The
University
o Of

= -n,‘-_“ u}:_.'!?- Bhe&i{“:ld.

This is a repository copy of A Parallel Recursive Prediction Error Algorithm for Training
Layered Neural Networks.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/78235/

Monograph:

Chen, S., Cowan, C.E.N., Billings, S.A. et al. (1 more author) (1989) A Parallel Recursive
Prediction Error Algorithm for Training Layered Neural Networks. Research Report. Acse
Report 373 . Dept of Automatic Control and System Engineering. University of Sheffield

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Pam @ &9 % (5)

o B B S

57 o

A PARALLEL RECURSIVE PREDICTION ERROR ALGORITHM FOR
TRAINING LAYERED NEURAL NETWORKS

S. Chent, C.F.N. Cowant, S.A. Billingsf and P.M. Grantt

tDepartment of Electrical Engineering
University of Edinburgh
Mayfield Road
Edinburgh EH9 3JL
Scotland

fDepartment of Control Engineering
University of Sheffield
Mappin street
Sheffield S1 3JD
England

October 1989

Research Report No 373

Abstract

A new recursive prediction error algorithm is derived for the training of feedforward
layered neural networks. The algorithm enables the weights in each neuron of the network
to be updated in an efficient parallel manner and has better convergence properties than
the classical back propagation algorithm. The relationship between this new parallel
algorithm and other existing learning algorithms is discussed. Examples taken from the
fields of communication channel equalisation and non-linear systems modelling are used to
demonstrate the superior performance of the new algorithm compared with the back

propagation routine.

1. Introduction

Multi-layer neural networks are usually trained to perform a particular task by the
back propagation algorithm (Rumelhart et al 1986) which is a simple version of the
smoothed stochastic gradient algorithm. This type of algorithm uses the negative gradient of
some chosen criterion as the search direction and, because the computation can be
distributed to each weight in the network, the algorithm is coherent with the massively
parallel nature of the network. It is well-known however that this type of algorithm suffers

from the drawback of slow convergence.

More recent work has produced improved learning strategies based on an extended
Kalman algorithm (Singhal and Wu 1989) and a recursive prediction error routine (Chen et
al 1989b). Although these two algorithms were each derived independently based on a
different approach they are actually equivalent. They both use the same search direction
called the Gauss-Newton direction, for which the negative gradient is multiplied by the
inverse of an approximate Hessian matrix of the given criterion. This is a more efficient
search direction than the steepest-descent approach of back propagation and it significantly
improves the convergence performance. It does however also increase the computational
complexity and the weight updating requires a centralized computing facility with the effect

that the parallel structure of the network is not exploited.

It is known from non-linear optimisation theory that the inverse Hessian is not the
only matrix which can be used to modify the negative gradient. This result is exploited in
the present study, where a near-diagonal matrix is carefully chosen to modify the negative
gradient direction. The advantage of this approach is that the updating of this matrix can

be decomposed such that the computation can be distributed to each neuron in the

M

.y

network. This results in a new parallel recursive prediction error algorithm which utilizes
the parallel computing potential of the network and which also cuts the computational
requirement to a small proportion of that needed by the conventional recursive prediction
error algorithm or the extended Kalman algorithm. Whilst the idea used in the derivation
of this learning algorithm is similar to that employed by Kollias and Anastassiou (1989) the
parallel algorithm introduced in the present study is quite different because it is a truly
recursive algorithm. The training of neural networks as adaptive channel equalisers and the
recursive identification of non-linear systems based on a neural network model are used as
examples to compare the convergence performance of the new learning algorithm with the

back propagation routine.

