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Abstract

During the last decade the problem of real-time robot control has proven to be of
extreme difficulty. At present, available control systems are inadequate for the task.
In addition, the application of sophisticated control schemes such as the Model-
Reference Adaptive Control is prevented by the heavy computational task that is
necessary to implement it. This paper offers a feasable solution for the fast real-time
control of robot manipulators by adapting certain concepts of neural networks. An
adaptive controller is presented which solves for the highly coupled dynamic equations
of motion, which are known to present the heaviest obstacle in real-time computations.
A symbolic representation of the Lagrange-Euler equations is adapted for this purpose.
The neural controller is designed on a multi-layered network, in which the adaptation
for environment changes could be accommodated via the back-propagation of errors
throughout the network. The proposed controller is shown to be capable of adapting
to changes in the robot model parameters in real-time applications. In addition, the
use of distributed parallel processing concepts greatly simplifies the computations
required within each control cycle. Simulation results are reported for the full model
of the Unimation PUMA 560 manipulator with 6 degrees-of-freedom, along with a

performance analysis of an implementation of the proposed controller on a T800 tran-
sputer network.
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1. Introduction

The control of robot manipulators has been considered a difficult task for a long
time. Presently available control schemes use linear feedback measures to track the
desired motion, thus ignoring the coupling between the manipulator joints, and the
non-linear nature of the system [Craig 1986]. A slightly more sophisticated method
includes a fixed model of the robot arm. However, such an approach does not take
into account any changes in the payload during the execution of motion, in addition to
the presence of uncertainties in the originally used model parameters. Therefore, in
real-time application, ignoring all or parts of the robot nonlinear dynamics, or even
errors in the parameters of the manipulator, may cause serious deviations and thus
render such control strategies to be inefficient.

The essential drawback in a PID controller is the constant gain parameters in its
linear feed-back compensation loop. Hence, although a complicated control scheme
such as the Computed Torque Technique [Fu,Gonzalez and Lee 1987] could be
tolerated through its implementation on fast state-of-the-art computing structures
[Zalzala and Morris 1989a], such constant gains could produce substantial tracking
deviations. One solution has been proposed by the introduction of different schemes
for adaptive robot control [Dubowsky and DesForges 1979, Koivo and Guo 1983,
Lee and Chung 1984]. Nevertheless, the proposed theory has been considered to
present too heavy a mathematical burden for execution within the short control cycle
usually required for fast trajectory tracking. Therefore, no efficient practical implemen-
tation has been reported for such schemes.

In recent years, the principles of distributed parallel processing offered by the
concept of Artificial Neural Networks (NN) have been seen as a solution for the long-
standing real-time robot control problem. Multi-layered neural nets have been
employed in different aspects of robot control [Daunicht 1989]. Preliminary control
structures were presented by several researchers, which defined a general framework

[Guez,Eilbert and Kam 1988, Psaltis,Sideris and Yamamura 1987,
Psaltis,Sideris and Yamamura 1988, Josin,Charney and White 1988, Elsley 1987], for
which sensori-motor coordination was the main principle

[Ritter,Martinetz and Schulten 1989]. In the kinematics control of a robot arm, a
feed-forward layered network was proposed for the motion tracking of a two d.o.f. arm
[Pao and Sobajic 1987] and later implemented on an actual robot manipulator
[Sobajic,Lu and Pao 1988]. In addition a scheme has been proposed for the solution
of the inverse kinematics algorithm for a three d.of. planar manipulator
[Guez and Ahmad 1988]. Furthermore, artificial neural nets were proposed for the
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representation of navigation maps for autonomous path planning [Jorgensen 1987].
Adaptive dynamic control was tackled by several researchers as well. A preliminary
analysis of the problem has been assessed [Guez,Eilbert and Kam 1987], while
different approaches to the solution could be found [Bassi and Bekey 1989,
Kawato,Uno and Isobe 1987, Kawato,Uno,Isobe and Suzuki 1988,
Ritter,Martinetz and Schulten 1989].

In this paper, a new computational model is presented for the adaptive control of
robot manipulators. Certain concepts of the neural network approach have been
extracted to provide for a fast real-time controller. The neural controller is designed
on a multi-layered network, for which the adaptation for the environmental changes
could be accommodated via the back-propagation of errors throughout different layers.
A symbolic representation of the dynamic equations of motion is considered, for which
the proposed controller is shown to be adequate to accommodate any changes in the
robot model in real-time applications. In addition, the use of distributed parallel pro-
cessing concepts greatly simplifies the computations required within each control cycle.
Simulation results are reported for the full model of the Unimation PUMA 560 mani-
pulator with 6 degrees-of-freedom. In addition, an implementation of the neural net-
work has been suggested, using the INMOS T800 transputer as the main block of the
multiprocessor system.

The work in this paper is presented as follows; In section 2, the basic theory of
cognition and neural networks is presented, while a statement of the problem is made
in section 3. The symbolic representation of the dynamic equations is discussed in
section 4, for which the distributed formulation is illustrated in section 5. The robot
neural controller is designed in section 6, while its mathematical justification is
included in section 7. Simulation results of a case study are shown in section 8. In
addition, the practical VLSI implementation is included in section 9. Finaly, conclu-
sions are drawn on the proposed neural controller.

2. The Theory of Cognition

2.1. Underlying Concepts

As far as engineering applications are concerned, combining distributed parallel
processing of tasks along with the ability of learning is a distinctly new approach. The
process of comparing engineering problems to the actual behaviour of living beings
provides a unique step towards effective artificial intelligence systems. This emerging
field is known as connectionism, or artificial neural networks. It obtains its
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terminology from the neuron cell which is an essential element in the living nervous
system. The main aim of current research is to recast the problem in a suitable
mathematical form, and further set up a model simulating the nervous system
[Arbib 1987]. The connectionist network formed of different so-called neuron-like
nodes would become the physical media for the required system, where all communi-
cations amongst nodes are maintained through passing electrical impulses. The author-
itive text in this field is acknowledged to be that of the Parallel Distributing Processing
Group (PDP) in the USA [Rumelhart and McClelland 1986], where different relevent
models were established [McClelland and Rumelhart 1988]. A further good review of
the PDP perspective can be found [Aleksander 1989].

2.2. Artificial Neural Nets

2.2.1. Main Structure
The main block in a neural network is the neuron node. As shown in figure (1),
the node is a multiple-input single-output device with the following parameters :

e [nputs to the node : denoted as ]j- , J=1,2,...,n, which could be external inputs or
alternatively outputs of other neurons.
° Weight of each input : denoted as Wi, linking the neuron i with others

J=1.2,...,n. These are adapted during use in order to improve performance.

e Combining function (Fi) . Relates all inputs to the node, and can be either
linear or nonlinear.

e Activation function (F f,) : the output of the neuron, which could be connected to

any other node in the network, or even connected as a feed-back to the same
node.

A one-to-one correspondance of this structure with its physical origin in brain
cells can be established [Kama and Breen 1989]. However, it is Very interesting to
note that although modern high-speed VLSI structures can manipulate data much faster
than the human brain, their capabilities as far as learning is concerned is quite res-
tricted [Miche 1986]. This may be due to the brain operating in a highly parallel
fashion.

A neural network is usually constructed of an input layer of neurons, an output
layer and several intermediate, or hidden, layers. The number of hidden layers used
along with the number of neurons in each of them depends on the learning require-
ments. In addition, a network may be either fully or sparsely connected. If fully
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connected, the output of each node in a layer is connected as an input to all nodes in
the next layer. Alternatively, a network could be sparsely connected, where an exam-
ple of a 4-layer network is shown in figure (2).

2.2.2. The Back-propagation Algorithm

Although several different schemes are available for the construction of multi-
layered neural nets [Lippmann 1987, Roth 1988], The back-propagation algorithm is
the most common [Rumelhart,Hinton and Williams 1986a]. The back-propagation
learning rule is based mainly on a combination of the least-mean-square and the gra-
dient descent methods. It involves two phases in its operation, as follows :

1.  Forward phase : includes inputing the desired values, computing throughout the
network’s layers and producing its outputs.

2. Backward phase : where the actual outputs of the network are compared to the
desired values, and the errors resulting are propagated back through each of the
layers, adjusting the weights of each node.

