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Abstract o

A new representation of nonlinear systems involving the Lie series is obtained

and applied to nonlinear optimal control .
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1 Introduction

A great deal of attention has been given to the global linearization of the non-

linear system
= flz) | z(0) = z, (1.1)

where f is a real analytic function | by the method of Carleman linearization
(see [1] and the references contained therein).

In this paper we shall approach the problem in a different way by using the
Lie series. This will give rise to an (exact) infinite-dimensional linear realization

of the form
® =40, B(0)= s, (1.2)

for some ‘objects ®, 4 to be specified later. In fact, A will turn out to be a
left-shift operator, independent of f. (The dynamics of (1.1) will be contained
entirely in ®;, the initial value of (1.2))

Using a similar approach to the linear-analytic system
2= f(=)+ug(z) , 2(0) =z, (1.3)
we shall obtain an infinite-dimensional bilinear realization of the form
® = Ad + uB® 3(0) = @,

and this will be shown to lead to an explicit solution of the linear- analytic-

quadratic optimal contro] problem, in terms of f, g and their derivatives. This is,
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In general, not possible using Carleman linearization because of the complexity
of A and B which are produced by this method.

In section 2 we shall give a brief introduction to Lie series, with two very
simple examples to illustrate the technique. In section 3 a connection between
general nonlinear systems and the left-shift operator will be established and in
section 4 we shall generalize this idea to nonlinear control systems. Finally |
in section 5, the method will be applied to obtain an explicit solution to the

linear-analytic-quadratic optimal control problem.

2 The Lie Series

Consider the nonlinear differential equation
E=f(x) , 2(0)=2z, ¢ R® (2.1)

where f is real-analytic and assume that solutions exist for al] zgp € R™ and all
t € R. Then it is well known that the solution of the equation is given by the

Lie series

B(f) = {erp (L‘ Zf,(:c)%) :c} (2.2)

i=1

(See [5],(2]). An elementary proof of this result will be given later. We can write

(2.2) in the form

z(t)i= exp (tf@/a:t.') s l$=-‘-o



where f is regarded as a row vector and 0/0z = (8/0x,, . .. ,8/@3:,,)-. Thus,

—t* 9 d af
= t i il e om
z(t) = zo +tf(z) +;,>; e (far ( z—n) ) (2.3)
is the general form of the solution of (2.1).
Two examples are now presented to illustrate the solution (2.3).
(a) If the equation is linear, i.e.
t=Az , z(0)=z,€ R"
then, by (2.3),
=t 4 ] 8(Az)
= t AT | Az— | ... .
(1) e Axo+§k!Azﬁr (Axé‘:r ( = ) )

= g+ tAzy+ Z I:EAk'EU
k=2

= gtlpy,

(b) Consider the scalar equation

oz dz e
k=3 r=z,
oo
— g -+ tzg + Zikzg_'-l
k=2
B 1- tIU '

These examples show that the Lie series (2.2) is merely the Taylor expansion

(with respect to ¢) of the solution of the differential equation (2.1).
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3 Nonlinear Systems and the Left-Shift Oper-
ator
Consider again the nonlinear differential equation
t=f(z) , 2(0)=zo€ R" | (3.1)

In which f satisfies the same conditions as in section 2. In this section we
Propose to obtain an infinite-dimensional representation of this system in terms
of the left-shift operator. In order to do this, let g;(z) be any analytic function

of z (for example 91(z) = z) and define. recursively,

dgi_ .
sile)=Z=f iz (3.2)
Then
g 0g; dz
dt 8z dt
- g
T
= Gi+1

Hence, if we define g = (91,92,--)T ¢ (O(RM)M™ | where O(R™) is the ring

of analytic functions on E"™, then
= = Ag (3.3)
where A is the left-shift operator defined op (O(RM)N¥ by

A(g1,92,- )T = (g, g3, - - T
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We can now prove

Theorem 3.1 The solution of equation (3.1) may be written in the form

z= g7 (P {eftg(z))) (3.4)

where P is the projection operator defined by

P(g1,92,...)=¢,

In particular, if 91(z) = z, then
z=P{etg(zg)} . (3.5)