2. Layered neural networks

The neural networks considered in this paper are feedforward type networks with one
or more hidden layers between the inputs and outputs. Each layer consists of some
computing units known as neurons. Fig.1 shows the structure of a multi-lJayer neural
network. Inputs to the network are passed to each neuron in the first layer. The outputs of
the first layer neurons then become inputs to the second layer, and so on. The outputs of
the network are therefore the outputs of the neurons lying in the final layer. Usually all the
neurons in a layer are fully connected to the neurons in adjacent layers but there is no
connection between neurons within a layer and no connection bridging layers. The input-
output relationship of each neuron is determined by connection weights w;, a threshold
parameter W and the neural activation function a (.) such that

y=a(Twix+p) (1)
where x; are the neural inputs and y is the neural output. Two typical examples of neural

activation function are

l—exp(—y)

a(y)=tanh(y/2)= i aml—y) (2)
and
a(y)= N S (3)
7T Trep (—y)

Assume that all the weights and thresholds of the network are ordered in an ng-

dimensional vector

©=[6,-6,,)" @
The overall input-output relationship of an m-input r-output network can be described by

the following non-linear relationship

¥(1,0)=f(v(1);0) (5)
where y(r,0) is the r-dimensional network output vector, v(r) is the m -dimensional
network input vector and f (.) is a vector valued non-linear function. Training a multi-layer
neural network to perform a given task involves supplying the network with an input
sequence {v(r)} and determining © so that the network output sequence {i(r,0)}
approximates a desired sequence {d(r)}. In the terminology of system identification, the

discrepancy between d(r) and y (1 ,0)

€(1,0)=d(1)-7(1,0) (6)
is called the prediction error. The gradient of ¥ (7 ,0) with respect to © is the ngXr matrix
T
dy (1,0
V(r,0)= —Ld%l =g (v(1);0) (7)

which plays an important role in determining ©®. The combination of (5) and (7)

5(.0)] f(v(r>;@)1| "
V(1,07 [g((1):0) | (8)

will be referred to as the extended network model. When © is partitioned in the form of

(4), ¥(r,0) can accordingly be written as
lbl(t !G))
V(r,0)= . %)

Un o(1,©)

where U, (1,0), an 1xr row vector, is the gradient of ¥(r,0) with respect to 8, and

i=1,...,ne.

For notational convenience, a different partition of ® and ¥(r,0) is also introduced.
Assume that neurons in the network are numbered from 1 to p and the weights and

threshold of the i-th neuron are arranged in an n g -dimensional vector O, i =1,...,p. © and

¥ (r,0) can then be represented as

(@, | v,(1,0)]
0= , ¥(1,0)= (10)
_@;, | -‘P,, (,(9)J
where ¥,(7,0), an ng Xr matrix, is the gradient of y(r,0) with respect to @, and

L Sl s

3. Batch prediction error algorithms

A good measure of the closeness between d(r) and y(r,0) is the quadratic form of
€(7,0). Assume that a block of data {v(r),d(r)}, is available. The best ® may then be

selected by minimising the loss function

J (@)= *——EGT(E ,0)e(1,0) (11)
Such a method of obtamlng a desired © is known as the prediction error estimation method
in systems identification (Goodwin and Payne 1977, Ljung and Sbtderstrdbm 1983).
Minimisation of (11) is usually achieved iteratively according to

QW)= @k D4 o 5 (OK-D) (12)
where the superscript (k) denotes the iteration step in the minimisation procedure,
E(O%-1) is a search direction based on information about J(®) acquired at a previous
iteration, and o is a positive constant which is appropriately chosen to guarantee

convergence of the iterative procedure.

3.1. Steepest-descent algorithm

The simplest search direction =(0) is the negative gradient of the criterion (11) with

respect to @, that is

E(0)= -VJ(0)= ;,—éqf(r O)e(r,0) (13)
This algorithm, often called the steepest-descent algorithm, is known to converge at least to
a local minimum of the loss function (11) but will normally exhibit a fairly slow
convergence rate. For a multi-layer neural network, however, choosing such a gradient
direction has an advantage. The algorithm can be integrated into the parallel structure of
the network by decomposing the vector equation (12) into ng scalar equations