This process is continued for other inputs until the network learns how to behave in
the desired manner. The back-propagation algorithm is illustrated in table (1), while
its justification in mathematical terms can be found in the literature [Angus 1989].
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Table (1) : The Back-Propagation Algorithm

L Initialisation :

1. For each node in the network
1.1. Initialise weights (W) to small random values
1.2. Initialise node biases (B;) to small random values

II. Forward Phase :

1. Get inputs to the network

2. For each node i in layer /
2.1. Compute the combining function FL(/;,W;)
2.2. Compute the activation function Fi(FLB,

III. Backward Phase :
1. For each node in the output layer

1.1. Calculate the error between the desired and actual values d; =y
1.2. Compute the error function, J, as
51 = }'i(l_yj}(d{"yi) T
2. For each node in other hidden layers
2.1. Calculate the 8 function as
8 =Fy(1-F) X ®W,) t
J

3. Update all weights in the network by
Wil = Wi + n8F; + aWi-wih)
where, 0 <N, < 1.

T Assuming F’ = sigmoid function.

3. Statement of the Problem

The main issue in robot control is to solve for the dynamic nonlinear equations of
motion. If the manipulator motion is speeded up or slowed down due to the change of
the arm payload then the robot arm is unable to follow the planned trajectory. There-
fore, the generalized torques/forces must be computed for all joints of the arm at each
control cycle, which involves the solution of the inverse dynamics procedure. The

dynamic model of the robot is a set of second order differential equations defined as
follows
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(1) = D(6() B()) + H(O(1).0()) + COW) 1)
or alternatively,
N b N N .o
Tl' = Z DUGJ + E E Hljk Gj Gk + C" (2)
=1 =l k=1
, 1=12,.N

where,
T = Torque values,
0, ) ; 0= Position, velocity and acceleration of each joint,
D;; = Effective and coupling inertias,
Hj = Centripetal and coriolis forces,
C; = Gravity loading, and
N = Number of joints of a given manipulator.

The computations of (eqn.1) are considered to be very difficult to carry out in
real-time applications, especially once augmented with other control requirements
[Zalzala and Morris 1989b]. It has been estimated to occupy 36% of the total con-
troller execution time [Orin 1984]. Several simplifications have been suggested to cut
down the computational burden [Bejczy 1974, Paul,Rong and Zhang 1983]. However,
due to the presence of highly effective coupling in these nonlinear equations, experi-
mental results have shown that such simplifications affect unacceptably the accuracy of
tracking [Tang and Tourassis 1989].

Therefore, one fairly recent approach has been the use of modern VLSI technol-
ogy to accommodate for the computational complexities in terms of distributed parallel
structures [Zalzala and Morris 1989g, Lathrop 1985, Lee and Chang 1986].

4. Symbolic Representation of The Dynamic Equations

The Lagrange-Euler approach to the formulation of the dynamic equations stated
above is quite structured. The torque value of each joint is expressed as the sum of
three main terms, namely : the acceleration-related term (T4), the velociry-related term
(Ty) and the graviry term (t5). Hence, (eqn.1) can be rewritten as

Tioa = Ty + T + T4 (3)
where,
. N =
Th= 3 D;f; 4)
<1
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. N N .
=2 X Hy 86 (5)
Al k=l
and,
- ©)

One method of representing these equations is in a symbolic form. In such an
approach, all unnecessary computations at lower levels of the formulation are omitted
(e.g. multiplications by 1s and Os, and additions to 0s), thus producing a more compact
code. In addition, all programming structures would be eliminated, reducing a large

amount of unnecessary execution time. It should be noted, however, that due to
different configurations of serial-links arms, a symbolic representation should be pro-
duced for each robot arm individually. Several symbolic representations have been
described in the literature for the Lagrange-Euler formulation of the PUMA manipula-
tor [Paul,Rong and Zhang 1983, Tarn,Bejczy,Yun and Ding 1986].

A comparison between several inverse dynamics formulations for the PUMA arm
is shown in table (2), which clearly indicates the superiority of symbolic computations.

The relevant programs has been executed on the Sun 3/50 system with a floating point
accelerator [Sun 1986].

Table (2) : Computational Complexity of the Inverse Dynamics

Inverse Dynamics Procedure Execution time (seconds)
Classical Lagrangian 0.9
(no simplifications)
Generalized D’ Alembert 0.096
Recursive Lagrangian 0.054
Symbolic Lagrangian 0.031

Folding out individual terms of (eqn.2) for a six d.o.f. manipulator, the following
representation could be found for each of the terms defined by (egns.4-6) :

A. The acceleration-related term :
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=
|

(e

etric

Dis Dy
D5 Dy
D35  Dig
Dys Dy
Dss  Dsg
Dgg ]
Hyis  Hyg
Hys  Hig
Hys  Hise
Hys  Hyge
Hyss  Hise
Hige
Hys  Hyp,
Hys  Hyy
Hpys  Hpyg
Hys  Hoge
Hyss  Hysg
Hyeg
H315  Hyyg
H3ps  Hapg
Hiys  Hag
Higs  Hagg
Hiyss  Hisg
Hies |

- 10 -

(7)

(8)

9)

(10)
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:
“Hyy -Hys —H3iy 0 Hys  Hyg
—Hyy —Hazpg 0 Hyps  Hyy
—Hyy 0 Hgps  Hyyg
H4_ Sym"l- 0 H445 H446 (11)
etric H455 H456
Hyg
“Hys -Hys —Hys —Hgys 0 Hsgg
—Hyys —Hiyps —Hss 0 Hsyg
—H33s —Hps 0 Hssg
HS - SyM* ‘—H445 0 H546 (12)
erric 0 Hssg
i Hsgg
“Hye —Hye —Hzje —Hye —Hsi6 O
—Hys —Hsypg —Hye —Hspg 0
—Hz¢ —Hyze —Hszg O
My = Symm— Hypg —Hsge O =
etric _H556 0
0
C. The gravity term :
:
£ |
)
Cs
c=|¢ (14)
Cs
Ce

The symbolic representation for each term shown in (eqns.7-14) are adapted from
[Tarn,Bejczy,Yun and Ding 1986] for the PUMA 560 manipulator. A full model of
the arm is included along with a particular gripper and a certain load
[Tarn,Bejczy,Han and Yun 1985]. No simplifications were assumed in the model of

the arm used.
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5. The Distributed Formulation

The form of (eqns.7-14) readily lends itself to a distributed recasting, introducing
certain concepts in parallel processing. In addition, all terms shown underlined are
redundant and can be obtained from previously computed elements of the equations.
However, using a general purpose multi-processing system would introduce tremen-
douse difficulties for a MIMD structure. In practical implementations, the communica-
tions overhead, which is certainly extensive in this case, could severely disrupt the
efficiency of the distributed algorithm. Although theoretical formulations usually do
not take proper account of this problem [Luh and Lin 1982], it has been proven to
have its effect on actual multiprocessor systems [Zalzala and Morris 1989al.

Nevertheless, the use of sophisticated and specialised VLSI structures promises to
present a solution for such a problem. If each of these terms were to be placed on
separate computational nodes which each have the ability of intercommunication, and
further a suitable efficient distributed algorithm was to be provided, satisfactory results
would be expected.

The specialized computational nodes required for each term of the dynamic equa-
tions are shown in table (3).

Table (3) : Required Computational Nodes

Dynamic equations term | Number of nodes

Acceleration-Related 20
Velocity-related 67
Gravity 5

6. A Neural Controller Prospect

The distributed structure described in the previous section is fully accommodated
for in a neural network approach. In this section, adaptation of the back-propagation
algorithm for this purpose is shown, and further a multi-layered neural structure for the
full dynamic model of (eqn.3) is presented. The general organization of a real-time
neural controller is shown in figure (3), where the adaptation of the neural network
depends upon the sensory feedback information in each control cycle. Hence, if the
model of the actual robot varies from that predicted by the inverse dynamics algorithm
solved by the controller, the network weights are adjusted so as to cancel such a
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difference. Thus, as time progresses, the controller should correct any errors occuring
during tracking the desired motion.

As shown in figure (3), assuming the robot arm is following some desired trajec-
tory, the parameters of motion (i.e. position 8;, velocity é,- and acceleration '9.;), for all
joints and within each control cycle, are fed to the controller producing a desired
torque input for each of the motors. The actual applied values of torques are detected,
and the errors are propagated back, adjusting the neural controller. Once a second set
of motion parameters is applied, the output of the controller is expected to be more
likely to accurately direct the motion towards that desired. The repetitive execution of
such a process would cause the controller to learn a new model under which the
required motion should be performed.

Nevertheless, to provide for the errors in the torque values as an input to the
second phase of the back-propagation rule, our approach for the simulation was to
assign another similar neural network (a torque computations module) to Tun simul-
taneously with the controller. However, a torque measurement device could be used in
a practical system, providing the actual values of all joint motor torques.