Here, g(z) is given by
9(z0) = (g1(zy), (891f)(z0), (8(8g1£) f)(x0), (0(6(891£)f) f)(z0),.. )T (3.6)

where we have written 9 = d/0z, and in particular, if g, (z) = ¢

9(z0) = (2o, f(z), ((BF)f)(z0), (B((8F) ) ) (o), .. ¥ . (3.7)

r

Proof The result follows directly from (3.3) and the definition of g, since 4 is a
bounded operator (on any sequentia) Banach space) and so e4? ig well-defined
by the usual series. o

Note that (3.5) is equivalent to (2.3) because of (3.7) and so we have proved
(2.2) in a simple way. In the remainder of this pPaper we shall take g91(z) = z
for simplicity and so equation (3.1) is equivalent to equation (3.3) with initia]

condition (3.7). Define the operator N : R® — § where S is the space of



(unrestricted) sequences with values in " by

Nyz = (2, f(2), (8f)f)(= )((3(5‘f)f)f)(r) o

(\.-"( k)

( 5}7; -f‘W,;\(-,(I;
- J

We define a function || . || on S by
slla = su
Islla = Mﬁjii |
where

§= (50731,52,...)7‘ .

Let

Sa={s€5:|lsll4 < 00} .

Lemma 3.2 (84,]|.|l4) is a Banach space.

Proof Only completeness presents any problems. Let s() be g Cauchy se-

quence in §4. Then for any € > 0 there exists m such that
) ) . S(‘)) k
lIs = &l = sup ﬂ (o1 = syt ” g (3.8)
tefo, 1
for 4,7 > m. We prove that si’) 1s a Cauchy sequence for each k. For k = 0 this

follows from (3.8) by taking t = 0. Assume that s is a Cauchy sequence for
k

k < £. Since the power series in (3.8) converges for ¢ & [0,1] we have

|5 o

k={+1

for all 7,7 and for small enough ¢ > 0, say ¢ < 7. Also, by assumption

“Z(s hs’“ “<4E , tefo,r].



for all 4,5 > some m (depending on £ ). Hence. by (3.8),

[ D < ¢

fort € [0,7] and i, j > m, and so
: ; e.f!
-] < 55 -

The result now follows easily. m]
« Lemma 3.3 Ny maps R™ into $, for all f for which a solution of (3.1) exists
on [0,1], for all z, € R".
Proof This follows directly from the definition of l]l4 and (3.4),(3.7). O
Remark Clearly, Ny o RF — R(Ny) C S4 is invertible and Nf_l = P where
P is the projection defined above. Of course, NyN7' T,

Hence, the solution of (3.1) is given by
z(t) = N7 e Ny(zg) . (3.9)
Now consider a linear-analytic control system of the form

z = f(z)+ uh(z) (3.10)

(with a scalar control - the general vector control can be dealt with similarly).

As before, put 91(z) = z and define inductively

dy;
g = —%@f(x) if iis even

0g(i-1)/2(z)

# = Oz

h(z) if iis odd



Thus,

i) = 202,

Oz

_ 94i(=) 6gi(z)

= 92i(2) + ugaigy(2) (3.11)

The next result follows directly from (3.11):

Theorem 3.4 The linear analytic system (3.10) can be written in the form

— . ———

d
d—‘(: =Ag+uBg , g(0) =g, (3.12)

where
g9=(,92,93,...)
and A = (a;;) and B = (b:;) are infinite-dimensional matrices defined by
aj; = 52:;;‘

bij = aigr

Remark go can be expanded in the form

90 = (20, f(20), h(20), ((81)f)(x0), ((8)h)(zo), ((8h)F)(=0), ((8h)R)(0),...) .