0)=0¢ Dt ok, (OFD) i=1,.. ng (14)
with

£,(0)= ;,—)i.y.(; Bl B et (15)

3.2. Gauss-Newton algorithm

To improve the efficiency of the minimisation procedure, a common strategy is to

modify the negative gradient direction with some positive definite ngXng matrix M (@) and

this gives rise to a general search direction

E(0)=M (0)(-VJ(0)) (16)
Different choices of M (®) will result in algorithms with different convergence rates. A very
efficient algorithm called the Gauss-Newton algorithm is obtained by choosing M (@) as the

inverse of the approximate Hessian of (11), that is

M(©)=H(@) (17)
where
H(@)= i,—éw: OV (1,0) (18)

In case H (©) is near singular, (18) can be modified to

H(Q)= Ii,—é‘lf(r OWT (1,0)+pl p>0 (19)

for some small value of p, where / is the identity matrix with appropriate dimension. The
Gauss-Newton procedure, although very powerful, requires much more computation and

can only be implemented with a centralized structure when applied to neural networks.

3.3. Parallel prediction error algorithm

If however M ~}(@) is chosen to be the following near-diagonal matrix hT(@)

¥, (1 ,0)¥(1,0) 0 . 0
0 V,(1,0)V(1,0)
()= ,{,—z | | o | (20)
0
0 : S0 Y, (1,0 (1,0)

the search direction =(@) can be decomposed into p smaller vectors

E,(0)=] ;—iéll]f, (1,0)¥]7(:,0)]? ;,—él\lf,.(r @e(r1,0) i=1,....p (21)
The minimisation algorithm (12) can thus be decomposed into p sub-algorithms

W=k N+aE (%) i=1,...p (22)
and each of these sub-algorithms corresponds to a neuron in the network. p/ may also be
added to H (®) to guarantee the positive definiteness without affecting the decomposition.
The choice (20) forms a basis for the derivation of a new parallel recursive prediction error
algorithm. H (®) can be regarded as a simplified form of H(®) where all the blocks
V,(1,0)¥7(1,0) i#j in H(O) are substituted with zero blocks. The steepest-descent

algorithm represents the extreme case where H (O) is simply replaced by the identity matrix.

4. Recursive prediction error algorithms

Recursive approximations of the prediction error method have been systematically
studied (Ljung and Stderstrbm 1983, Chen et al 1989a) and these results can be utilized
here. Denote ©(z) as the estimate of © at r, introduce a time-varying version of the

extended network model (8)

y(r) ()08 -1))
V() |~ LJ (v (1):0(s —1))] (23)
and define
€(1)=d (1) =5 (1) (24)

4.1. Conventional recursive prediction error algorithm

The conventional recursive prediction error algorithm can be summarized as follows

(Chen et al 1989a)

A(1)=Ym At =1)+y, V(1)e(r) (25)
P(1)= i—{P (1 =1)=P (t —1)¥ ()N +¥T(1)P (1 =1)¥ ()] W7 (1)P (1 =1)} (26)
O(1)=0(r =1)+P (1)A(r) (27)

where v, and v, are the adaptive gain and momentum parameter respectively, and X\ is the
usual forgetting factor. A(r), an ng-dimensional vector, can be viewed as a recursive form
of the negative gradient —VJ(®) and is often called the smoothed stochastic gradient. If the
momentum parameter vy, =0, it reduces to a stochastic gradient. P (1), an ngX ng matrix, is
a recursive approximation of the inverse Hessian H 7)(®). The algorithm (25) to (27) can

thus be regarded as a recursive Gauss-Newton algorithm.