6.1. Applying the Back-propagation Learning Rule

To implement the proposed distributed algorithm, the back-propagation rule must
run on several hidden layers, with nodes that are sparsely connected, according to the
needs of the mathematical formulation. Refering to table (1), the following is
assumed:

O Initial weights for all nodes of the network are set to unity, hence
Wi=1 ,i=12,..NdL) ,j=1,2,..Nd(L-1) (15)
where Nd(X) denotes the number of connected nodes in layer X.
O All bias values are set to zero, thus
By=0 ,k=1,2,.Nn (16)
where Nn is the total number of nodes in the network.

O The activation function is chosen to be a sigmoid of the form
[Scott Stornetta and Huberman 1987],

TP 1 1
Si=F,(F.,B)=-=+

_— a7
2 1 + e(Bi“F::)

Although several other forms of activation functions were suggested
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[Lippmann 1987, Gibson,Siu and Cowan 1989], the above choice is found to be
adequate for this application. The characteristics of such a function is illustrated
by the graph of figure (4).

O The combining function is intended to form a relation between all inputs to a
specific node and their weights. No restrictions on the form of such a function
have been made, although a purely linear function of the form

Fe=X W, (18)
J

has been suggested [McClelland and Rumelhart 1988).

For this application, the combining function is taken to have a nonlinear nature,
and is set as one term of (eqns.7-14) for each neuron in the network. Hence, for

each node,
F. = fn (P) (19)
and,
P=S'Uy, 0y, - T) (20)
where,
Ji=L W, (21)

and S7! is the inverse-sigmoid function defined as
i gm

Sl =B L | —L——1 22)
Al
“" B

Hence, the main task of each node is to execute one part of the nonlinear equa-

tions of motion, and transmit its output to the nodes of the next hidden layer requiring
it.

6.2. Network Construction

Since the total torques evaluation process could be subdivided into three main
parts as indicated by (eqn.3) earlier, the neural network is to be constructed accord-
ingly. Initially, an input layer of 18 nodes was constructed, where six nodes were
used for each set of the parameters of motion (i.e. 8;, é‘- and é;). In addition, an output
layer of 6 nodes was considered, yielding the required motor inputs for a 6 d.of.
robot. Three sets of hidden layers were designated for the distributed algorithm, each
set accommodating for one term of the dynamic equations :
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A. Acceleration-related term : two hidden layers are required with 20 and 6 nodes in
each, respectively.

B. Velocity-related term : three hidden layers are required with 67, 6 and 6 nodes in
each, respectively.

C. Gravity term : only one hidden layer is required with 5 nodes.

The function of each set of hidden layers is to produce one portion of the torque
values, which are then collected and added together by nodes of the output layer. The
structure of the proposed network is shown in figure (5).

The function of each hidden layer in the above sets is as follows :
1. Computing 14 :

1.1. Hidden layer #1 : each node of this layer computes one element of the iner-
tial matrix (eqn.7).

1.2. Hidden layer #2 : each node multiplies one row of the inertial matrix (com-
puted by the previous layer) by the acceleration vector of all joints, thus pro-
ducing T, for each joint of the PUMA given by (eqn.4).

2.  Computing Ty :

2.1. Hidden layer #1 : each node of this layer computes one element of the
coriolis and centripetal force expressed by (egns.8-13).

2.2. Hidden layer #2 : each node multiplies one matrix of the coriolis and cen-

tripetal forces related to one joint (computed by the previous layer) by the
velocity vector of all joints.

2.3. Hidden layer #3 : each node multiplies the output vector computed by the
previous layer times the velocity vector of all joints, thus producing ty for
each joint of the PUMA given by (eqn.5).

3. Computing T :

3.1. Hidden layer #1 : each node of this layer computes one element of the
position-related gravity term expressed by (eqn.14).

As was mentioned earlier, the connections amongst nodes throughout the network
is sparse, depending upon the needs of the mathematical formulation. The network of
the first set of hidden layers describing the computation of the acceleration-related
torque values is shown in figure (6). Programming has been performed in the C
language, where the source code of each of the nodes of the first hidden layer of the
acceleration-related term is shown in Appendix (A).
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7. Mathematical Justification of the Proposed Model
The main aim of the proposed neural model has been two fold :

a. Cutting down the computational complexities by introducing a distributed algo-
rithm for the involved equations.

b. Providing a learning scheme through which adaptation to any changes in the
environment could be accommodated for.

The purpose of this section is to provide an explanation of how the learning pro-
cess progresses and the methodology by which the robot model is adapted according to
need. Each node of the first hidden layer for each of the terms of (eqn.3) contains one
element of the nonlinear dynamic equations of the arm, which we denote in general as
(I‘l). These elements are functions of the robot joint positions and the arm model
parameters. Hence, for all three terms,

I=fm(6,%) (23)

where % denotes the model parameters. In addition, nodes of other hidden layers in
the network would be a function of I'! and another parameter of motion. Hence, for
the acceleration-related term,

M= (Th,8)=fn(0,x.6) (24)
and similarily for the velocity related term,
To=fn(T},8)=fn(0,%,8) 25)

Adaptation is achieved by changing the weights of particular nodes containing
functions of the form given in (eqn.23). In (eqn.23), the position parameter (8) must
be kept constant as it represents the required target. Hence, adaptation can only
involve changing the set of parameters (). Such a procedure is similar to a parame-
ters estimation method, where the weights are changed in each control cycle, thereby
adapting the model parameters according to the errors produced by inaccurate tracking.

Consequently, the change in weights of the inputs of each node accommodating a
function of the form of (eqns.24,25) can be interpreted as adapting the gain values
applied to the 0 and 0 parameters, respectively. Hence, a dynamic determination of
such gains is being made in each control interval. The weights of the other parameters
involved in (eqns.24,25) (i.e. T'} and I'}) would again have influence upon the outputs
of the first hidden layer.

Therefore, the proposed neural controller is seen as having the ability to perform
parameter estimation of the robot arm model during each control cycle, and further to
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perform a dynamic adjustment of the gain values for the parameters of motion.

8. Simulation Results

Simulation results will now be presented for a pre-defined motion of a PUMA
560 robot arm. Referring to figure (3), the robot arm can be simulated using the
Direct Dynamics Algorithm [Walker and Orin 1982, Swartz 1984], which produces the
actual parameters of the motion executed by the arm. The output of this procedure is
fed into a controller similar to that used in the learning process. However, this second
controller has no learning abilities, but is dedicated to producing the actual torque
values applied by the motors. As a case study, six joint trajectories (one for each joint
of the PUMA) have been considered [Zalzala and Morris 1988,
Zalzala and Morris 1989f], for which a total of 3144 control cycles are to be executed.
Experiments were conducted so as to choose the best values for the learning factor (1)),
and the momentum factor (o), where a separate independent value of each was con-
sidered for each hidden layer of the network. This was found to give much better
results in terms of minimising the tracking errors than to having one common factor

for all layers. The values of these factors are shown in table (4) for the acceleration-
related term.

Table (4)
Learning and Momentum Factors
for the Acceleration-related Term

Layer
Factor : Second
First -
Output of 1st Layer | 6 values
Learning () 0.02 0.03 0.25
Momentum (o) 0.3 0.4 0.4

Applying the learning rule described in the previous sections, errors in tracking
the desired motion were significantly reduced. The time history of the reduction of
error is shown in figures (7) and (8) for joints 1 and 6 of the PUMA arm. The
adjusted weights of each layer of the acceleration-related term are shown in tables (5)
and (6) for illustration.
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Table (5)
Adjusted Weights of the Acceleration-related Term
(First Hidden Layer)
Weight #
Node #
W W, Ws W,y Ws
1 0.999980 | 1.001077 | 0.999078 | 0.999957 | 1.000362
2 1.001512 | 1.000761 | 0.998835 | 0.999031 | 1.000026
3 1.000005 | 0.999989 | 1.000000 | 0.999996 | 0.999999
4 1.000000 | 0.999998 | 1.000000 | 1.000000 | 1.000000
5 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000
6 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000
7 1.001596 | 1.000031 | 1.000229 | 1.000719 NA ¢
8 1.000678 | 0.999902 | 1.000126 | 1.000286 NA
9 1.000002 | 0.999999 | 1.000000 | 1.000000 NA
10 1.000000 | 1.000000 | 1.000000 | 1.000000 NA
11 1.000000 | 1.000000 | 1.000000 | 1.000000 NA
12 1.000010 | 1.000005 | 1.000000 NA NA
13 1.000000 | 1.000000 | 1.000000 NA NA
14 1.000000 | 1.000000 | 1.000000 NA NA
15 1.000000 | 1.000000 | 1.000000 NA NA
16 1.000000 | 1.000000 NA NA NA
17 1.000000 | 1.000000 NA NA NA
18 1.000000 NA NA NA NA
19 1.000000 NA NA NA NA
20 NA NA NA NA NA
T NA = Not Applicable

