3.74390e+ 00
5.02450e+00

3.74390e+00 |
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Appendix 2.c. Polynomial subset model of Example 2

term weight estimate
constant -1.8647e+00
y(t-1) 2.5121e-01
u(r-1) 4.9787e-01
u(r=2) 8.3088e-01
e(r—1) 2.6157e-01
e(1-2) -3.9234e-01
e(r-3) 7.9580e-01
e(r—4) 5.8926e-01
e(t=5) 9.7346e-01
yi(r—1) 5.5328e-02
y(t=1u(r-1) 5.4122e-02
y(r—1u(r-2) -5.0123e-02
y(r—=1)e(1 =2) 5.0442e-01
y(r—=1)e(r =3) 6.1282e-01
y(r=1)e(r —4) 6.0015e-01
u?(r-1) -5.8763e-02
u(r—1)e(r -2) -2.9549e-01
u(t—1)e(r —=3) -3.3093e-01
u(r=1)e(t—4) -2.19%94e-01
u(t=1)e(r=5) -1.5602e-01
u?(r =2) -4.8272e-02
u(r—2)e(r -3) -2.5665e-01
u(r—=2)e(r—4) -3.3229e-01

2

ag

6.32261e-04
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Fig.1. Schematic of RBF expansion
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Fig.2. Surface generated by (| |x —c| [) in 2-D case
(a) Gaussian ¢(.),
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Fig.2. Surface generated by ¢(|[x —c [[) in 2-D case
(b) Thin-plate-spline —¢(.).




Fig.3. Data set and RBF model response (Example 1)
(a) u(r), (b) y(1), (c) ¥ (),
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Fig.3. Data set and RBF model response (Example 1)
(d) €(r), (e) es(r), (]) ¥4 (r).
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Fig.4. Correlation tests (Example 1)
(a) Y¥.(k), (b) ‘If({w}(k), (c) ¥,.(k), (d) ‘I’";-((k), (e) \I’uz-!z(k). Dashed line: 95%

confidence interval.
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Fig.5. Data set and RBF model response (_Example 2)
(@) u(z), (b) y(r); (c) ¥(1),
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Fig.6. Correlation tests (Example 2)

(@) ¥olk), () ¥yu(k), (c) ¥, (k), (d) ¥, 2(k), (¢) ¥ »a(k). Dashed line: 95%

confidence interval.
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Fig.5. Data set and RBF model response (Example 2)
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Fig.7. Chi-squared tests (Example 2)
(@) w(r)=e(r=1), (b) w()=u(t-1), () w(@)=y(-1), (d) w()=€e(-1), (e)
w(t)=u?(r—1), (f) w(z)=y*(z —1). Dashed line: 95% confidence limit.
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