The
University
o Of

= -n,‘-_“ u}:_.'!?- Bhe&i{“:ld.

This is a repository copy of Self-Tuning Control of Nonlinear Armax Models.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/78234/

Monograph:

Sales, K.R. and Billings, S.A. (1989) Self-Tuning Control of Nonlinear Armax Models.
Research Report. Acse Report 362 . Dept of Automatic Control and System Engineering.
University of Sheffield

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

@ KR9-%(S)

Self-Tuning Control of

Nonlinear Armax Models

by
K R Sales”
. y +
S A Billings+
+ Unilever Research, Port Sunlight Laboratory

Quarry Road Fast, Bebington, Wirral
Merseyside, UK

++

Department of Control Engineering,
University of Sheffield,
Sheffield, UK

Research Report 362

May 1989



SELF-TUNING CONTROL OF NONLINEAR ARMAX MODELS
K. R. SALESt and S. A. BILLINGS%

A control weighted self-tuning minimum-variance controller with a nonlinear
difference equation structure is described. An extended recursive
least-squares estimation algorithm is employed to provide the adaptiveness.
Performance analysis of the controller is discussed in terms of a cumulative
loss function and high-order correlation functions of the system input, output
and residual sequences. Simulation results from an experiment using a model
identified from real a system are also provided.

1. Introduction

The need for self-tuning control essentially arises from the desire to
control processes whose parameters are either unknown or slowly time-varying.
The self-tuner has three main elements (Clarke 1980). There is a standard
feedback law, given as a difference equation, which acts upon a set of measured
values, (system output, set-point, control input, noise estimates), and which
generates a new control input signal. An on-line recursive estimator monitors
these values and calculates a set of parameter estimates for a prescribed
structural model of the plant. The parameter estimates are then fed into a
control design algorithm Wh.lCh computes the parameters of the feedback control
law. Self-tuning control ,(was ongmally developed by Astrom and Wittenmark
(ﬁstrom and Wittenmark 1973); later extended to the Generalised
Minimum-Variance Self-Tuning Con&oller of Clarke and Gawthrop (Clarke, Cope and
Gawthrop 1975, Clarke and Gawthrop 1975), has now become very popular and widely
applied in the process industries (Harris and Billings 1985).

In recent years several nonlinear self-tuners have been described. These
have though been based on the Hammerstein (Anbumani, Patnaik and Sarma 1981;
Anbumani, Sarma and Patnaik 1981, Grimble 1982, 1983; Keviczky and Haber 1974;
Keviczky and Vajk 1978; Keviczky, Vajk and Hethéssy 1979; Korpela and Koivo
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1982) and bilinear (Dochain and Bastin 1984; Goodwin, Mclnnes and Long 1982;
Goodwin and Sin 1984; Svoronos, Stephanopoulos and Aris 1981 ) models. The
failings of these lie in the specific nature of the Hammerstein and bilinear
models. The Hammerstein model restricts the process to being modelled by a
static input nonlinearity followed by a dynamic linear element. Although some
of this work could be extended, quite trivially, for use with the general
cascade model (Billings and Fakhouri 1982) it would still only be applicable to
systems that could be characterized as seperate blocks of the form described.
The Hammerstein model may occur naturally where a nonlinear actuator is used to
control a linear process, though this has successfully been overcome in the past
by putting a linearizing controller around the actuator. Anbumani, Patnaik and
Sarma (Anbumani, Patnaik and Sarma 1981; Anbumani, Sarma and Patnaik 1981)
successfully applied a minimum-variance self-tuner to a variety of Hammerstein
models and used simulations to demonstrate the practicality of their method.
However, they erroneously concluded that control weighting could not be applied
to nonlinear minimum-variance self-tuning controllers, by attempting to weight a
linear function of the contol input. This was overcome by Grimble (Grimble
1962, 1983), who applied control weighting to a nonlinear function of the
control input. Korpela and Koivo (Korpela and Koivo 1982) put a linear
controller around a Hammerstein model by assuming that the internal state
variable between the static input nonlinearity and the dynamic linear element
could be calculated from the known or estimated nonlinear term. Keviczky and
co-workers (Keviczky and Haber 1974; Keviczky and Vajk 1978; Keviczky, Vajk and
Hethéssy 1979) considered minimum-variance extremum control of the Generalized
Hammerstein model. The aim, in this instance, is to drive some physical
variable to its extremum (minimum or maximum). However, well tuned stochastic
minimum-variance controllers suffer from bias from the extremum and increased
process output variance compared with’(li{::;éea‘.r case (Haber, Keviczky and Unbehauen
1987).