< TR
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Table (6)
Adjusted Weights of the Acceleration-related Term
(Second Hidden Layer)
Node #
Weight #
1 2 3 4 5 6
W, 1.003323 | 0.999255 | 1.000000 | 1.000000 | 1.000000 | 1.000000
W, 1.000049 | 1.005180 | 1.000003 | 1.000000 | 1.000000 | 1.000000
W, 0.999982 | 1.001536 | 1.000008 | 1.000000 | 1.000000 | 1.000000
Wy 0.999998 | 1.000004 | 1.000000 | 1.000000 | 1.000000 | 1.000000
Ws 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000
W 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000
W, 0.997999 | 1.012662 | 0.999395 | 1.000000 | 1.000000 | 1.000000
Wy 1.001167 | 0.993676 | 1.000385 | 1.000000 | 1.000000 | 1.000000
Wy 0.998926 | 1.030629 | 1.000777 | 1.000000 | 1.000000 | 1.000000
Wio 1.002072 | 0.949169 | 0.998434 | 0.999999 | 1.000000 | 1.000000
Wi 1.000061 | 0.968776 | 0.999153 | 1.000000 | 1.000000 | 1.000000
Wi, 0.999712 | 1.001576 | 0.999774 | 1.000000 | 1.000000 | 1.000000

One side result of great importance was detected during the simulations. It is a
well known fact that the coriolis, cetripetal and gravitational forces play a large role in
preserving the accuracy of motion, and ignoring such terms in practical implementa-
tions was found to cause tracking
[An,Atkeson,Griffiths and Hollerbach 1989]. However, ignoring both the velocity-
related and the gravity terms in the neural controller lead to the acceleration-related
network adaptation to the new situation, and the errors were reduced nevertheless.

considerable eITors

The simulation was performed on a Sun 3/50 workstation, employing the C pro-
gramming language.
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9. Practical VLSI Implementation : A Performance Analysis

In this section, an analysis of applying the proposed neural controller as an actual
multiprocessor system is conducted. Two options will be considered. First, a general
purpose system, where the INMOS T800 transputer is taken as a practical example.
Second, specialised VLSI structures are assessed for such an implementation.

9.1. The T800 Transputer Based System

The INMOS transputer (T800) is a fast, one-board computer that can be used as
the main block in building a multiprocesser system [INMOS 1988a, INMOS 1988b].
The T800 machine has been successfully used in many scientific and engineering
applications, including real-time robot control [Zalzala and Morris 1989a,
Zalzala and Morris 1989g]. Nevertheless, the use of such a machine to implement the
robot neural controller has its restrictions, as follows:

e the concept of assigning a full transputer board to each of the neural network
nodes is utterly impractical. Such an implementation would require a total of 134
transputers to accommodate for it, and many of the transputers would be idle for
most of the time considering the difference in the computational complexities of
all nodes. Hence, the overall utilisation of the VLSI structure would be severely
low. In addition, the cost-effectiveness of such a system becomes questionable.

¢ The nodes of the proposed neural network require for certain cases a maximum
of 13 channels to accommodate for the communications required by other neigh-
bouring nodes. This fact highlights the hardware limitation imposed by the tran-
sputer design, which allows the device only four channels for sending and receiv-
ing data. This in turn would lead to a massive overhead in communications.

However, certain solutions can be proposed for the above two problems, as shown
next.

9.1.1. The Job Scheduling Procedure

Since the use of a single transputer for each node of the network had been seen
as impractical, the other alternative would be to distribute the groups of jobs of all
nodes on several transputers in an optimum scheduling scheme, thus providing for a
high utilisation of the devices, in addition to minimising the execution time.

To accomplish such a task, the computational complexities of each of the neural
nodes have been assessed according to the capabilities and speed of the T800 tran-
sputer. According to the T800 data sheets, the computational time of both an addition
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operation (T,4;) and a multiplication operation (7,,,;) is 350 nsec and 550 nsec, respec-
tively. Hence, the computational requirements of each of the neural nodes could be
computed as t

where N, and N, denote the number of addition and multiplication operations
within a node. The calculated time is to be defined as the computational weight (CW),

of that node. Furthermore, a normalised computational weight (nCW) is defined for
each node as

CW
nCW = p— (27)

MAX CW,
=1

The resultant calculations are shown in tables (7-9) for all three terms composing
the torque values.

The scheduling procedure will now be illustrated for the acceleration related term,
considering the results of table (7), while similar arguments could be made for other
terms. From table (7), the element D;; has the largest computational burden (i.e.
nCW=1). Hence, it is desirable to compute all other elements in a similar time. Thus,
the execution of node 1 is to be performed on an independent transputer. Since all
nodes in the first hidden layer are independent from each other, they are to be col-
lected in groups using the bin-packing method [Hu 1982] so as

T nCW, < 1 (28)

i=1
for each transputer machine, where m denotes the number of jobs to be placed on that
particular transputer. However, the utilisation of each of the processors should be kept
as high as possible. One possible distribution is shown in figure (9), where a total of 3
transputers are needed. In addition, the nodes of layer #2 are included as shown. The
utilisation of each processor is shown in table (10). The evaluation of the tri-
gonometric functions involved in each term is domonated by those of the node with
the largest weight factor in the layer (e.g. node #1 containing element Dy, in the
acceleration-related term). All similar computations could be performed on each tran-
sputer seperately for all the nodes scheduled on it. An evaluation of the trigonometric
functions required by the element computing 1, are shown in table (7).

T Trigonometric functions are not included in this evaluation
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Table (7)
Computational Complexity of the
Acceleration-related Term
Term (*) (+) Computing Weight| Normalised Trigonometric
Evaluations
Operations | Operations|| (CW) (usec) Weight (nCW)

Sin | Cos | (+) [ (*)
Dy 437 183 304.4 1.00 6| 6 | 8 |26
Dy, 159 69 111.6 0.37 515 |6|16
Dy3 97 54 723 0.24 313 (6|16
"5 7 87 39 61.5 0.20 314 (4]10
D5 52 20 356 0.12 314 (4|7
Dise 32 12 218 0.07 45 |4]4
Ds; 86 58 67.6 0.22 4409
By 84 54 65.1 0.21 414|110
' 37 20 274 0.09 413]013
Dys 32 18 239 0.08 414 (1013
Do 20 8 138 0.05 41400
By 47 36 385 0.13 313 (119
D34 29 14 209 0.07 3013(0]3
D5 23 12 16.9 0.06 313|013
Dy 13 5 8.9 0.03 3il3(0]o0
Dy, 8 6 6.5 0.02 211103
Dys 4 1 2.6 0.01 210102
Dy 2 0 1.1 0.00 0of11]0]0
Ds;s 4 2 2.9 0.01 1{1]0]2
Dy 0 0 0.0 0.00 0j0]0]oO
D 1 0 0.6 0.00 0fojolo

RR # 374



Zalzala and Morris

w TR i

Table (8)
Computational Complexity of the
Velocity-related Term
Term *) (+) Computing Normalised
Operations | Operations || Weight (CW) (usec) | Weight (nCW)
Hypy 244 114 170 1.00
Hys 192 105 140 0.82
Hyy 197 71 135 0.78
His 237 92 163 0.93
Hy 153 52 102 0.59
Hyp 120 60 87 0.50
Hin 101 50 73 0.42
Hyy 47 28 36 0.20
Hys 54 23 38 0.22
- 35 16 25 0.14
Hyzs 105 50 75 0.43
Hysq 49 28 37 0.21
Hyzs 55 23 38 0.22
H s 33 15 23 0.13
Hiyy 66 27 46 0.26
Hyys 49 23 35 0.20
Hyu 30 14 21 0.12
Hyss 42 18 29 0.17
Hs6 31 11 21 0.12
Hyg 29 9 19 0.11
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Table (8) : Continued
Term ™) (+) Computing Normalised
Operations | Operations || Weight (CW) (usec) Weight (nCW)
Hjyq3 0 0 0 0.00
Hsq4 85 41 61 0.35
Hjs 45 21 32 0.18
Hyi6 42 17 29 0.17
Hyp 36 20 27 0.15
Hyoy 44 23 32 0.19
Hyos 36 19 26 0.15
Hyng 22 1 16 0.09
Hyag 34 20 26 0.15
Ha34 45 24 332 0.19
Hyzs 38 19 27.6 0.16
Hyse 26 11 18.2 0.10
Hyy, 33 18 24.5 0.14
Hoys 29 14 20.9 0.12
Hoyg 17 8 12.2 0.07
Hys;s 30 14 214 0.12
Hys 19 8 13,3 0.08
Hoge 18 7 12.4 0.07
Hs3yy 80 38 51.3 0.33
Hzs 53 20 36.2 0.21
Hj 34 13 24.0 0.14
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Table (8) : Continued
Term {*) (+) Computing Normalised
Operations | Operations || Weight (CW) (usec) | Weight (nCW)
Hayy 36 18 26.1 0.15
Hass 30 13 21.1 0.12
Hayg 17 9 12,5 0.07
Hazy 35 19 25.9 0.15
Hass 38 13 255 0:15
Hasg 20 8 13.8 0.08
Hyyy 37 14 25.3 0.15
Hyys 25 11 17.6 0.10
Hye 18 7 12.4 0.07
Hiss 21 8 14.4 0.08
Hss6 16 7 11.3 0.06
Hig 11 4 7.5 0.04
Hyis 28 15 20.7 0.12
Hy 12 4 8.0 0.05
Hyos 17 8 12.2 0.07
H 10 5 7.3 0.04
H 435 18 12 14.1 0.08
H s 8 3 5.5 0.03
H g5 7 5 5.6 0.03
H 4 1 2.6 0.01
Hyss 4 1 2.6 0.01
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Table (8) : Continued
Term (*) +) Computing Normalised
Operations | Operations || Weight (CW) (usec) | Weight (nCW)