P (1) determines the asymptotical accuracy of the estimate and, therefore, is referred
to as the covariance matrix (of estimate). In adaptive applications, 0<A<1. If the
covariance matrix P (¢r) is implemented in its basic form as shown in (26), a phenomenon
known as "covariance wind-up"” may occur under certain circumstances. That is P (1) may
become explosive. Many numerical measures have been developed to overcome this

problem (Salgado et al 1988). A technique called constant trace adjustment is give here

P(1)=P (@ =1)=P (t —1)¥(1)[N +¥T ()P (1 =1)¥ ()] ¥ (1)P (i —1)]

Ky o i (28)
P(1)= mP(r), K>0 j

This will set an upper bound for the eigenvalues of P (1) matrix.

5w

It has been demonstrated (Chen et al 1989b), in the context of adaptive channel
equalisation using neural networks, that this recursive prediction error algorithm achieves
far better convergence performance and is less sensitive to the initial values of network
weights compared with the back propagation algorithm. The main drawbacks of the
algorithm are that it can only be implemented in a centralized structure and the

computational complexity of the algorithm may be a limitation in certain applications.

4.2. Back propagation algorithm

The widely used back propagation algorithm is represented by

A(I)='Y,"A(I _1)+‘Yg‘1r(!)E(f)]

O(1)=6(-1)+A(r) J (29)
or in the decomposed form

81‘ (!)=‘an 61‘(’ _1)+'Yg ‘-l-'i(r)E(!)] .

6,(1) =, (t =)+, (1) [#=lrene o

The algorithm is clearly a recursive approximation of the steepest-descent algorithm. It can
also be obtained from the recurisve Gauss-Newton algorithm by replacing P (r) in (27) with
the identity matrix. The main strength of the algorithm lies in its computational simplicity
and parallel structure. Slow convergence behaviour, on the other hand, is a well-known

disadvantage of the algorithm.

4.3. Parallel recursive prediction error algorithm

Using the same procedure for deriving the conventional recursive prediction error
algorithm, it is straightforward to obtain the following recursive approximation of the batch
algorithm (21) and (22)

A;(t)=v...6,-(f—1)+73‘1’.-(f)6(f)1 -
= 3 ’p

6.()=6,(-D)+P,OAG) [T G1)
where A;(r) and P;(r) are the ng-dimensional smoothed stochastic gradient and the

ne Xne covariance matrix for the i-th neuron respectively. The formula for updating each

P,(1) is identical to that used for P(r). The technique of constant trace adjustment, for

example, will give

_)
P, (1)=P(t =1)-P;(1 “1)¥, ()M +WT()P; (t =1V, (1) T(1)P; (1 -1) |

K, _ ti=1,....p (32)
)= trace [P;(1)] Pit), Ko>0)

This algorithm may be viewed as simply applying the conventional recursive prediction

Pt

=

error algorithm to each neuron in the network. It is obvious that the number of the

elements in P (r) and the number of all the elements in P;(z) i =1,...,p satisfy

(neV'=(Sne)?>> 3 (6’ (33)
i=1 i=1

The computational requirement of this new recursive algorithm is therefore only a small
proportion of that needed for the conventional recursive prediction error algorithm. The
main attraction of the new algorithm is that it can naturally be integrated into the parallel
structure of the network and, like the back propagation algorithm, it performs two sweeps
through the network at each recursion in an efficient parallel manner. The input signals are
propagated forward on the first sweep and, as the signals pass through a layer in the
network all the neurons in that layer compute their own outputs simultaneously. The error
signal €(r) obtained at the top of the network is then propagated down the network on the
second sweep. As this signal, accompanied by the gradient information, propagates back

through a layer all the neurons in that layer again update their own weights simultaneously.

This parallel learning algorithm is of course computationally more complex than the
back propagation algorithm. It is likely however that the former will be more efficient in
terms of convergence rate than the latter. This aspect is illustrated using examples taken

from two different adaptive applications.

