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DESCRIBING FUNCTIONS, VOLTERRA SERIES,
AND THE ANALYSIS OF NONLINEAR SYSTEMS
IN THE FREQUENCY DOMAIN

J.C. Peyton Jones, S.A. Billings.
Dept. Control Engineering, University of Sheffield, Mappin Street, Sheffield S1 3ID.

Abstract: A relationship between the higher order frequency response functions of the Volterra
series model, and the well known describing function representation for nonlinear systems is
derived. It is shown that a large class of generalised describing functions can be derived from the
Volterra model and that this approach removes the restriction to specific inputs. The concept of a
worst case transfer function is introduced, and examples are included to illustrate the results,

1. Introduction

Frequency domain analysis of nonlinear systems appears to have developed from two
main points of view, the quasi-linear describing function approach, and the more gen-
eral but less amenable approach using the Volterra model. A third, (and in some ways
intermediate) approach, has been to orthogonalise the Volterra kernels for some given
input, the most well known example being the Wiener model for Gaussian inputs.
Although each has certain benefits, there is no single, universally applicable, approach.

The describing function method, for example, has the considerable advantage of being
one dimensional in frequency, [Atherton 1975], [Gelb, Vander Velde 1968]. Thus
input and output components at the same frequency are related by a transfer function
which, though amplitude dependent, is otherwise similar in form to the familiar linear
case. Although this might suggest that input frequencies pass independently through
the system, in reality any intermodulations or other frequency interactions have been
incorporated, (or avoided), by restricting the input to a specific waveform. A describ-
ing function therefore is only stricly valid for a specified input, (such as a single
sinusoid), and hence is limited in its generality. For the same reason the analysis
becomes more complicated if the input considered contains more frequency com-
ponents, and the method is rarely extended beyond the two tone case.

By contrast the n-dimensional Volterra transfer function explicitly describes nonlinear

frequency interaction through the n frequency components which constitute its
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arguments. The Volterra form therefore is not restricted to a particular input
waveform, but this generality is achieved only by moving to higher dimensional
representations [Volterra 1959]. In spite of recent interpretations [Peyton Jones, Bil-
lings], these multi-dimensional forms are not easy to assimilate, particularly for higher
orders.

The advantages of the describing function approach could however be combined with
those of the Volterra model, if, for any specified input, the multi-dimensional form
could be collapsed down to the appropriate uni-dimensional response. Thus any

number of specific describing functions could be derived from a more general model
of the Volterra form.

Wiener and Spina (1980), for example, derive expressions for the Single Sinusoid
Describing Function in terms of the Volterra kernels, and in this paper the approach is
generalised for a wider class of inputs. In cases where the precise form of the input is
not known, a similar method is used to derive a uni-dimensional response with bounds
of uncertainty to accomodate the range of possible inputs. These methods therefore, in
conjunction with recent algorithms for the computation of higher order transfer func-

tions [Billings, Peyton Jones], provide a powerful means for deriving describing func-
tions for a wide class of inputs.

2. The Volterra Model: Intra-, and Inter-Kernel Interference

Consider first the Volterra model representation for a single input analytic system,
namely,

N
YO = Yy (1)
n=1

where y,,(7), the n-th order output of the system, is defined by,

oo [=<] n
W0 = [ o | k-t TTue-1) dv; 2)
—co —0a l=1
Since the n-th order impulse response, h,(-), is the Fourier pair of the n-th order
transfer function, H,(-), equation (2) may also be written as,

o0

[ ] Vo, - o) O gy de,  (3)
o s, ™

Ya(t) =



where,

n
Y,(jo, - jo,) = H,(oy, - jo,) TTUGo) (4)
=1
Notice that each harmonic/intermodulation (generated by interacting input frequency
components) excites a unique point in the multi-dimensional frequency domain,
corresponding to the cartesian product [JU(jw;). The multidimensional spectrum
Y,(joy, - -+ Jjo,) therefore contains a precise description of all input frequency interac-
tions, but it is not immediately apparent how this relates to the the uni-dimensional
output spectrum Y, (j).