Minimum-variance self-tuning regulation of a bilinear model was first
reported by Svoronos, Stephanopoulos and Aris (Svoronos, Stephanopoulos and Aris
1981), who used simulation experiments to demonstrate the effectiveness of their
work. Goodwin, McInnes and Long (Goodwin, McInnes and Long 1982; Goodwin and
Sin 1984) described bilinear minimum-variance controllers for the control of
waste water treatment and pH neutralization and showed the superiority of their
methods (over linear minimum-variance and PID controllers) with practical
applications.



This paper introduces a minimum-variance self-tuning algorithm based on the
recently reported NARMAX model (Billings and Leontaritis 1981 ; Leontaritis and
Billings 1985) and has a more general appeal than the work reviewed above. The
relationship between the various model structures is discussed and their
advantages and disadvantages outlined. Several practical problems are addressed
and the superiority of the methodolgy over linear self-tuners is clearly
demonstrated using a simulation experiment on a model identified from a
practical process. The problems of model validation and performance analysis
are reviewed using cumulative loss functions and correlation functions of the
system input, output and residuals specifically developed for detection of bias
In estimation algorithms structured to find the parameters of nonlinear models.

2. Nonlinear models - An overview

There have now been several mathematical model types proposed which have
been applied with varying degrees of success to the identification and control
of systems. One initial division which is traditionally made is into linear and
nonlinear models, though linear models are merely a subset of the nonlinear ones
with the degree of nonlinearity equal to unity. Another possible divsion is:

(i) Functional Series models (eg. Volterra series, Wiener series),
(i) Difference Equation models (eg. Bilinear, NARMAX, Generalized
Hammerstein),
(ili) Specialized Structure models (eg. block orientated models
(Hammerstein, Wiener, General Cascade model)).
It is quite often possible to represent particular nonlinear structures in more
than one of these divisions.

The functional series models have the advantage that explicit knowledge of
the model order and dead time is not necessary but this is far outweighed by the
fact that several hundred parameters would have to be estimated for a Volterra
series model and possibly many times more for even low degrees of nonlinearity
in the case of the Wiener series model. The resultant computational burden is
heavy, especially as the probability of being able to define realistic
parametric models from the results is low and prior knowledge of the system is
not easily incorporated into that model. This is further exacerbated by the
fact that some simple and common nonlinearites (deadzone, saturation, etc.) lead
to complex kernals.



A common occurance with nonlinear systems is to have linear dynamic and
nonlinear static elements connected in cascade. The general cascade
block-orientated model (Billings 1980; Billings and Fakhouri 1982) allows for
the two block types to be cascaded in any sequence as long as the model is
representative of the system. Two commonly considered forms are the
Hammerstein (consisting of a static nonlinear element followed by a linear
dynamic element and Wiener (consisting of a dynamic linear element followed by
a static nonlinearity) models.

Difference equation models are by far the most important class of model,
for both linear and nonlinear systems, since they are the most widely
implemented. This has arisen for several reasons:
(1) they arise naturally from the physical laws of the system,
(i) they have relatively few parameters and are numerically
easy to handle,
(iii) the model can be used to represent a broad class of nonlinear-
ities using a manageable set of terms,
(v) the coefficients of the model can be estimated using
established parameter estimation algorithms, which are not dependent
on specialized input signals,
(v) the model is in a form that may be readily used for
implementation on a digital computer, especially relevant for control
purposes.