5. Communication channel equalisation

Consider the digital communications system depicted in Fig.2. A binary sequence
x (1) is transmitted through a linear dispersive channel modelled as a finite impulse response

filter whose transfer function is given by

C,(z)= iﬁc,-z"' (34)
The channel output 6 (r) is corrupted by an additive Gaussian white noise e(r). The task
of the equaliser at the sampling instant ¢ is to reconstruct the input symbol x (r —d) using
the information contained in the channel output observations o(r),...,0 (r —m +1), where
m 1is known as the order of equaliser and 4 =0 is a delay parameter. x(r) is assumed to be

an independent sequence taking values of either 1 or —1 with an equal probability.

The need for equalisers arises due to the fact that the channel introduces intersymbol
interference and noise. An equaliser tries to remove these undesired channel effects on the
transmitted signal. In this sense, channel equalisation may be regarded as a form of inverse

modelling. Traditionally, communication channel equalisation is based on linear finite filter

- 10 -

techniques. The problem is however an inherently non-linear one (Gibson et al 1989) and

non-linear structures are required in order to achieve fully or near optimal performance.

It can be shown that the minimum bit-error-rate equaliser is defined as follows

(Gibson et al 1989)

£(r—d)=sgn(fa (v(1))) (35)
where
v(it)=[o(t) ot —m+1)]" ‘ (36)
is the channel observation vector, and
1 y =0
sen()=1_1 "y <0 (37)

represents a slicer. f,, (.) is known as the decision function and it partitions the input space
R™ into two sets, one corresponding to the decision £(r—d)=1 and the other
X(r—d)=—1. The boundary that separates these two sets in the input space is called the
decision boundary and is often highly non-linear. Channel transfer function C,(z) and
channel noise distribution function together with equaliser order m and delay d completely

specify the optimal decision function f,, (.).

Because f, (.) for a communications channel is generally not available and can be
time-varying, a means of adaptively approximating this function or generating the
corresponding decision boundary is essential to realize the optimal equaliser solution. The
multi-layer neural network offers an ideal solution and it is known that a three-layer (two
hidden layers and one output layer) neural network with sufficient neurons can generate an
arbitrarily complex decision boundary (Lippmann 1987). The architecture of a three-layer
neural network equaliser will be described as m —n;—n,—1, where m is the dimension of
the input space, n; and n, are the numbers of neurons in the respective hidden layers, and
the last number indicates that the output dimension is one and the output layer consists of a
single neuron. The aim of a neural netwok equaliser is to use the input-output function
¥(1,0)=f (v(1);®) to realize the optimal decision function f, (v(r)). The activation
function for each neuron in the equaliser is given in (2). During the training, the error

signal is defined as

e(1)=x (1 ~d)~f (v(1);0(1)) (38)

<Y

In the following simulation study, initial network weights were set randomly to values
between —0.5 to 0.5. The mean square error at the sampling instant r; was defined as
27 (0(r,)), that is, the variance of e(r,0(r;)) achieved for an N points of data sequence
when the equaliser’s parameter vector is fixed to @(z,). The bit error rate at t, was defined
as the ratio of the number of the error decisions obtained with the equaliser’s parameter

vector fixed to @(z,) and the transmitted data length.

Example 5.1. Channel transfer function C,(z)=1+40.5:"? and additive Gaussian white

noise variance 0.2; equaliser structure 2—9—5—1 (ng=83) with zero-lag d =0.
Parameters in the two training algorithms were set to
back propagation algorithm: y, =0.01, v, =0.8.

parallel recursive prediction error algorithm: vy, =0.01, v, =0.8, A=0.99, kK;=40.0,
P;(0)=100.01 for all ;.

Evolutions of the mean square error and bit error rate using the two learning algorithms

are shown in Fig.3.

Example 5.2. Channel transfer function C,(z)=0.348240.8704z "'+ 0.3482z 2 and additive
Gaussian white noise variance 0.01; equaliser structure 3—9—-3—1 (ng=70) with one-lag
d=1.
Parameters in the two training algorithms were identical to those for Example 5.1 and
evolutions of the mean square error and bit error rate using the two learning algorithms arc
given in Fig.4.