Consider however the change of variables given by,
p ; n-1
©, = Y o => 0, = o,- ¥ o (5)
1 =1

Equation (3) may then be expressed in the ‘input/output domain’, Mg, = > = 0y 5,00, a8,

o =]

n—1 -
(2m)" [ ] Yoy, - o, lofm 3 o) &7 doy, - - - do, do, (6)
RO i=1

Ya(D) =

This shows more clearly how the uni-dimensional output spectrum is obtained, since
equation (6) is in the form of an inverse Fourier transform. Hence the output spectrum
is given by,

p 1 . ) ; 3 n—l
Y,(jo',) = e [ ] Yo, - jo, =3, ol doy, -+ do,,  (7)

and the variable «’, defines the observed output frequency.

In some cases it may be convenient to change variables entirely into the ‘output
domain’ 'y, - - + ,w’, according to,

k (D’i—(l)’l-_l 1<i<n
’
Wy = E ; =2 W, = g i = 1 (8)
: i
=1

This yields an alternative expression for the uni-dimensional output spectrum, namely,

-]

o P 1 7 [ 4 s ’ r 1 ’ ’ ’ ’
¥, (oo, = G [ [ Yol ey, - - o=, ]) dey - o dw,; (9)

Geometrically both equations (7) and (9) represent the vector integration of points of
response which lie within a sub-domain of constant output frequency, and which
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therefore contribute to the same output frequency. The vectorial nature of this process
defines an interference effect between output components of the same frequency which
is termed intra-kernel interference, [Peyton Jones, Billings].

The total output response is however given by a summation of the n-th order
responses, since by Fourier transform of equation (1),

N
Y(jw) = Y Y, (jo) (10)

n=1
This combination of (one-dimensional) n-th order output responses does not involve
any further intermodulation or transfer of energy between frequencies. However since
the output components from different orders are vector quantities, the summation of

equation (10) does introduce an amplitude dependent interference effect between the
kernels termed ‘inter-kernel interference’, [Peyton Jones, Billings].

To illustrate this amplitude dependence consider an input waveform scaled by a con-
stant factor A,,. Each n-th order output Y,(j®), being homogeneous, is therefore scaled
by the constant factor A7. Equation (10) then becomes,

N
Y(A,jo) = ¥ AL Y,(o) (11)
n=1

Thus for example the summation of three kernel outputs at a given frequency w, could
be depicted by the vector diagram, Figure 1(a). By doubling the input amplitude, the
linear phasor Y;(jw) doubles, the second order output Y,(jw) quadruples, and so on.
This results in an unequal scaling of the phasor contributions of each n-th order output,
and considerably modifies both the magnitude and phase of the total output Y, (as
shown, half scale, in Figure 1(b)). These diagrams also illustrate how inter-kernel
interference is sometimes sub-classified according to gain compression/expansion and

phase advancement/retardation, through a comparison of the resultant output vector Y
with the linear component Y.

3. Generalised Describing Functions

The output response resulting from inter-kernel interference has close links with the
describing function approach to nonlinear systems analysis. The latter is a quasi-linear

(but amplitude dependent) transfer function relating input and output components at the
same frequency,



. Y(A,,jo)
N4, jo) = A Ula) (12)

Equation (12) might suggest that input frequencies pass independently through the Sys-
tem, whereas in reality there may be considerable interaction through intermodulations
and intra-kernel interference. For this reason the describing function definition is res-
tricted to a specific input waveform such as, for example, a single sinusoid. More
generally however, equations (53),(12) may be combined to give,
: 1 .
NA,, Jjo) = -m ¥ Al Y (o) (13)

n=1
where N(A,,jo) is considered to be undefined at any frequencies U(jw) = 0. Note that

the spectrum Y,(jw) is given by the intra-kernel equation (34), and therefore accomo-
dates any given frequency combination.

Expanding the first term of equation (13) yields,

R
Tio) 2 ALY Y(jw) (14)

n=2

N@A,jo) = Hi(jo) +

Thus the describing function is given by the linear response, whose gain and phase are
modified by the inter-kernel interference terms of higher order.