The linear difference equation form appears as:

Az Dz(t) = B(zDu(t-k) + C(z De(t) (1)
where z(t) is the system output, u(t) a controllable input signal, e(t) a

zero-mean Gaussian noise sequence, A(zD, B(z'!) and C@zh polynomials in the
in the backward shift operator, 2! and k the system delay.

In the last twenty years or so the bilinear model has received a great deal

of attention (Brockett 1972; Bruni, Di Pillo and Koch 1974; Mohler 1973) for
the reasons given above. In difference equation notation it takes the form:

ANz = {BE) + Y [SizNa(t-k)]zi Jutk) + Czle) )
=0



where Sy(z'!) is a parameter polynomial and otherwise the notation is as above.

A non-seperable form of the Hammerstein model, the Generalized Hammerstein
model has been studied by Béyénz, Haber and Keviczky (Bdydnz, Haber and
Keviczky 1973) and is given by the equation:

Az Nz(t) = ByzHu(tk) + Byzud(tk) + ..
.+ Bu(tk) + C(zDe(t) 3)

Sontag (Sontag 1976, 1979) has dealt in considerable detail with the
realization of polynomial response functions. Finite realization implies that
the function is a rational difference equation of the form:

Ady(t-1) ..., yt-pliu(®) ..., ut-p)ly(t) = Bely(t-1) ...
- YEP)ut) ..., u(t-p)l “)

where A; and B; are polynomials of finite degree. If the response function is
bounded and finitely realizable then a special form of it occurs, the
output-affine difference equation which is given by:

P
AR .., WEDYED) = Ayyy®) ey u(t-p)] (5)

=0

where the A; are polynomials.

This may also be represented as a finite Volterra series (Leontaritis and
Billings 1985).

The output-affine model has a more general appeal than the above models and
is globally valid, but its main drawback is that it is not linear-in-
the-parameters, and hence does not lend itself to simple recursive estimation
procedures (Chen and Billings 1987). The state space representation of the
output-affine model, has successfully been used in the identification of
Electrical Power Plants (Cyrot-Normand and Dang van Mien 1980; Dang van Mien and
Cyrot-Normand 1984), by patching together a series of linear signal dependent
state space models. Both a prediction error estimation algorithm and a
recursive maximum liklihood estimator have beeen derived for the output affine



model (Chen and Billings 1988a, 1988b).

This paper is particularly concemed with control using a new nonlinear
structure, the NARMAX model (Billings and Leontaritis 1981, 1982; Billings and
Voon 1983; Chen and Billings 1989). Leontaritis and Billings (Leontaritis and
Billings 1985) have shown that a suitable representation for a broad class of
nonlinear systems is given by:

y(t) = Fly(t-1) ..., y(t-ny);u(t—k) sy U(t-k-n +1)] (6)
where y(t) is the system noise-free output, n, and n, the orders of u(t) and
y(t) respectively and F[+] some nonlinear function of u(i) and y@). The
Hammerstein, Wiener, bilinear and several other well-known nonlinear structures

can be shown to be special cases of the NARMAX model (Billings and Leontaritis
1981, 1982).

Expanding F[-] as a polynomial function and defining
Vi = YD s V, = yiny),
Vo1 = 0(tk) .., Vg o = ut-ken,+1)

then

Y(t) L F[V],,VZ 9eeey Vny-g.nu] (7)

and the polynomial expansion is:

n, n, n n, o n
Y(t) = ZGI'VE + Z ZGUVIVJ + o -+ 2 E .
i=1 =l el i=] j=1
o 2 285 s VNV s V2V, (8)

m=1] n=]

where n; = n, + n,

In the identification of linear systems it is assumed that any internal
noise can be translated to an output noise source. This does not hold for
nonlinear systems and even output additive noise produces multiplicative terms.
In order to introduce noise to the model assume that the output is corrupted by



a zero-mean sequence, e(t), such that:

zZ(t) = y(t) + e(t) )

Substituting equation (9) into equation (8) and rewriting in the form of
equation (6) gives:

2(t) = Filz(t-1) ..., z(tny)u(tk) ,..., utk-n+1)e(t-1) .
. e(t-n.y)J + e(t) (10)
where [/ is the degree of nonlinearity.