H 456 5 4 42 0.02

H g 0 0 0.0 0.00
Hs 14 3 9.5 0.05
Hsog 8 3 5.5 0.03
Hssg 8 3 5.5 0.03
Hsyg 5 4 42 0.02
Hsg 3 1 2.0 0.01
Hsgg 0 0 0.0 0.00

Table (9)
Computational Complexity of the
Gravity Term
Term *) (+) Computing Normalised
Operations | Operations || Weight (CW) (usec) | Weight (nCW)

C 0 0 0.0 0.00

C, 42 27 32.6 1.00

Cs 34 19 254 0.78

Cy 24 7 157 0.48

Cs 16 8 11.6 0.36

Ce 12 4 8.0 0.25
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Table (10)
Processors Utilisation

Transputer || Utilisation

1 1.00
T2 1.00
T3 0.98

9.1.2. The Problem of Communications

The scheduling procedure illustrated in the previous section divides the neurons in
each hidden layer into groups, each placed on one transputer. The communications
between all three transputers needed to implement the acceleration-related term is
shown in figure (10). A host transputer would act as a supervisor representing the
input and output layers of the network. One link is assigned for the communications
between transputers P1 and P2. However, it is clear from figure (9) that more com-
munications occur between transputers P2 and P3. Therefore, two communication
links are assigned for the job.

The number of nodes in the neural network presented is relatively small in com-
parison to other applications. Therefore, if a much larger number of nodes exists,
more sophisticated methods would be required to manage the intercommunication tasks
[Kamanger,Duderstadt and Smith 1989, Beynon and Dodd 1987].

9.2. Specialised VLSI Structures

The alternative to a general purpose multiprocessor system is the design of speci-
alised VLSI structures which may be adequate to perform the jobs required by each
node. In addition, the availability of direct link communications between each two
neurons would greatly enhance the performance of the algorithm. Several architectures
are currently available [Karna and Breen 1989, Kamanger,Duderstadt and Smith 1989]
but these are inadequate in many respects and current research is directed towards pro-
ducing more feasable designs [Habib and Akel 1989]. This subject is beyond the
scope of this paper, and has been included here for completion.

3
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11. Conclusion

A neural-based controller has been presented for the control of robot manipula-
tors. The contribution offered by this paper is two fold. First, a distributed algorithm
has been presented which employs a symbolic representation of the Lagrangian
dynamic equations, thus providing for a fast feedforward controller. Second, the con-
cepts of learning using artificial neural networks have been used to give the controller
an ability to adapt to changes in the environment and to uncertainties in the imple-
mented model of the arm. In addition, the feasability of implementing the proposed
algorithm on a general purpose multiprocessor system, namely a T800 transputer net-
work, has been illustrated. The primary benefit of augmenting both the conventional
theory of robot control with the concepts of artificial neural networks is to produce a
fast self-organizing robot controller. Such a design promises to become a strong
opponent to the conventional adaptive robot controllers, especially when real-time
applications are involved.
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Appendix (A) :

Nodes of the Acceleration-Related Term
(Hidden Layer #1)
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AccNodes.c Thu Oct 26 20:52:41 1989 1

void AccNodes ()

{
float

switch

{
case 1

52,53,823,SS23,522,C2,C3,C23,C22,SSZ,SS3,CC3,533,CC2,CC23,C33,S4,884,844,
C4,CC4,C44,85,SS5,555,C5,CC5,C55,S6,SS6,S66,C6,CC6,066,846,5233,82233,
C2233,C235,5223,C223;

(node)

F e L f NODE #1 == Inertia Matrix Element : D1l ====-oemmmcooa__ 4
S§2 = sin(values([1l]);
83 = sin(values([2]);

S4 = sin(values[3]);
S5 = sin(values([4]);
S6 = sin(values|[5]);

8§82 = 52%*52;
883 = 53*S3;
SS4 = 54*54;
585 = §5*85;
886 = 56*36;
§22 = sin(2.*values(1]);

S33 = sin(2.*values([2]);

544 = sin(2.*values[3]);

S55 = sin(2.*values[4]);

566 = sin(2.*values[5]);

S23 = sin(values[1]+values[2]);

§823 = S23%823;

§233 = sin(values(l]l+values|[2]+values[2]);
C2 = cos(values([1l]);

C3 = cos(values|[2]);

C4 = cos(values[3]);
C5 = cos(values([4]);
C6 = cos(values[5]);
CC2 = C2*C2;
CC3 = C3*C3;
CC4 = C4*C4;
CC5 = C5*¢5;
CC6 = C6*C6;

C23 = cos(values[l]+values[2]);
CC23 = C23*C23;
C235 = cos(values[l]l+values[2]+values[4]) ;

activation[l] [nogde] = rml*ryyl+rm2* (rxx2*S52+ryy2*CC2+raa2*CC2+2.*ra2 *CC2*rx2) +

rm3* (rxx3*5523+rzz3*CC23+rdd3*rdd3+ raa2*C2+*C2+raa3*CC23+2 . *ral2*ral*
C2*C23+2.*rx3*(ra2*C2*C23+ra3*CC23)+2.*ry3*rdd3+2.*r23*(ra3*C23*S23+
ra2*C2*S23))+rm4*(rxx4*CC4*(SS2+S3*S3+2.*SZ*S3*C23)+ryy4*(CC2-2.*82*83*
C23-SS3)+rzz4*SSﬂ*(882+SS3+2.*S2*SB*C23}—2.*ry4*823*(C2*raf+523*rdd4+c23*
ra3)—2*r24*(ra3*S4*(52*S233—CC3)-C2*S4*C23*ra2~84*c23*52?'rdd4+C4*rdd3)+
rdd3*rdd3+CC2*raa2+8823*rdd4*rdd4+(1-8823)*raa3+2.*CZ*C23*ra2*ra3+2.*CZ
*823*ra2*rdd4+2.*C23*S23*ra3*rdd4);

activation[1l] [node] = activation{l][node]+rm5*(rxxS*(SS23*(l—SS4*CC5)—(SS2—CC2)

*(SSS+2.*C3*83*C4*C5*55)—2.*(SS3-CC3)*C2*SZ*C4*C5*SS—2.*SSS*(SS3+2.*S2
*S3*C23J)+ryy5*884*(S2*C3*823+53*S3*CC2)+rzz5*(CC23+(SS2-CC2)*(SSS+2.*C3
*S3*C4*C5*85)+2*(S3*S3—CC3)*C2*S2*C4*C5*SS+SSS*(2.*SS3+4*S2*S3*C23-SS4*
5823))+2.*(((82*523-03)*ra2—CC23*ra3—{C2*S2+C3*S3-2.*S2*S3*523)*rdd4)*S4+
C4*rdd3)*ry5+2.*((52*C235+52*55*823*(1-C4)+C3*C4*55+53*C5)*ra2+(C4*SS+CC23
+(C2*52+C3*S3-2.*52*83*523)*C5)*ra3+(C4*SS*(C2*SZ+C3*83—2.*52*83*523)
+C5*(SSZ+SSB+2.*82*S3*C23))*rdd4+S4*SS*rdd3)*rzS+rdd3*rdd3+CC2*ra32+
CC23*raa3+(l-CC23)*rdd4*rdd4+2.*C2*S23*ra2*rdd4+2.*(C3—82*823)*ra2*
ra3+2.* (C2*S2+C3*S3-2,*S2*33*%523) *ra3*rdd4) ;

activation[l] [node] = activation[l][node]+rm6*(rxx6*(-5523*(884—7.*554*586+CC4*885