While equation (14) may be illustrated by the phasor diagrams similar to those of the
previous section, the describing function representation enables input and output to be
related more directly. For example the amplitude dependence of gain
compression/expansion at a given frequency may be illustrated using a ‘gain response
curve’ as shown in Figure 2(a). If the system were in fact linear, then the input/output
amplitudes would be related by the dotted straight line of the figure, whose gradient is
indeed the linear gain IH,(jw)l. Nonlinear components modify this response, giving an
augmented output (gain expansion) at points above the dotted line, or a decreased out-
put (gain compression) below it. The two marked points correspond to the phasor plots
Figures 1(a),(b), and demonstrate how these curves may be obtained by evaluating
equation (53) at different input amplitudes.

The effect of amplitude on phase advancement/retardation may also be depicted in a
similar manner by means of a ‘phase response curve’ as shown in Figure 2(b). In this
case the linear phase is independent of input amplitude, giving the horizontal dotted
line of the figure. However inter-kernel interference from nonlinear components in the



output can cause phase advancement, raising the curve above the dotted linear
response, or retardation which lowers it. Again the marked points on the figure
correspond to the phasor plots Figures 1(a),(b) which illustrate the interference
mechanism at any given amplitude.

4. Multi-Sinusoidal Describing Functions with D.C. Bias. (MSDF)

Since the generalised describing function is constructed from the set of uni-
dimensional spectra Y,(jm), the derivation of any specific describing function funda-
mentally involves derivation of the n-th order output spectrum generated by the
specified input. Consider then a nonlinear system excited by an ordered set of
sinusoids together with a d.c. offset,

R
u® = Y Acos(w,r) + Ay, ;> Vi>j (15)
r=1
Although the harmonic expansion of the Volterra model could be obtained by applying
the input (15) in the time domain, it is more convenient to derive the expansion in the
frequency domain. Taking the Fourier transform of the input gives,

R A
UGjo) = FAmS(0-0,) + 8w+rw)] + 214, 8(w) = Ezn 8w, (16)

r=1 r=—R

where the latter equality follows by defining,
w_, =-— , (1)0—_-0 and AO = ZAd.C (1?)

The product of input spectra is then a sum of delta functions,

n Ay,
]'[U(]cu) - e Y ] " 8(0-0,) (18)
rr—=—R i=1

which describe all those points in the multi-dimensional frequency domain which are

excited into response. The n-dimensional output spectrum generated thereby is given
from (3) as,

. . 2 £ S
Vi, o) = @ X T] == 8@rw,) Hyjoy, - - jo,) (19)
r,r=R =1
In this case the uni-dimensional output is most easily obtained by applying the integra-
tion (7), which by virtue of the delta functions in (19) is particularly simple to evalu-
ate, and yields,



n Alr,l n-1 7 n-1
Yn(im’n) = 2% E H 2 r1 o JOJ“_]JI[O)’H“-E(D,-ED 8([0) H-Em-";] - )
rr=—R =1 =1 i=1
n Alrl s . v
= 2n 2 IT W, 0 Jo,) 80"~ 3o, 1) (20)
rr=—R =1 =1

Thus the output spectrum consists of a series of spectral lines at those frequencies 7 4
which satisfy the condition ®’, = > ,. Indeed this confirms previous discussions

[Peyton Jones, Billings].

Equation (20) however may be simplified by expressing the result in terms of the sym-
metric transfer function H,("). Dividing the multiple summation into two parts gives,

w A
Vo) = m ¥ > T

n
Hn(jwrl’ o er,,) 5([(‘3’{2%,])
all combinations all permutations i=1 i=1

Off"‘qu {(‘O—R T U-)R} Of [‘:Drl T (D,n} (21)

taken n at a time

Notice that the latter sum of permutations has no effect on the output frequency
w’, = Y ®,, and merely combines the response of a set of asymmetric points. This

summation can therefore be written in terms of the symmetric transfer function as,

Z Hn(imrp T ,jmr,,) Hsymomrl’ ' \jmr,,) (22)
all permutations
o (o, - o)
where,
n* _ n!
nl! ﬂz! e nC!