As the superposition principle does not apply to nonlinear systems the
internal noise cannot be translated to be additive at the output. Hence, a
more realistic formulation is:

z(t) = Fz(t-1) ,.., z(t-ny);u(tk) .., u(t-k-n+1)e(t).e(t-1) ,.
s e(tny)] (11)

In practice, however, equation (10) can be used to represent a wide class
of nonlinear systems.

The applicability of the block-orientated and bilinear models is more
limited than that of the output-affine and NARMAX models, because of the greater
generality of the latter two. One additional failing of the bilinear model is
that although bilinearity often occurs naturally in continuous time (Mohler
1973), upon discretization the model becomes output-affine or NARMAX (Fleiss and
Cyrot-Normand 1982; Fraiech and Ljung 1987; Chen and Billings 1989). A first
order approximation will yield a discrete bilinear model (Goodwin, Mclnnes and
Long 1982), but this may introduce serious approximations. Because the NARMAX
model is linear-in-the-parameters, it lends itself easily to the well
established and easily implementable recursive estimation methods and hence
provides a natural basis upon which to develop nonlinear self-tuning
controllers.



3. A control algorithm for the NARMAX model.
From equation (10), the NARMAX model is defined as:

2(t) = Flz(t-1) .., z(t-n,)u(tk) ..., ultk-n+1)e(t-1) ,.

- e(t-ng)] + e(t) (12)

Fll=,(t)]

where n, and n, are the orders of z(t) and e(t) respectively, and are
introduced for convenience in practical applications.

The basic minimum-variance controllers are designed to satisfy the
criterion (Keviczky, Vajk and Hethéssy 1979):

Jo(tk) = E[(z(t+k) - w(t))’] (13)

where z(t) is the system output, w(t) the demand input and E[] the expectation
operator.

This criterion minimises the variance of the error in the output.
Unfortunately, in practical applications, satisfaction of such a criteria often
requires a large control action that may result in damage to plant equipment,
excessive expense or operation of the model outside its validity bound,
particularly in the early stages of parameter tuning. The Generalized
Minimum-Variance controller (Clarke, Cope and Gawthrop 1975; Clarke and
Gawthrop 1975, 1979) overcomes this by including a weighting on the control
input within the cost function. When the GMV cost function is related to the
NARMAX model the following cost function is considered:

J3(t-k) = E[P(z(t+k) - Rw(D)? + (Q"f(u(t)))?] (14)
where P, R and Q" are polynomials in the backward shift operator z‘lj and

f(ut)) is a function that includes all the terms in u(t) that are in the
model, ie:



fu(t)) = Flz(t+k-1) ..., z@t+k-n)u(t) ..., u(t-nq+1)je(t+k-1) ..
o e(t+k-n)] - Flz(t+k-1) ,..., z(t+k-n)su(t-1) ..
-y U(t-ny+1)e(t+k-1) ..., e(t+k-n,)] (15
The need for the weighting to be on a function such as f(u(t)) arises from
the fact that if the weighting is solely on a linear function of u(t) then the
estimation does not produce parameter estimates expected for minimum-variance
control (Anbumani, Patnaik and Sarma 1981; Grimble 1982), (proof of this is
given in Appendix Al).
Expanding equation (14):
J3(t-k) = E[(PFz(t+k-1) ..., z(t+k-n)u(t) ,..., u(t-n,+1);e(t+k-1) ,..