*CCS—CCS*CC6+0.5*844*C5*566}+SSS*CC6+(C4*S55*CC6—S4*SE‘:¢6)*(0.5*822+O.5*
533-2*52*53*823))+ryy6*(8823*(554—2.*SS4*SSG+CC5*SSG+S:4*SSS*SSS+0.5*544*
C5*566)+SSS*86*56+(54*55*866+C4*555*SSG)*(0.5*522+0.5‘:33—2.*82*33*523))+
rzzG*(CC23*CC5+CC4*SSS*SSZB—O.5*822*C4*S55+0.5*533*C4’555-82*S3*S23*
C4*855)+2.*r26*(ra2*(C3*C4*85—52*523*C4*C5+S3*C5+52*C23*C5)+ra3*(CC23*
C4*S5+0.5*522*C5+0.5*533*C5-2.*52*53*523*C5)+S4*85*rdd3+rdd4*(0.5*
S522*C4*S5+0.5%833*%C4*55-2 ., *S2*53%523%CA*S5+C5%8523) ) +raa? *CC2+raal*
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CC23+rdd3*rdd3+rdd4*:dd4*5823+2.*ra2*ra3*C3—2.*ra2*ra3*S2*523+2.*ra2*
rddﬂ*SZ*C23+2.*ra2*rdd4*S3+ra3*rdd4*822+ra3*rdd4*533—4*ra3*rdd4*52*
S§3*523) ;

activation[1l] [node] = activation[l}[node]+rm6*((C6*rx6—86*ry6)*(—822*833*C4*C5*
ra3*822*533*85*rdd4—522*C3*55*Ia2+2.*S22*SS3*C4*C5*rdd4+2.*522*553*85*
ra3-822*53*C4* C5*ra2-522*C4*C5*rdd4-522%55*ra3-2 . *SS2*S33*C4*C5+rdd4
+2.*SS2*S33*SS*ra3—2.*SSZ*C3*C4*CS*ra2+4*SS2*SSS*C4*C5*ra3+4*852*553*85
*rdd4+2,*552*53%55%ra2-2. *552*C4*C5*%ral3=-2.*SS2*S5%rdd4+533*C4*C5*rdd4
v833*85*ra3+2.*C3*Cé*C5*ra2—2.*SSB*CQ*CS*raS—Z.*SS3*SB*rdd4-2.*83*55*
ra2+2.*Cé*CS*ra3+2.*S4*C5*rdd3)+(C6*ry6+56*rx6)*(522*533*84*:33+2.*522*
S3*S4*rdd4+522*83*84*ra2-522*84*rdd4+2.*SSZ*S33*S4*rdd4+2.*SSZ*C3*S4*
ra2-4*SSZ*SS3*54*ra3+2.*552*SQ*ra3-S33*SQ*rdd4-2.*C3*S4*ra2+2.*SS3*S4
*ra3+2.*C4*rdd3-2+*54*ra3l)) ;

break; /¥ - */

case 2 i [Femememaooo o NODE #2 == Inertia Matrix Element : D12 ====————omeoo___ xf
S2 = sin(values[1]);

S$3 = sin(values[2]);
S4 = sin(values[3]);
S5 = sin(values([4]);
S6 = sin(values[5]);

885 = §5*55;

556 = S6*S6;

S44 = sin(2.*values[3]);

855 = sin(2.*values[4]) ;

566 = sin(2.*values[5]):

$23 = sin(values[l]+values[2]);

C2 = cos(values[l]);
C3 = cos(values[2]);
C4 = cos(values[3]);
C5 = cos(values[4]);
Cé = cos(values[5]);

Cd44 = cos(2.*values[3]);
C66 = cos(2.*values[5]);
C23 = cos(values[l]+values[2]):

activation([l] [node]= rm2*ra2*rz2*82+rm3*((rdd3*rx3+ra3*rdd3+ra3*ry3)*523—rdd3
*rz3*C23+ra2*(rdd3+ry3)*82)+rm4*((rdd4*ry4—rdd3*rdd4—rdd4*er*C4)*C23+
(ra3*rz4*C4—rdd3*rz4*84+r33*rdd4)*823+ra2*(rdd3+r24*C4)*82—(rxx4—
rzz4)*823*C4*84)+rm5*(0.5*(rxx5—r225)*(523*S44*S5*SS—C23*S4*855)-
0.5*(rxx5—ryy5)*823*544-(rdd3*rdd4+rdd4*ry5*C4+rdd4*r25*s4*85+rdd3*
rzS*CS)*C23+({rdd3*:25*55+ra3*ry5)*C4+(ra3*r25*85—rdd3*ry5)*S4+ra3*
rdd3)*S23+r32*52*(rdd3+ry5*c4+r25*54*55)}+rm6*(0.5*(rxx6~ryy6)*
((54*555*556—C4*C5*S66)*C23-(C44*C5*566+544*(C66+SSS*SSG)))+0.5*
(rxx6—rzz6)*(823*844*SS*SS—C23*54*855)—(rdd4*r26*S4*SS+rdd3*r26*C5+
rdd3*rdd4)*C23+((rdd3*C4+ra3*S4)*C5*rz6+ra3*rdd3)*S23+ra2*82*(rdd3+
rz6*S4*55)) ;

activation[l] [node] = activation[l][node1+rm6*((ry6*C6+rx6*56)*(—rddq*CZ*CB*C4+
ra3*C2*53*C4—rdd3*C2*S3*Sé+ra3*52*C3*Cé—rdd3*52*C3*54+rdd4*s2*S3*C4+
ra2*82*C4)+(ry6*S6-rx6*C6)*(rdd4*C2*C3*S4*C5-rdd3*C2*C3*SS—rdd3*C2*S3
*C4*C5-ra3*C2*53*S4*C5-rdd3*82*C3*C4*Cs-ra3*52*C3*54*C5~rdd4*82*83*84
*C5+rdd3*S2*53*85-ra2*52*54*C5) ) ;

Dreak; [ * e e e *of

case 3 : [F-mmmmmmmmeo NODE #3 == Inertia Matrix Element : D13 —=—————e—c—coo_ */
S4 = sin(values([3));
S5 = sin(values(4]);
56 = sin(values[5]);

8§85 = §5%*35;
SS6 = S6*56;
S44 = sin(2.*values[3]) ;
S55 = sin(2.*values[4]):
566 = sin(2.*values[5]);

S23 = sin(values[l]+values[2]);
C4 = cos(values[3]);
C5 = cos(values[4]);
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C6 = cos(values[5]);

C44 cos(2.*values[3]) ;

C66 = cos(2,*values[5]);

C23 = cos(values[l]+values[2]);

activation[1l] [node]= rm3*((rdd3*rx3+ra3*rdd3+ra3*ry3)*523—rdd3*r23*c23)+rm4*

break;

case 4

((O.5*(r224—rxx4)*S44+ra3*rz4*C4-rdd3*:z4*84+ra3*rdd3}*523—(rdd3*rdd4
—rdd3*ry4+rdd4*rzé*c4)*C23)+rm5*((0.5*(r225—rxx5)*54*555—rdd4*ry5*c4—
rdd4*rzS*S4*55—rdd3*rz5*C5-rdd3*rdd4)*C23+(0.5*({rxx5—ryy5)*855—rxx5
+ryy5)*S44+(rdd3*r25*85+ra3*ry5)*C4+(ra3*r25*85-rdd3*ry5)*S4+ra3*rdd3)*
S23)+rm6*((0.5*((rxxG-rny)*SS6—(rxx6-rzzG))*84*855—(0.5*(rxx6-
rny)*C4*566+rdd4*r26*84)*SS-rddS*(rdd4+r26*C5))*C23+(0.5*((rxx6-
rzzG)*SSS—(rxx6—ryy6)*(C66+SSS*SSS))*S44—0.5*(rxx6—ryy6)*C44*CS*

566+ (rdd3*C4+ra3*S4) *55*rz6+ra3*rdd3) *523)

+rm6*((C6*ry6+56*rx6)*(S23*C4*ra3-C23*C4*rdd4-523*84*rdd3)+(86*ry6-rx6*
CG)*(C23*S4*C5*rdd4~C23*S5*rdd3-323*C4*C5*rdd3—S23*54*C5*ra3))

’

/* _______________________________________________________________________ */
e NODE #4 == Inertia Matrix Element : D14 =———--ce—o——mmeo_ e/

S4 = sin(values[3]);