¢ = the number of distinct frequencies appearing in the combination
n; = the number of repetitions of the ith distinct frequency (23)
n+n+--+n.=n

Meanwhile the former sum of combinations may be generated from the initial multiple

summation, but with all permutations excluded by the constraint r; < ri_1. Equation
(23) then becomes,

" . n Ay
Y, (jw',) = 2nn Z 11

ry r,—-—R i=1

H,?’”‘(jm,l, Cjo,) (o, ~ Y, 1) 24)
i=1

The multi-sinusoidal describing function, defined at any of the input frequencies w,,
can now be found by combining equations (14), (24) giving,

2P



1 N ;
Y AXlon g (25)

" Y = H Y e —— b
(wa]m n 1(]0) n) A,xﬁ(w',rﬂ)r) n=2

n Ay .
X E 11— 1—153””(](1)rl . ,jco,h) 5([03',1"2(1),.])
ri =R =1 =1
risrig
_ N 2A"_1 n* ' n
=> N@A,Jo,) = H(jo,)+ Y ——— p HY™ oy * = * Jfov:) 8([o,~Y o, ])
n=2 r ryr=—R =1 i=1
ri<rig

4.1. Harmonic input describing function (HIDF)

A particularly important sub-class of the input (15) is one in which the excitation fre-
quencies are harmonically related, i.e,

®, = roy (26)

where ®, denotes some fundamental frequency. Such inputs might arise through feed-
back round some nonlinear system (as in limit cycle analysis), or by cascading the out-
put of one nonlinear system to the input of another. More importantly though, equa-
tions (26),(15) serve to characterise a wide range of periodic signals by means of their
Fourier Series representation. A harmonic input describing function could then be

applied to yield the describing function for specific periodic waveforms, e.g triangular,
square etc.

The time domain derivation of the HIDF is complicated by the large number of inter-
modulations generated by such inputs. However substituting (10) in (25) gives in the

frequency domain, 27
N 1 n* n
N(Aerﬂ)f) = Hl(]r(l)f) + E _—'A—- E H —— H’Yy (]ricof, : Jrnﬁ)f) 8([?’-2?}])
n=2 r r.—=R =] i=1
ri<rigy

This expression may be simplified by reflecting the constraint, r=Y7r; (imposed by the
delta function), back to the choice of arguments r; (generated by the multiple summa-
tion). The required condition may be rewritten,

n

-1
rp=r—=Yn- > (28)
k=1

k=i+1



where by use of recursion, only the latter summation is unknown. However since all
input frequencies lie in the range *wp, the maximum value of the unknown summa-
tion, having (n—i) elements, is (n—i)R. Similarly the condition r;<r,; gives a
minimum value for summation of (n—i)r;_y. Hence (28) becomes,

i-1 -1
r—=Yrn-mDR < r; < r—Yr+ n-OR (29)
| =1

Combining (29) and (27) therefore enables the HIDF to be expressed in the form,

N o [max n A| ]
N@Ajrep = HiGrop+ 3 24500 Y T] : H™(jr0p -« - \jir,op)
n=2 r = rmn =1 2
30
where, 0)
. £
o = max e Fmax = min | rog, (31)
17— X (n=driy ) i1
k=1 r—Yry+ (n—iR
k=1

“~

Although restricted to harmonic inputs, equations (26),(15) define an important class of
describing functions, and a number of common instances are discussed below.

4.1.1. Single sinusoidal describing function (SSDF )

The simplest sub-class of the input (26) occurs when the system is excited by a single
sinusoid alone, i.e. R=1, and r#0 (no d.c. input). Applying these values in equations
(30),(31) yields the SSDF for the fundamental frequency o, giving,

. ) 3 ; , .
N(A,.jo;) = Hi(jo,) + ZAE" HY"™(jwy,jo,,—j;)

5 (32)

+ o A% HY™(jwy,jo, jo, ~jo; ~jo,) +

where, for clarity, the amplitude A; has been absorbed into the waveform scaling fac-
tor A,. This result is not new ([Weiner, Spina 1980]). The advantage of (30),(31)

however is the ease with which it can be be applied to generate describing functions
for more complicated inputs.