Corollary 3.5 The linear analytic system (3.10) has an input-output relation

in the form of the following Volterra series:

e L pT1 pT2 Thk—1
g(t) = e‘“gg + Z/ / / . / e”(-f“'T‘)BeA(““T“}B e
k=1 /0 Jo Jo 0

BeAT™ gou(m1) ... u(ry)dm .. .dn, (3.13)



or
s L O ] The1
2l1) = Ple?ey 4 fo / / eA(t—Ti)BeA(Tl—TQ)B_“
k=170 J0 0 0
Be™gialn ... u(ri)dr .. .dr,)

(The details of the proof of the existence of infinite-dimensional Volterra series

is given in [1])

a

Lemma 3.6 If A is the infinite matrix defined by

A= (62 ;)

then
4t = 1"
e = Z mégn,':j

n=0

Proof This follows by induction, since
An = (6'1”“3') (314)
(]

1§

Lemma 3.7 Let K(t, ... k) = et=n)Bed(ri-r)p  poan denote the

kernel matrix in (3.13). Then

Ktn,on)y= Y 3 Ezalin-m)re (g
y Joooe oy 17 — L R e T
L2 TN Ny Vy,..,Uy nlf TLQI nk""l'!

b?“z:‘,u;bz“:m,u:bﬂ"ava.u Ll bi’”huk-l,vkéﬂ"“lvk.j

Proof Denote e4! by E(t) = (eij(2)). Then

(K, )]s = Z eitr (V= 71)be,e,e0,0, (71 — 1),

aly oo bl:k-—llzk €lorj
L1082k
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and so

. (t=m)" (rp — rp)n2 (13 )Pr+

Wp = 2 3 Sa—mch [l
£1yilan LS PRI NN 1: 2 +1:

62““‘,1; b£1£362“?£:,£3b£a£q i bln-llak 62""‘“ Lok, ;
Y Oy Gommemm (nge
- ! ! |

Mny: Na: n }

Lady,dag Ny, Ny, 1 = o

bamiitzbamar, £, banar, 4, .. Drmitn gt Bamirag,,

by lemma 3.6. Setting v; = #5; gives the result. O

Corollary 3.8 K (t,m, ..., %) simplifies to

[K]ij = Z (t—n)™ (g = )2 (7 )was |

'l".',l.I ?13! ﬂk.{_l!

62“’=+1(2“k+1(2""—1'“(...(2"1+1i+1)...)+1)+1)+1)+1,j

Proof This follows easily from lemma 3.7 since bij = b2it1;. m|

> Consider next the case of a general nonlinear analytic system

= fz.u) (3.15)

again with a scalar control u. Introducing the augmented system (see [1]):

z = f(z,u) (3.16)

(assuming differentiable controls) we can write (3.14) in the form of (3.10); i.e.

y=F(y)+vH(y) , (3.17)

11



where

T
y s
u
[z, u)
Fly) =
0
0
H(y) =
1

We can now apply theorem 3.4 directly to the system (3.16). However, ifga(y) =
H(y) is defined as before then 93 = 0 and so many of the g9:’s are redundant,

Therefore, removing redundant g’s, we define

aly) = vy
9:(y) = F(y)
93(y) = H(y)
_ Ogs
94(y) = 9y F
_ dga
9s(y) = 5y H
09z o )
9i(y) = —=F ifiiseven and i > 6
9y
395;_1 f 115 odd i >
gi(y) = By H if iis odd and i > 7
Hence,
91(y) = g92(y) + vos(y)
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92(y) = ga(y) + vgs(v)

g3(y) = 0
Bily) = %—i"(y)fw%(y)ﬂ

= gai-2(y) +vgn-1(y) , i>4
We can then write the system in the form

dg
a = Ag +vByg

where A = (a;;) and B = (bij) are the infinite matrices defined by

ayj =

azj = by

0,3_7' = 0

aij = boi_a;
bij = b

b':l] = 553

baj = 0

bij = aiy
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for all 7 > 4 and all j > 1. A Volterra series can therefore be generated as in

(3.13).

4 Application to Optimal Control

In this section we shall consider the optimal control problem

min J(u) = 27 (t;)Fe(ts) + fo f(:nT(t)Qn:(t) + uT (t) Ru(t))dt (4.1)

subject to the linear analytic dynamics
z = f(z)+ uh(z) (4.2)

where @, F are positive semi-definite and R is positive-definite. This has been
solved before ([1]) using infinite-dimensional Taylor series representations. How-
ever, the control is difficult to evaluate in general and in the infinite-dimensional
bilinear representation of (4.2) the 4 and B operators are tensors with large
amounts of redundancy.