The superior convergence performance of the new parallel recursive prediction error

algorithm is apparent in the results for both examples.

6. Non-linear systems modelling

It is known that a wide class of discrete-time non-linear systems can be represented by
the NARMAX (Non-linear AutoRegressive Moving Average with eXogenous inputs)
model (Leontaritis and Billings 1985, Chen and Billings 1989). The NARMAX provides a
description of the system in terms of some non-linear functional expansion of lagged inputs,
outputs and prediction errors, and it is valid for multi-input multi-output systems. Here a
simplified version of the single-input single-output NARMAX system is considered

y()=f,((=1),....y(¢ —n,) u(r=1),....u(t—n,))+e(1) (39)

where n, and n, are the maximum lags in the system output and input respectively, e (1) is

i PR

a zero mean independent system noise sequence, and f,(.) is some non-linear function.

A schematic diagram representing the non-linear system (39) is illustrated in Fig.5.
Using a neural network to model the non-linear system (39) has been investigated by Chen
et al (1989a). The underlying idea is to use the neural network model y (1,0)=f (v (z);0)
as the one-step-ahead predictor for y (1), where

v()=b=1) -y =n)u(=1)u-n)]" (40)

The prediction error is accordingly given as

€(1,0)=y(1)-y(1,0) (41)
We will only consider a neural network model that consists of one hidden layer with n,
neurons and a single output neuron (because the output dimension is one). The activation
function for each neuron in the hidden layer is specified by (3). The activation function for
the output neuron is chosen to be linear and no threshold parameter is intoduced in the
output neuron. In the following simulation study, initial network weights were set

randomly to values between —0.3 to 0.3.

Example 6.1. This is a simulated time series process. The series was generated by

¥ (1)=(0.8=0.5exp (—y(r —1)))y (1 —=1) —(0.34+0.9exp (—y2(r =1)))y (t =2) + e (1)
where e (1) was a Gaussian white sequence with mean zero and variance 0.1. The structure

of the model is given by m =n,=2 and n, =5 (ng=20).
Parameters in the two recursive identification algorithms were chosen to be
back propagation algorithm: vy, =0.01, v, =0.8.

parallel recursive prediction error algorithm: y,=1.0, v,=0.0, A=0.99, K,=5.0,
P, (0)=1000.07 for all ;.

Evolutions of the mean square error obtained using the two algorithms are plotted in Fig.6.

Example 6.2. The data was generated from a non-linear liquid level system, and is shown
in Fig.7. The neural network model was chosen to be m=n,+n,=3+3 and n,=5
(ng=40).

Parameters in the two recursive algorithms were set to the same values as those for Example
5.1 with the exception of Ky=60.0. Evolutions of the mean square error obtained in the

recursive procedure are shown in Fig.8.

-13 -

7. Conclusions

Neural network learning strategies based on the prediction error estimation principle

have been investigated and a new parallel recursive prediction error algorithm has been

derived. The new training algorithm can be implemented in an efficient parallel structure

and is more powerful than the classical back propagation algorithm. Better convergence

performance of this new learning algorithm over the back propagation algorithm has been

demonstrated using examples of adaptive channel equalisation and recursive non-linear

systems identification.

Acknowledgments

This work was supported by the U.K. Science and Engineering Research Council.

References

[1] Chen, S., and S.A. Billings (1989). Representation of non-linear systems: the
NARMAX model. [Inz. J. Control, Vol.49, No.3, pp.1013-1032.

[2] Chen, S., S.A. Billings, and P.M. Grant (1989a). Non-linear systems identification
using neural networks. Inr. J. Conrtrol, (to appear).

[3] Chen, S., G.J. Gibson, C.F.N. Cowan, and P.M. Grant (1989b). Recursive
prediction error algorithm for training multilayer perceptrons. Proc. of IEEE
Colloquium on Adaptive Algorithms for Signal Estimation and Control, Edinburgh,
Scotland, September 13, 1989.