4.1.2. Biassed single sinusoidal describing function (BSSDF)

Consider for example a Biassed Single Sinusoid Describing Function (BSSDF), where
the input consists of a sinusoid together with a d.c bias offset. Such inputs are of
interest in simple limit cycle analysis where the nonlinearity is excited by a sinusoidal
component from the limit cycle, together with a relatively slow varying command
input (approximated by the d.c. bias).

Expanding (30),(31) with R=1, (single sinusoid), and including a d.c. component by
permitting r=0, gives the Volterra expansion for the BSSDF:

NAWALA o) = Hy(jo) + 2 A4, HP™(jw,0) (33)

3 " ; .
*1 5 ALAT HY™(jooy joy,~joy) + 3 A2A3, HY™(j0,,0,0) |+ - -

Notice that with more than one frequency component in the input, the individual
amplitudes A, cannot be absorbed within the waveform scaling factor A,, and each
appears explicitly in equation (33). This is because changing the amplitude of any
input component alters the input waveform shape, while changing the factor A,

preserves the amplitude ratio between input components and merely scales the input
waveform without distortion.

4.1.3. Twin sinusoidal describing function (TSDF)

The BSSDF is really a special case of the twin or two-tone sinusoidal describing func-
tion (TSDF), only in the latter case both input components may occur at any fre-
quency. Consider for example a nonlinear system excited by two harmonically related
sinusoids such that w; = 3w; (or w; = wy/3). A separate describing function may be
defined for each of these input frequencies. Thus expanding (30),(31) for the lower of
the two frequencies, ,, gives the fundamental describing function,

. . 6 L
N(A,ALAsjo) = H(jo,) + " AZAS HY™ (g j, —js) + (34)

3 . . . 3 s, s :
2 ALA1A3 HY™(j0s,~jo ~jory) + P ALAT HP™(jooy oo, ~jeoy) +

where the condition r; # 0,2 excludes d.c. and first harmonic components from the
input.

Similarly expanding (30),(31) with r=3 yields the describing function at the higher

= Hs



frequency ;:

2 42

. . 6 ALA3
N(A,, AL Az joz) = Hi(jos) + % A
1

HP™(jws jorg,—js) + (35)

3 . ; 3 s s
7 AZA Ay HY™ (s joo; —jr) + F ALAY H9™(joo, joo jooy) +

Such illustrative examples, though fairly straightforward, may be extended to higher
orders and to inputs with greater frequency content.

4.1.4. Fourier series describing function: triangular wave example

A particularly useful feature of HIDF analysis is the ability to derive the describing
function for a periodic input represented by a Fourier series, following a similar
approach to the simple two-tone case above. Consider for example a triangular wave
input which may be represented by its Fourier series as,

u(t) = & (coswg + icos?aa) + —1—(:0350) +ommn ) (36)
b i 9 i 25 F

The HIDF for such a series is obtained from (30),(31) , with the restriction r; is always
odd and A =1, giving,

N(ApAz,AsJOJf) = Hl(jmf) (37
6 2 rISVRrE s ; 3 A5A% " ; ;
6 ; ; : - .
3

1 AjA; H?mejmﬁ"j@f,‘fmf) +

B|w

Al H (a0~ ) +

In this case however, the amplitudes Ap, "+ + ,A, of the HIDF are all related the the
amplitude Ay of the triangular wave by the Fourier coefficients of (36). Equation (37)
may therefore be simplified to give the Triangular Describing Function, (TDF),

NArjo) = Hiljo)

3 o 1 o e s o ]

2
8Ar 1 . . 1 e .