85 = sin(values([4]);

S6 = sin(values(5]);

585 = 85*85;

SS6 = S6*56;

sin(2.*values([4));
sin(2.*values[5]));

§23 = sin(values[1l]+values(2]):;

n 0
o Ut
o
o

C2 = cos(values|[1l]);
C4 = cos(values[3]);
C5 = cos(values[4]);
C6 = cos(values([5]);

C23 = cos(values[l]+values[2]);

activation[l] [node]= rmd* ((ryyd+rz4* (rdd4*C4-ra3*54) ) *C23-rz4* (rdd4*54*523—

ra2*C2*C4))+rm5*((rxxS—rzzS)*(C23*SSS+O.5*823*54*555)+((ra3*r25*s5+
rdd3*ry5)*C4+(rdd3*r25*85—ra3*ry5)*Sé+r225)*C23+rdd4*(rzS*C4*55—ry5*
84)*S23+ra2*r25*c2*c4*55)+rm6*((rzG*SS*(ra3*C4+rdd3*S4)+rzz6+(rxx6—
rzzG)*SSS—(rxxG—rny)*SSG)*C23+0.5*(2.*rdd4*rz6*C4*85+(rxx6—r226-SSG*
(rxx6—ryy6))*C4*S55—(rxxE—rny)*Sé*SS*SGG)*523+ra2*rz6*c2*c4*55)

+rm6*((S6*rx6+C6*ry6)*(C23*C4*rdd3—C23*S4*ra3—S23*S4*rdd4—C2*S4*:a2)
+(rx6*C6-S6*ry6)*(C23*C4*C5*ra3-C23*S4*C5*rdd3+c2*C4*C5*raZ+SZ3*C4*C5*
rdd4-5S23*C4*C5*ra3)) ;

R NODE #5 == Inertia Matrix Element : D15 —~==—-——meeeoo__ *f
S4 = sin(values([3]);
S5 = sin(values[4]);
S6 = sin(values|[5]);
$23 = sin(values[l]+values[2]);
556 = S56*56;
5§66 = sin(2.*values|[5]):
C2 = cos(values([1]);
C4 = cos(values[3]);
C5 = cos(values|[4]);
C6 = cos(values[5]);
C23 = cos(values[l]+values[2]);

activation[1l] [node]= rmS*(((ryy5+rdd4*r25*c5)*54+rdd3*r25*85)*523+r25*(ra3*s4

break;

-rdd3*C4)*C23*C5+ra2*rz5*c2*84*85)+rm6*((rxx6-:yy6)*(823*54*?86—0.5*
566*(C23*55+C4*C5))+(ryy6*54+r26*C5*(ra3+rdd4}+rdd3*r26*55)’S23+rz6*
(ra3*sS4-rdd3*C4) *C23*C5)

+rmé6* ( (rx6*C6-S6*ry6) * ( C23*C4*55*rdd3-C23*54*55*%ra3-523*54*55%rdda+
523*C5*rdd3-C2*54*55*ra2));
K e */
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case 6

Jrem NODE #6 == Inertia Matrix Element : D16 ===——mmmmmom___ */
54 sin(values[3]);
S5 sin(values[4]);
S6 sin(values([5));
523 = sin(values[l]+values[2]):

C2 = cos(values[l]);
C4 = cos(values[3]);
C5 = cos(values[4]));
C6 = cos(values[5]);

C23 = cos(values[l]+values[2]);

activation[l] [nodel= rm6*rzz6* (C23*C5- S23*C4*C5)

break;

case 7

+rmé* ((CO*ry6+56*rx6) * (C23*C4*C5*rdd3-C23*S4*C5*%ra3-523*54*C5*rdda-S23*
S5*rdd3-C2*84*C5%ra2) + (rx6*C6-5S6*ry6) * (S23*C4*ra3+C23*54*rdd3+523*C4~*
rdd4+C2*C4*ra2)) ;

/* _______________________________________________________________________ * /
e NODE #7 == Inertia Matrix Element : D22 —————mmem—o—oeo__ */

S$3 = sin(values|[1l]));

S4 = sin(values|[2]);

S5 = sin(values[3]);

S6 = sin(values[4]):

SS4 = 54=*34;

8585 = §5%855;

544

wn

o

o
[

sin(2.*values([2]) ;
sin(2.*values[4]) ;
C3 = cos(values|[1l]);

C4 = cos(values[2]);
C5 = cos(values[3]);
C6 = cos(values[4]);
CC3 = C3*C3;
CC4 = C4*C4;

CC6 = C6*Ch;

activation[1l] [node]= rm2*(rzz2+raa2+2.*ra2*rx2)+rm3*(ryy3+raa2+2.*raa3*rx3+2.*r32

*(rx3+ra3)*C3+2.*r32*rz3*53)+rm4*((rxx4-rzz4)*84*54—2.*r24*54*(ra2*C3+
ra3)—2.*ry4*(ra2*83+rdd4)+raa2+raa3+rdd4*rdd4+r224+2.*ra2*(ra3*C3+rdd4*
§3) ) +rm5* (2. * (ra2*C3+ra3) * ( (C4*S5+C5) *rz5-84*ry5) +2 . *ra2* (ra3*C3+rdda
*53)+854*(SSS*(rzzS—rxxS)-ryy5+rxx5)+raa2+raa3+rdd4*rdd4+ryy5)+rm6*(2.*
rz6*(raZ*C3*C4*55+ra2*S3*C5+Ia3*C4*C5+rdd4*CS)+2.*r32*(ra3*C3+rdd4*
S3)+(ryy6-rxx6)* (S6*S6* (CC4*555-1) -554* CC6-0.5*544*C5*S66)+ (rzzb-
rxx6) *$54*555+raa2+raa3+rddd*rddd+ryy6)

+rmé* ((CE6*rx6-S6*ry6) * (2.*C3*C4*C5%ral-2,*S3*55%ra2+2 . *C4*C5%ra3-2 .
*55*rdd4)-2.* (Ce*ry6+56*rx6) * (C3*54*ra2+54*ra3)) ;

/* _______________________________________________________________________ * /
[ NODE #8 == Inertia Matrix Element : D23 ===coomacoomeo__ */

53 = sin(values[1l]);

S4 = sin(values[2]);

S5 = sin(values[3]);
S6 = sin(values([4]);
S84 = S54*54;

§S5 = §5%35;
SS6 = S6*S6;
S44 = sin(2.*values[2]);

S66 = sin(2.*values[4]);
C3 = cos(values|[1l]);

C4 = cos(values[2]);
C5 = cos(values[3]);
C6 = cos(values[4]);
CC3 = C3*C3;
CChH = GH*CH;
CC6 = C6*C6;

Cé6 = cos(2.*values[4]);

activation[l] [node]= rm3*((ra3+rx3)*(raZ*C3+ra2*r23*S3+ra3*(2.*rx3+ra3))+ryy3)
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+rmd* ( (ra3-S4*rzd) *ra2*C3+(rddd-ryd) *ra2*S3+ (rxx4-rzz4) *SS4+ra3* (ral3-
2*S4*r24)+rdd4*(rdd4—2.*ry4}+rzz4)+rm5*((rxxS*CC5+r225*SSS)*S4*S4+ryy5*
CC4+ra2*53* (rdd4+rz5*C5) +ra2*C3* (rz5*C4*S5-ry5*S4+ra3)+2.*rdd4*rz5*C5+
rdd4*rdd4+2.*ra3* (rz5*C4*S5-ry5*S4)+raal3) +rmé* ( (ra2*C3+2.*ral3) *rz6*
C4*55+ (ra2*53+2.*rdd4) *rz6*C5+ra2* (ra3*C3+rdd4*53) +raal3+rdd4*rdd4-

0.5% (rxx6-ryy6) *S44*C5*S66+554* (CHH* (rxxb-ryy6) -SS5* (CCH*rxx6+S6*
S6*ryyb-rzz6))+556% (rxx6-ryy6) +ryy6)

+rm6* ( (C6*rx6-S6*ry6) * (C3*C4*C5*ra2~-S3*%S5%ra2+2,*C4*C5*ra3-2,.*55%rdd4)
- (C6*ry6+S6*rx6) * (C3*S4*ra2-2.*S4*ra3));
break; /F—— e

case 9 : /EFo—mmmmmmeoa NODE #9 == Inertia Matrix Element : D24 —————mm—mmee—_
83 = sin(values([1]);
= sin(values([2]);

S5 = sin(values([3]);

S6 sin(values[4]);

SS6 = S56*3S6;

S66 = sin(2.*values[4]);
c4 cos (values[2]);

C5 = cos(values[3]);