. e(t+k-n.)] - Rw(t) + Pe(t+k))? + (Q“f(u(t)))?] (16)

e(t) is unknown and unpredictable, however, the only element of Pe(t+k) that
is uncorrelated with other terms in F'[s(t+k)] is pye(t+k). Hence,

J3(t-k) = E[(PF’[z(t+k-1) seny Z(HHK-R)3u(t) ..., u(t-n+1)e(t+k-1) ..
- e(t+k-n,)] - Rw(t) + (P-pple(t+k)? + (Qf(u(t)))?]
+ E[py(e(t+k))?] (17)

Differentiating equation (17) with respect to u(t) to find the new control
action gives:

d/;(t-k) dF![s (t+k)]
e Ir, r ) arvls(tx))
s E[(PF'[,(t+k)] + (P-ppe(t+k) - Rw(t)) 2 P
, . df(u(t)) '
f el .
+ Q’f(u(t)) 2q; an) 1=0 (18)

Since

dF'[»,(t+k)] _ df(u(t))
du(t) du(t)




the control law becomes:
E[PF/[+,(t+k)] + (P-pole(t+k) - Rw(t) + Q'gif(u(t))] = 0 (19)
which may be written in terms of a new polynomial, F7[s (t+k)], as:
E[F[z(t+k-1) ,..., Z(t+k-nJu(t) ..., u(t-ny)e(t+k-1) ,.
- e(t+k-n3)] - Rw(t)] = 0 (20)

where n; = n, + n,
Ny =m0y, +n,-1lorn, +n, -1 whichever is the greater
Nz = n, + l'].p
Now, if k > 1, then there will be future, unknown terms z(t+k-d) and
e(t+k-d), where d = 1, 2 ..., k-1. The future terms in z(t) may be predicted

but e(t) is an unknown random sequence and hence is unpredictable. These values
are set to zero; their conditional mean. Thus, equation (20) reduces to:

E[F[z(t+k-1) ..., z(t+k-n)u(t) ..., u(t-ny)e(t) ...
- €(t+k-ng)] - Rw(t)] (21)
Clarke and Gawthrop (Clarke and Gawthrop 1975, 1979) showed that
minimization of the GMV cost function is equivalent to minimising the variance
of an auxiliary output function, @(t). The same can be shown in the NARMAX
case:
D(1+k) = Pz(t+k) - Rw(t) + Qf(u(t)) (22)
where Q = Q’q;
Consider

J(t+k) = E[(D(t+k))?] (23)

= E[(Pz(t+k) - Rw(t) + Qf(u(1))*] (24)

10



= E[(PF[z(t+k-1) ,..., Z(t+k-n);u(t) ..., u(t-n+1):e(t+k-1) ..
-, e(t+k-n.)] + Pe(t+k) - Rw(t) + Qf(u(t)))?] (25)

The only element in Pe(t+k) that is not correlated with terms in F[ (t+k)]
is pge(t+k). Thus equation (25) becomes:

J4t+k) = E[(PF'[z(t+k-1) ..., z(t+k-n);u(t) ,..., u(t-n,+1);
e(t+k-1) ,..., e(t+k-n.)] + (P-pgle(t+k) - Rw(t)
+ Qf(u(t)))’] + E[(poe(t+k))?] (26)

Differentiating equation (26) with respect to u(t) gives:

dJ ,(t+k)

= E[PF[z(t+k-1) ,..., z(t+k-n)u(t) ,..., u(t-n+1);
du(t)

e(t+k-1) ..., e(t+k-n.)] + (P-pple(t+k) - Rw(t)

dF[, @] _ 0

2
du(t) W

+ Qf(u(n)] 2(1+qp)

Adapting the notation of equation (27) to that of equation (21), the two can

be seen to be equivalent. The auxiliary output, @®(t), in the linear case is

physically realizable, however, in the NARMAX case f(u(t)) is not extractable as

a unique function and hence, although it is feasible to minimise the auxiliary
output it cannot be measured directly from the system.

4. Self-tuning aspects.

The algorithm may be made self-tuning by employing an extended recursive
least squares estimator (Goodwin and Payne 1977; Billings and Voon 1984) to
directly estimate the controller parameters. The data and parameter estimate
vectors may be constructed thus:

D(t/t-k) = O (th-k) + e(t) (28)

where CD*(tft-k) is the optimal prediction of ®(t) at time (t-k). Hence,

11



O'(t/tk) = FYz(t-1) .., z(t-n)u(t-k) ..., u(tk-niet-1) ,.
s €(t-n3)] - Rw(t) (29)
= xT(® 8(t) (30)
where x'(t) is the data vector and §t) the parameter estimate vector at time t.