1 o 3 Wi o s
_E Hiy’"(3jcoﬁ-jmf,—jmf) + P HY (J@pis—joy)

= 1T =



. (38)

Note that specific expansions such as (33),(34),(35),(38) are merely illustrative of the
method for generating various describing functions from the Volterra form. In practice

the recursive algorithm is well suited for computer implementation, and avoids these

tediously longwinded expressions.

4.1.5. Examples

Consider for example the continuous time nonlinear resonator given by,

&y + 2cwnﬂ + 02y — 02u + 0.0202u% + o.omgu?ﬂ = (39)
dr t dt

where ©, =£100n/3, { =0.2. The nonlinearity is deliberately severe so that the
differences between the various describing functions are readily apparent, even when
evaluated with modest input amplitudes and plotted on logarithmic scales. In particu-
lar the differential factor in the cubic term might be expected to accentuate high fre-

quency input components, and indeed this is confirmed by the results obtained below.

The first stage of analysis concerns the derivation of the generalised frequency

response functions. The first order transfer function is obtained from (39) by ignoring
all the nonlinear terms, giving,

Wy

H.( = 40
1) (j0)? + 2L0,(iw) + w2 D

Higher orders however may be found using the algorithms developed in [Billings, Pey-
ton Jones], though the results in this case are quite straightforward. For example the
second order response shares the same characteristic equation as the linear response,
but with @ in the latter replaced by w;+w,, giving,

0.02w2

H?™(joy joy) = —
(i1 +0,)? + 28w, (jo,+Hw,) + 0

(41)

Similar properties apply to the third order transfer function, generated by the cubic
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term of equation (41). However the differential factor also introduces a zero into the
numerator of the transfer function, giving,

0.0102 . (o, + jo, + jws)

HY™(jojwyjos) = (42)

; i .y : ” ' 9

3 (Jor+jwy+j3)" + 280, (jo+Hwytjos) + o
Finally since the system under consideration contains no ‘recursive’ nonlinearities in
the output y(z), the response of all orders fourth and higher, is zero.

These generalised transfer functions explicity describe frequency and amplitude non-
linearities without restriction to a specific input waveform, but only at the expense of
multi-dimensional forms. However such generality may be exploited to derive any
number of specific (uni-dimensional) describing functions from this single Volterra
representation.

For example, combining equations (40)-(42) with (32) yields the single sinusoidal
describing function for the system (39), as plotted (solid line) in Figure (3). Notice by
comparison with the linear response, (dotted line), that the system exhibits increasing

gain expansion with frequency, coupled with significant phase retardation.

Introducing now a d.c. bias component gives from (33) the BSSDF, which is shown in
Figure (4). The trends observed in the single sinusoid case are accentuated by the
presence of the d.c. component, and could for example reduce the gain and phase mar-
gins in a control application, or even cause instability.

In other applications, where the input consists of two harmonically related sinusoids,
the appropriate describing function can still be obtained from the general form (40)-
(42). Thus the TSDF described in Section 4.1.3 can be evaluated for the system (39),
and gives the fundamental describing function shown in Figure (5). The TSDF can
also be evaluated for the higher harmonic using equation (35), and this is shown in
Figure (6). Notice that the describing function associated with the higher component

exhibits more nonlinearity than that of the fundamental, confirming the trend of high
frequency distortion.

Finally the describing function for any given periodic waveform can be obtained for
the system (39) by representing the input as a Fourier series. The triangular describing
function of equation (38) is obtained in this way, and gives for this system the
response shown in Figure (7). Notice from (36) that the triangular waveform

~ 13 -



excitation 1is concentrated at the fundamental, and consequently the TDF of Figure 7 is
very similar to that obtained for the single sinusoid case.