We now propose to solve this problem using the ideas presented above. Thus,

let g € (O(R”))N+ be defined as in section 3, i.e.

qa(z) = =«
99/ :
gi(z) = 5 J(£) . i even
39’(_:‘—1)/2 :
9i(z) = i h(z) | 1 odd
Then
dg
= = Ag+uByg (4.3)

14



where

A=(b2;) , B=(6r41;) -

Define the infinite-dimensional matrix operators F and Q € L(ORMNY, (O(R" ))N+)

by

ngg = :I:TF.‘I,‘

97Q¢ = 27Qz

for all ¢ € (O(R"))N+), where z = g;. Then F,Q are infinite-dimensional
operators with matrix representations whose (i, )" elements are n x n matrices
with (F)ij = FF , (Q)i; = Q. Hence, we may write the cost functional (4.1)

in the form

min j(u):gT('tf)}'g(tf)+/of(gT(t)Qg(t)+uT(t)Ru(t))dt : (4.4)

and so the original problem (4.1),(4.2) is equivalent to the bilinear problem
(4.3),(4.4).
Infinite-dimensional bilinear-quadratic problems have been completely solved

([4] and [3]) and we may write the optimal control in the form:

[\JIP—‘

oo
Z®:9:(PB @1 9)

where P; € £L(®:H) is given recursively by

P(t) = eAl(tf—t);eAT(rf-r)+/’ eAr(ty=t=0) g ATty —t=1) 5
0

15



T B 3 s
P.(t) = e 2:/; mU=1=0pPi(t, — 5)B @ Pj(t; — s)Behnltr—t=s)gg
if1=m
LIzl
r-t t!_z bl T AT g
i §: Amlts=t=0p(t; — 5)BT @ P;(t; — 5)BTeAm(ts—t=2)g,
1+3=m
121

and H is any Hilbert space structure on (O(RM)N? (such a structure can be

defined - see [1]). Here, P is a tensor operator and if C is an infinite matrix,

PC is defined by

POV —Z ZP.:]I zﬂ Ok

=] Li=]

Furthermore, A; € L(L(®;H)) is defined by

AiPi=PA , PeL(&H), i>1.

We have

Allece. my < il Al e
and so e is defined by the usual series. It can be shown ([4]) that e is
given by

(EAi:Q ;: EE! Z Z Q:: ; e -'f fl( AI)kzla St '(e:“)knf-

k=1 ki=i

for any Q. Now, by lemma 3.6, we have

s n
(eAI)__ — t__é e
= E al amij .

n=0

16
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and so

o0 00 oo M1 ¢na 0
T kg Ky...hg
(@) = > > > p s g T 02mk 2y Bamaky gy
k=1 ki=1n1=0n;=0 n ny By
= Y Sl
- Easuy nl.!ﬂg!“-ﬂ'!
ki=1 ki=1 3

where

£
np = log, (f)
b4

and the sums in the last expression are over k’s for which each n, is a natural

number,
Now,
¢ oo
] BLEEE s ALKy
(Pilty =s)B)ikl = > > PEf B,
i=1 \t;=1
£ o0
= [ B
- Z Z Pk].-..fj...k,-62fj+1‘k1
j=1 fj:l
L
= PRk,
Z O Lt R

=1

where the element of P in the last sum is zero if (k; —1)/2isnot a nonnegative
integer. The above expressions for e*'Q and P;B are now sufficient to be able

to evaluate P, (t) from (4.5).

5 Conclusions

A new infinite-dimensional bilinear representation of a nonlinear control system
has been given in terms of the Lie series. The simple structure for the sys-

tern matrices contrasts with that obtained by using the Carleman-Taylor series
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representation. In this case e4? is easily determined and is independent of the
particular nonlinear system. This has led to a very explicit form of solution for

the linear-analytic-quadratic control problem.
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