xT(t) = [z(t-1) ,..., z(t-n));u(t-k) ,..., u(t-k-np);e(t-1) ,..., e(t-nz);w(t) ,..., w(t-n,)

Z2(-1) e z(t-1)u(t-k) ,.. z(t-1)e(t-1) ,..
......... , higher terms]

6= [él 3o 6115 é.l-u yer AQ1,+nza AQ.1+n2+1 9o é\,+n2+n3’ Ip 5oy T
......... , higher terms]

The optimal control law is given by equation (20), however, it is not
practically implementable since the future noise terms are unknown and
unpredictable. Hence, the control law is reduced to equation (21). Note though
that the estimator finds parameter estimates for all the terms in equation (20).
Solely estimating the parameters of equation (21) would result in bias in the
estimator, since it would attempt to force the information contained in the
missing terms into the structure it is estimating.

5. Calculation of the noise estimates.

With linear systems the noise is very often disregarded if the signal to
noise ratio is high. However, with nonlinear systems where the noise is
internally additive it may contribute a more significant part of the output
signal and should in general be estimated and included in the control law where
possible. The noise terms are unknown, but may estimated at each iteration. By
considering equations (28) and (30) an estimate may be found:

12



&) = @) - x(tk) Qtk)
Note that this is actually the system residual.

Substituting the above result into the control law, equation (21), gives a
new control law:

Fllz(t+k-1) ..., z(t+k-np)u(t) ..., u(t-ny);&(t+k-1) ,..
-, &(t+k-n3)] - Rw(t) = 0 (31)
6. Prediction of the future output terms.

The control law of equation (31) contains future unknown output terms in
z(t+k-1) ..., z(t+1) that occur if k > 1. These terms may be proxied by their
predictions. The predictions can be found by employing a sequential algorithm
based on setting the predictions of the auxiliary output to zero (the ultimate
goal of the controller and its conditional mean upon convergence of the
parameter estimates) and knowledge of the current parameter estimates.

From equation (22):

@(t) = Pz(t) - Rw(t-k) + Qf(u(t-k))

F[z(t-1) ,..., z(t-n));u(t-k) ..., u(t-k-n,);&(t-1) ,..
-, &(t-n3)] - Rw(tk) + &(t)
The prediction of ®(t+1), ®*(t+1), may be derived and equated to zero.
D(t+1) = F[z(t) ..., z(t-n+1)u(t-k+1) ..., u(t-k-ny+1);8(t) ,..
- €(t-n3+1)] - Rw(t-k+1) = 0 (32)

Extending this one step further ahead @, (t+2) may be derived:

13



O7(t+2) = Fzy(t+1) ..., Z(t-n+2)u(tk+2) ..., u(t-kng+2)E(t) ..
- é(t-n3+é)] - Rw(t-k+2) = 0 (33)

where z(t+1) is the prediction of z(t+1) and may be found by solution of
equation (33).

The algorithm may be stepped ahead as many times as are necessary in order
to predict the required values of zp(t+d), where d = 1, 2 ..., k-1. Cleary
the accurracy of the predictions will decrease the further ahead they are
predicted since future noise terms, or their estimates, have to be omitted from
the calculations.

Using the above algorithm may generate complex solutions if the degree of
nonlinearity of z,(t+d) is even. A solution to this is to use an interpretation
of equation (22). zp(t+d) may also be found from:

O*(t+d) = Pz,(t+d) - Rw(t-k+d) + Qf(u(t-k+d)) = 0 (34)

Finding zp(t+d) from equation (34) implies that the function ®(t+d) will be
minimised at the next iteration and that the parameter estimates will have
converged, whereas equations (33) and (34) take account of the current
knowledge that the estimator has of the parameters.