5. White Noise Describing Functions

The multi-sinusoidal describing function of Section 4 demonstrated how the general-
ised describing function approach may be applied to the specific class of inputs
(26),(15). Another form of input worthy of consideration consists of white noise exci-
tation with variance A and bandwidth w,. This input has a flat spectrum of amplitude
A, and excites every point of the transfer function into the response. Indeed using
equation (5) the output spectrum (39) may be rewritten,
(43)

min {iwy,(®;,1+0,))

Aﬂ

2" ax (Cisn (@)

Y (w) = H,(jo" jlo"-0'], - - - jlo,-e', ) do'y - - - do',,
Notice how the input domain bounds *w, are transformed in the output domain

integration of equation (43). These new limits were obtained by applying the input
constraint on equation (8), giving

o'l < iw, 1<i<n (44)
|(l)’i = (D’i_1| l1<i<n
@ = iy i =1 (45)

Since the output frequency «’, is fixed, equation (45) may be rewritten with shifted
indices and rearranged to give,

|(D’;'l = IU)’H_II — Wy 1<i<n-1 (46)

which then defines the new integral limits of equation (43).

Combining equations (14), (43) therefore gives the white noise describing function,
NAjo) = H(jw) (47)
min {0, (@;,1+w,))

N
+ [« Hgo ooy, - JO-0', ]) do'y - - - o,y
n=2 max {—iy,(®;;—0,)}

It is perhaps surprising, in view of the comprehensive excitation provided by a white
noise input, that (47) does not necessarily give the worst case describing function of
any input within the spectral amplitude 4, and bandwith ;. This is because the
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complex/vector integration of all points within the given sub-domain of constant output
frequency @, causes intra-kernel interference between all these components. Depending
on the exact form of H,(-) they may act constructively, but equally it is possible that
they may act destructively, with one intermodulation cancelling the effect of another.
The white noise response therefore does not necessarily give the worst case output,
and cannot guarantee that every nonlinear mode reaches the final output. However the

concept of a worst case describing function could be useful, and is further developed
below.

6. Worst Case Describing Functions

Although the describing function forms introduced above encompass a wide class of
inputs, any specific application requires a particular and well defined input. In many
cases however the precise form of the input is not known. Indeed it is for this reason
that the Volterra transfer functions are multi-dimensional in frequency so that any pos-
sible input combination may be accomodated. An alternative approach however might
be to sacrifice the detail of such descriptions for the clarity of the unidimensional
response, and introduce instead bounds of uncertainty to accomodate a range of possi-
ble inputs. Of course if an interesting feature were detected in this ’worst case n-th

order output’, then the analyst could examine it in more detail by reverting to the mul-
tidimensional form.

A suitable class of inputs to consider might be defined as falling within a frequency
bandwidth ®, and spectral amplitude range <A. The worst case output can then be
obtained in a manner similar to that already described for white noise, only in this case
every point is forced to act constructively by integrating only the modulus of the fre-
quency  response, and  assuming that all points are in  phase,
(48)

min {iwg,(0;+0)}

n
YOSt (o) = _AT

IH (o' jlo" '], - -+ Jlo,~, DI do'y - - - do’,_
QO e oo (0" [0 -’ SO~ 1 1

Thus the worst case input is similar to white noise in the sense that it excites every
point of the n-th order transfer function into the response, but it has the additional pro-
perty that its phase brings all these contributions in line so that they all act construc-
tively. The resulting output spectrum then has a magnitude bound given by equation
(48) and arbitrary phase.
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Combining equations (14), (48) therefore gives the worst case describing function,

N(Ajo)*™ = H(jo) (49)
N min {iey,(01+0,))
FT AT [ GO0, oDl ey - de
n=2 max (=i, (W;;—m,)}
Notice in this case that the linear response H;(*) is modified by the magnitude bounds
Y;(-), which have arbitrary phase. This lack of phase information also makes it
impossible to distinguish between gain compression or expansion, or between phase
advancement or retardation. Instead the worst case describing function gives circles of
uncertainty of radius AH(w),

AH(w) = % AH,(w) = i A" Vo) (50)
n=2 n=2
which are imposed on the linear response as shown in the phasor plot Figure 8.
Notice that the maximum phase uncertainty A¢(w), introduced by the nonlinearities,
depends on the magnitude of the linear response, since by simple trigonometry from
the figure,
AH(®)