[4] Gibson, G.J., S. Siu, and C.F.N. Cowan (1989). Application of multilayer
perceptrons as adaptive channel equalisers. Proc. of IEEE Int. Conf. on Acoustics,
Speech, and Signal Processing, Glasgow, Scotland, May 23-26, 1989, pp.1183-1186.

[5] Goodwin, G.C., and R.L. Payne (1977). Dynamic System Identification: Experiment
Design and Data Analysis. Academic Press, New York.

[6] Kollias, S., and D. Anastassiou (1989). An adaptive least squares algorithm for the
efficient training of artificial neural networks. [EEE Trans. on Circuits ans Systems,
Vol.36, No.8, pp.1092-1101.

[7] Leontaritis, 1.J., and S.A. Billings (1985). Input-output parametric models for non-

linear systems, Part I: deterministic non-linear systems; Part II: stochastic non-linear

systems. [n1. J. Control, Vol.41, No.2, pp.303-344.

[10]

[12]

-14 -

Lippmann, R.P. (1987). An introduction to computing with neural nets. IEEE ASSP
Magazine, Vol.4.

Ljung, L., and T. Sbderstrbm (1983). Theory and Practice of Recursive ldentification.
MIP Press, Cambridge.

Rumelhart, D.E., G.E. Hinton, and R.J. Williams (1986). Learning internal
representations by error propagation. In: Rumelhart, D.E., and J.L. McClelland
(eds.), Parallel Distributed Processing: Explorations in the Microstructure of Cognition,

MIP Press, pp.318-362.
Salgado, M.E., G.C. Goodwin, and R.H. Middleton (1988). Modified least squares

algorithm incorporating exponential resetting and forgetting. Inr. J. Conrrol, Vol.47,

No.2, pp.477-491.

Singhal, S., and L. Wu (1989). Training feed-forward networks with the extended
Kalman algorithm. Proc. of IEEE Int. Conf. on Acoustics, Speech, and Signal
Processing, Glasgow, Scotland, May 23-26, 1989, pp.1187-1190.

- 15 -

Fig.1. Multi-layer neural network

network outputs

output layer

7 N

hidden layer

g

hidden layer

JEEN
N\

network inputs

x(1)

- 16 -

Fig.2. Schematic of data transmission system

channel

e(r)
6(r) :
+ g g
o(t)| o(r-1) o(t-m+1)
r
equaliser

j i(r—d)

mcan squarc error

bit error rate

(a) back

0.5

= 1

Fig.3. Evolution of mean square error and bil error rate (Example 5.1)

propagation algorithm, (b) parallel recursive prediction error algorithm.

-

(a

mean square error

bit crror rate

-18 -

Fig.4. Evolution of mean square error and bit error rate (Example 5.2)

(a) back propagation algorithm, (b) parallel recursive prediction error algorithm.

0.5

-

(a)

600

1)

600

-19 -

Fig.5. Non-linear systems modelling

u(r)
I 7 i ;-
y(-1 y(1—=n,) r u(r—1) u(t=n,)
Y
Model
y()
e(?)

mean squarc error

- 20 -

Fig.6. Evolution of mean square error (Example 6.1)

(a) back propagation algorithm, (b) parallel recursive prediction error algorithm.

0.76

0.65

0.4

0-43

0.2

0.2

0.10

(b)

(a)

" MJ‘W

i
-

s Y =

Fig.7. Inputs and outputs of Example 6.2

system input

L% -
LR 4 #
]
~8.45 ui
-6.% + + — I
4 2 5% = 1009
S}'STGI‘H OUI’]DU[
0.78 -
-0.58 !
|
.83 +
=2 4 + + — 1

mean squarc crror

-2 -

Fig.8. Evolution of mean square error (Example 6.2)

(a) back propagation algorithm, (b) parallel recursive prediction error algorithm.

0.80

0.680

0.40

0.20

a)

100

c00

-t

300

700

800

800

1000