Cé = cos(values[4]);

activation[l) [nodel= -rmd4*rz4*C4* (rddd4+ra2*S3)+rm5* ( ((rzz5-rxx5) *C5-rz5* (ra2*
S3+rdd4) ) *S4*S5-ry5*C4* (ra2*53+rdd4) ) +rmb6* (S5* (S4* (C5* (rzz6-C6*CH*rxx6
-556*ryy6) -rz6* (ra2*53+rddd))=-0.5* (rxx6-ryy6) *C4*566) )

+rm6*((SG*ryGFCE*IXG)*(SB*S4*C5*I52+54*C5*rdd4)—(C6*ry6+56*rX6)*(53*
Cd4*ra2-Cd*rddd)) ;

B BB AR S f F o i o im0 e
case 10 : /F---m—mmmmeo NODE #10 == Inertia Matrix Element : D25 =———————mmmee

S$3 = sin(values[1l]);

5S4 = sin(values[2]):

S5 = sin(values[3]);

S6 = sin(values[4]);

SS6 = S6*S6;

S66 = sin(2.*values[4]);

C3 = cos(values[1l]);

C4 = cos(values[2]);
C5 cos (values[3]);
Cé = cos(values([4]);

activation[1l] [node]= rm5* (C4* (ryy5+rz5*C5* (ra2*S3+rdd4) ) +rz5*55* (ra2*C3+ra3l))
+rmb* (CA* (SS6* (rxx6-ryy6) +ryy6+rz6*C5* (ra2*S3+rddd) ) +rz6*S5% (ra2*C3+
ra3)+0.5* (rxx6-ryy6) *S4*C5*%566)

+rmé* ((C6*rx6-S6*ry6) * (C3*C5*ra2+C5*%ra3-83*C4*S5%ra2-C4*S5*rddd)) ;
break; /¥=m—m—mm oo

case 11 : /¥ —cmmmmemeeaa NODE #11 == Inertia Matrix Element : D26 —-———————meme—co
S3 = sin(values[1]):

§4 = sin(values([2]);
S5 = sin(values([3]);
S6 = sin(values[4]);
C3 = cos(values[1l]);
C4 = cos(values[2]);

C5 = cos(values([3]):
Cé = cos(values[4]);
activation|[l] [node]l= rmb6*rzz6*S4*S5

+rm6*((S6*ry6—C6*rx6)*(83*54*ra2+54*rdd4)—(C6*ry6+56*rx6)*(C3*55*ra2+
S3*C4*C5*ra2+C4*C5*rdd4+585*ra3)) ;
break; /F——mm e

case 12 : [*——————mm——eao NODE #12 == Inertia Matrix Element : D33 =—-—--——m—oeemc_-
54 = sin(values[1]);
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85 = sin(values[2]);
S6 = sin(values[3]);

S84 = S54*54;
§S85 = §5%*§85;
SS6 = S6*S6;
544 sin(2.*values[1]);

mon

S66 sin(2.*values[3]);
C4 = cos(values[1l]):
g5 cos (values[2]);

C6 = cos(values[3]);
C44 = cos(2.*values([1l]);

activation[l] [nodel= rm3*(2.*ra3*rx3+raa3+ryy3)+rmd* ((rxxd-rzzd)*SS4-2 . *ral3*rz4x*
S4+raa3+rdd4*rdd4-2.*rdd4*ryd+rzz4) +rm5* (SS4* (SS5* (rzz5-rxx5) +rxx5-
ryy5)+2.*%rz5* (ra3*C4*C5+rdd4*C5) -2.*ra3*ry5*S4+raa3+rddd*rddd+ryy5) +
rmb6* ( (rxx6-ryy6) * (S44*C5*S66+54*54* (145SS5*556) +C44*556) - (rxxb-rzz6) *
54*54*555+2.*rz6* (ra2*C4*55+rdd4*C5) +raa3+rdd4*rddd+ryy6)

+ rmb* (-2.*S4*ra3* (C6*ry6+S6*rx6)+2.* (C6*rxb6=-S6*ry6) * (CA4*C5%ra3-55+

rdd4) ) ;
break; /X ecemm e e */
GHBE 18 § [Frommmemeeee NODE #13 == Inertia Matrix Element : D34 ===-co————o——o */
54 = sin(values[1]):
55 = sin(values([2]);
S6 = sin(values[3]);

$56 = 56*S6;
S66 = sin{(2.*values[3]):
c4 cos (values|[1l]);
€5 cos (values|[2]);
Cé = cos(values[3]);
activation[l) [node]= -rmd*rdd4*rz4*C4+rm5* (S4*S5* (C5* (rzz5-rxx5) -rddd*rz5)
—rdd4*ry5*C4) +rmb6* (S5* (S4* C5* (rzz6-C6*ChH*rxx6-556*ryyh)-0.5*% (rxx6-
ryy6) *C4*S66-rdd4d*rz6*54))

I

+rmé* (S4*CS5*rddd* (56*ry6-C6*rx6)-C4*rdd4d* (S6*rx6+Ch*ry6)) ;
break; /H*-————— e e */

case 14 ; [F*—————————uuo NODE #14 == Inertia Matrix Element : D35 ———-—————eeo-— */
S4 = sin(values[1l]);
S5 = sin(values([2]);
56 = sin{(values([3]):
SS6 = S6*S6;
566 = sin(2.*values[3]);

C4 = cos(values[1]);
C5 = cos(values[2]):
Cé = cos(values[3]);

activation([l] [node]l= rm5* (C4* (rdd4*rz5*C5+ryy5) +ra3*rz5*S5) +rmé* (C4* (rddd*rz6
*C5+S5S6* (rxx6-ryy6) +ryy6)+0.5*% (rxx6-ryy6) *S4*C5*366+ra3*rz6*55)

+rmé* ( (S6*ry6-C6*rx6) * (C4*S5*rdd4-C5*ra3l)) ;
break; /*——--mrmmm o e e e */

case 15 : [F*=—m———m————eno NODE #15 == Inertia Matrix Element : D36 ——=—=———————o—_ e
S4 = sin(values[1]):
S5 = sin(values|[2]);
56 = sin(values[3]);
C4 = cos(values[1l]);
Cé6 = cos(values[3]):;
activation[l] [node]l= rm6*rzz6*S4*385

+rm6* (S4*rdd4* (S6*ry6-C6*rx6) - (CE6*ry6+56*rx6) * (C4*C5*rdd4+55*ra3)) ;
break; /*--—-—ommmm e e e */

case 16 : [*e=ee—mmmm—ea NODE #16 == Inertia Matrix Element : D44 —-—=—m—m—me—meee o */
§5 = sin(values([1]):
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S6 = sin(values([2]);
8585 §5%85;
5S6 S6*S6;
C5 = cos(values[1])):
CC5 = C3*C5;
activation[l] [node]l= rmé4*ryy4+rmS* (rxx5*S55+rzz5*CC5) +rmé* (SS5* (rxx6+SS6*
(ryy6-rxx6))+CC5%*rzz6) ;
break; /¥ ——cc e e e e e e e e e

*/
case 17 : /*—=————————-—- NODE #17 == Inertia Matrix Element : D45 —————-——-mo———%/
S5 = sin(values[1l]):
S6 = sin(values[2]);
S66 = sin(2.*values[2]);
activation([l] [node]= 0.5*rm6*S5*S66* (ryy6-rxx6);
Break; /[X=ssosmosssdnoses s s s s e s s s RS S e e S s e S S */
case 18 : /*——-——m——mmmmnm NODE #18 == Inertia Matrix Element : D46 =--===—-———e—-- %/
C5 = cos(values[1l]):
activation([1l] [nodel= rm6*rzz6*C5;
break; /*===-———— e e — e xf
case 19 : /*—————————wmun NODE #19 == Inertia Matrix Element : D55 ---—-—-———--——-—- */
86 = sin(values|[1]):
SS6 = S6*56;
Cé = cos(values[l]):
CC6 = CH6*CH;
activation[l] [node]= rmS5*ryy5+rm6* (SS6*rxx6+CC6*ryy6) ;
break; /F—cmemm e e e e e e e e e e e e e e e e m e s */
case 20 : /F=—mem———————— NODE #20 == Inertia Matrix Element : D66 --———===—————- */
activation(l) [nodel= rmé6*rzz6;
break; /*--—---m—mmm oo

}
}



Figure (1) : The Neuron
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Figure (2) : A Multi-Layered Network
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Figure (3) : The Robot Neural Controller
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Figure (4) : The Sigmoid Function



Acceleration-Related Term

T T e s ek RS R

R =

| Y6

NS

||||||||||||

- I

' [

Gravity Term

(5) : The Complete Neural Network