Ad(w) = arctan[——-——

Thus the bounds of the worst case describing function are most easily expressed as,
IN(Ajo)*™ = |H,(jw)l £ AH(w) (52)
LN@Ajo)* ! = LH,(jw) £ Adp(w) (52)

Notice that the gain and phase uncertainties, AH(m),Ad(w), have the same amplitude
dependence as any describing function, i.e. doubling the input amplitude, for example,
doubles the second order uncertainty, quadruples that of the third order, and so on.
This effect may be depicted using gain or phase response curves similar to those of
Section 3, only in this case the curves themselves are replaced by bands of uncertainty
as shown in Figure 9. However the existance of a well defined input at all frequencies
within the specified bandwidth ensures that equation (49) is also well defined at all fre-
quencies of interest. Thus the gain and phase response plots, which relate amplitude
dependence at a constant input frequency, may be complemented by worst case Bode
or Nyquist plots across all the frequencies of the bandwidth, but at constant amplitude.
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6.1. Examples
Consider for example the continuous time nonlinear resonator given by,

d dy

izi + 2Ca)nz + 02y — w2u+ 0.01022 = 0 (53)
where as before w, =*100n/3, { = 0.2. The system is similar to that discussed in
Section 4.1.5, only in this case the nonlinearity is less severe in view of the greater
degree of excitation, - namely any input within the bandwith w, = 100, and specral

amplitude range A<0.8.

Consequently the first order transfer function of (53) is identical to that given in equa-
tion (40), and the second order response is simply half that obtained previously giving,
0.01w?

H?™(jo, jo,) =
2o, (o) + 200, (o +Hoy) + w2

(54)

The worst case second order output spectrum may now be found by integrating |H, (")
along sub-domains of constant output frequency according to equation (48), from
which the gain uncertainty (50) is obtained. Combining this result with the linear
response (40) also yields the phase uncertainty Ad(®), (51). These results are plotted
in the form of equation (52), with the linear response (dotted) surrounded by bands of
uncertainty AH(),A¢ shown as solid lines (see Figure 10).

The bands are quite wide and may in practice be overly pessimistic. Nevertheless they
do provide a useful overview of the system behaviour. For example the major uncer-
tainty in this case is at low frequencies, and the dominant resonance still occurs at the
linear resonant frequency.

Notice also that if more information were available concerning the system inputs, it
might be possible to contract the bands of uncertainty by restricting the class of inputs
considered. In the limit, where the input is known precisely, the bounds of uncertainty
should converge on the deterministic describing function for that given input.

7. Conclusions

A brief overview of the analysis and interpretation of n-dimensional Volterra transfer
functions has been given. Based on this understanding, relationships between the Vol-

terra form and the uni-dimensional describing function representation have been
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derived. These include specific algorithms for obtaining the general harmonic input
describing function, and examples of its application to commonly used inputs (e. g. sin-
gle sinusoid, sine + bias, two-tone and Fourier series) have been given. The same
approach has been used to obtain an expression for the white noise describing func-

tion. Finally the describing function concept has been extended by means of a
bounded worst-case transfer function.

When used in conjunction with recent algorithms for evaluating the Volterra transfer
functions of nonlinear difference and differential equations, these expressions offer a
useful means to obtain any number of specific describing functions from a single
model form. The results obtained thereby may prove useful in more accurate limit
cycle and stability analysis. In particular the worst-case describing function, though
pessimistic, may prove useful in stability analysis and control system design.
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Yi(jo,) = 29.6 107 £ -116°
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Fig 8 Worst case circles of uncertainty.
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Fig 9 Worst case gain/phase response curves.



(8'0=V) ddg ased 1s10p4 0] T4
(ss/pnd) bauay
00¢ 062 _oom .om_ 00l 0¢

1 ] 1 4.

001~

65~

asuodsay aspyd

(s/pody bauay
00€ 0G¢ 00¢ LDm_ 001 0§

1 1

asuodsay oapnylubbwy

061-

002-

asoygy

(Bapy

uio

(gp)