7. Performance analysis.

Performance analysis is concerned with assessing the "well-being" of the
controller and the estimator. If the controller is performing satisfactorily
and the parameter estimates have converged to their true values then the system
output should be close to the desired value, (there will always be a slight
discrepancy due to the unknown noise terms). One common and simple test for
continually monitoring this difference is a cumulative loss function. This is
generally recorded as the sum of the squares of the errors. Large steps in the
function would suggest that something abnormal has occurred. Although simple,
this test gives little insight as to why a failure in the system has occurred or
any assurance that the controller will continue to perform satisfactorily.
Model validation has the ability to point the analyst at the cause of a failure.
Model validity tests, as their name implies, check the validity of a model for a

14



system, but more than that, they can indicate the structure of the terms, (ie.
are they input/output or noise model terms, are they even or odd ordered), that
are missing or whose parameter estimates have not converged. If the model is in
error bias in the residuals occurs; it is this bias that model validity tests
detect. Bias means that future "good control" cannot be guaranteed - the
control loop may suddenly "blow-up”, even though it has been running for some
time giving seemingly good control.

For linear control loops the criteria to be satisfied are given by (Clarke
and Gawthrop 1975):

E[&(1), &(t+1)] = 0gs(t) = &(1)
Efu®et+1)] =0,(t)= 0 V12k

1 (35)
Ez02t+1)] =0, = 0 V12k

Elwt).8(t+1)] = ¢ge(t)= 0 V1 y

In model validation Billings and Voon (Billings and Voon 1983) have shown
that the conventional linear correlation functions do not necessarily detect all
possible nonlinear terms and hence have defined a set of higher order
correlation functions suitable for use with the NARMAX model. Clearly their
arguments will apply to the residuals in this case; the same features are being
sought. However, the system under analysis is in a closed-loop and hence the
range for T is as above, equations (35). In summary, for a system with
internally additive noise, the controller can be said to performing
satisfactorily if and only if:

0s(t) = O(t)
¢ué(1)1 q)é(éu)(T)v q’uz'é(.t), ¢u2'ez(1), = 0 V T2k
[ (36)
0,5(T),  Beery(T)s 026(T), Gpe2(t), = 0 V12«
be(t) = 0 V1 A
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Higher order correlation functions in w(t) are not necessary as w(t) enters
the system linearly.

8. Simulation results.

The results of the simulation experiment discussed below have been performed
on a model identified from a practical system. The initial parameter estimates
were preset to zero, with the exception of the estimate associated with w(t) in
the control law; this is set to 1.0 as is consistent with the work on linear
systems (Clarke and Gawthrop 1975), and the diagonal of the covariance matrix to
104, which implies that there is little knowledge of the parameter values. The
experiment was run over 1000 samples and the model validation correlation
functions were computed from the final 500 samples, allowing time for parameter
convergence. This implies that the 95% confidence bound for the correlation
plots will be 8.76 x 102,

Graphical plots of the demand input, w(t), control input, u(t), system
output, z(t), residuals, &(t), the actual and theoretical loss functions, the
parameter estimates and the diaganal of the covariance matrix are presented and
discussed.

The model used in this experiment was identified from a laboratory scale
liquid level system. The system consists of a DC water pump feeding a conical
flask which in turn feeds a square tank, giving the system second order
dynamics. The controllable input is the voltage to the pump motor and the system
output is the height of water in the conical flask. The aim, under simulation
conditions, is for the water height to follow some demand signal.

The plant model was identified as:

z(t) = 0.9722z(t-1) + 0.3578u(t-1) - 0.1295u(t-2)
- 0.3103z(t-1)u(t-1) - 0.0422822(t-2) + 0.1663z(t-2)u(t-2)
+ 0.2573z(t-2)e(t-1) - 0.0325922(t-1)z(t-2) - 0.3513z3(t-1)u(t-2)
+ 0.3084z(t-1)z(t-2)u(t-2) + 0.2939z2(t-2)e(t-1)
+ 0.1087z(t-2)u(t-1)u(t-2) + 0.4770z(t-2)u(t-1)e(t-1)
+ 0.6389u(t-2)e(t-1) + e(t) (S1.1)

Setting P(z!) and R(z'!) to 1.0, for simplicity, Q(z'}) to 0.2 and using
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the derivation of §3. the following controller results:

0.9722z(t) + 0.4293u(t) - 0.1295u(t-1) - 0.3724z(t)u(t)

- 0.042282%(t-1) + 0.1663z(t-1u(t-1) + 0.2573z(t-2)8(t-1)

- 0.032592%(t-1)z(t-2) - 0.3513z3(t-1)u(t-2) + 0.3084z(t)z(t-1)u(t-1)

+ 0.2939z22(t-1)&(t) + 0.1304z(t-1)u(tu(t-1) + 0.5724z(t-1)u(t)é(t)

- 0.6389u%(t-1)(t) - w(t) = 0 (S1.2)

The noise sequence, e(t), was Gaussian and given as N(0.0, 0.05).

Figures 1.1-4 give the input-output data for a typical run. The output,
z(t), quickly tracks the demand, w(t), with some slight attentuation due to the
effect of the control weighting. The actual cumulative loss function, figure
1.5, and the theoretical loss function, figure 1.6, (the cumulative sum of the
noise sequence), become near parallel within 100 samples, implying that the
residual sequence is approximately equal to the noise sequence. The process
model parameters, figures 2.1-6, 2.8-10 and 2.12 have tuned well, and are close
to their expected values given in equation S1.2. Figures 2.7, 2.11 and 2.13-14
are for the noise model and as with linear systems these take longer to
converge, though none of them is radically in error. The model validation
correlation functions, figures 3.1-10, are extremely encouraging. There are two
points which are outside the 95% confidence bound - Ogen)(T) at T = 1 and
¢2e2(T) at © = 6 - though these errors are slight and indicate that the noise
model parameters have not fully tuned.

A "best fit" linear model of the liquid level system has also been
identified. This model was used to design a linear GMV controller. Using the
linear controller to control the nonlinear model resulted in the estimation
blowing up within 20-30 samples, and no control being achieved. Presetting the
parameters estimates of the linear controller to their desired values still
failed to prevent loss of control.

9. Conclusion.
A control weighted self-tuning minimum-variance controller with a nonlinear
structure has been derived. Discussion has shown that the NARMAX based

controller is more generally applicable than those nonlinear controllers that
have so far been reported, and that using the NARMAX structure is a more
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practicable approach than using functional series or block structured models.
The superiority of the nonlinear structure is shown by the failure of the linear
GMV to provide any control of the nonlinear models in the simulation
experiments. The use of the high order correlation functions allows for a
quantative assessment of the performance of the nonlinear controller by
detecting bias in the residuals. Though used statically in these simulations
the correlation functions may easily be updated to provide continuous on-line
assessment.

Appendix Al.
Anbumani, Patnaik and Sarma (Anbumani, Patnaik and Sarma 1981) showed that
control weighting of a linear function of u(t) was not possible. Here their

result is reworked for the NARMAX model based controller.

If a linear control function were to be weighted, equation (14) would
become:

J3(t+k) = E[(Pz(t+k) - Rw())* + (Q u(t))!] A(l.1)
Expanding equation (Al.1):
J3(t+k) = E[(PF'[z(t+k-1) ..., z(t+k-n);u(t) ..., u(t-n-1)e(t+k-1) .
- e(t+k-n)] - Rw(t) + Pe(t+k))? +(Q u(t)?] (Al.2)

Again pee(t+k) is the only term in (Al.2) that is uncorrelated with other -
terms.  Now, differentiating with respect to u(t) to find the new control

action gives:
dr(t+k) i ) ) dFe (t+k)]
dut) E[(PFs,(t+k)] + (P-poe(t+k) - Rw(t)) 2 du(t)

+ 2Q°qou®)] = 0 (Al1.3)

The recursive least-squares estimator is of the form (Soderstrom, Ljung and
Gustavsson 1978; Billings and Voon 1984):
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8t = Qt-1) +K(0e() (A1.4)

where
et) = @) - xT®&-1) (AL5)
I @
Thus, for equations (Al.3) and (Al.5) to have the same form F—[’-@l

du(t
must equal unity, which cannot be guaranteed. ol
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