The
University
o Of

= -n,‘-_“ u}:_.'!?- Bhe&i{“:ld.

This is a repository copy of The Interpretation of Nonlinear Frequency Response
Functions.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/78230/

Monograph:

Billings, S.A. and Peyton Jones, J.C. (1989) The Interpretation of Nonlinear Frequency
Response Functions. Research Report. Acse Report 375 . Dept of Automatic Control and
System Engineering. University of Sheffield

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

THE INTERPRETATION OF NONLINEAR

FREQUENCY RESPONSE FUNCTIONS

S.A. Billings,
J.C. Peyton Jones.

Department of Control Engineering
University of Sheffield
Mappin Street
Sheffield S1 3JD
UK.

Research Report No. 375

November 1989

@ (295 (5)



November 17, 1989

THE INTERPRETATION OF NONLINEAR
FREQUENCY RESPONSE FUNCTIONS

J.C. Peyton Jones, S.A. Billings.
Dept. Control Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD,

Abstract: Analytical and graphical methods of interpreting generalised frequency response func-
tions for nonlinear systems are derived. It is shown that nonlinear phenomena can be classified
into intra-kernel and inter-kernel interference and that worst case responses can be computed.
The results are illustrated using several discrete and continuous time nonlinear systems.

1. Introduction

The interpretation of linear frequency response functions is founded on the close rela-
tion between analytical methods and their graphical representation. The use of Bode
or Nyquist diagrams for example, is well understood and provides a powerful means of
portraying system behaviour. Although several authors have introduced frequency
response functions to generalise this approach to nonlinear systems, there has been no
cohesive method for matching the considerable theoretical development with means to
interpret such functions in physically meaningful ways.

Most nonlinear frequency domain representations have been based on the Volterra
model [Volterra 1959], and numerous authors have studied the propertes of this form,
[Bedrosian,Rice 1971], [Bussgang,Ehrman,Graham 1974], [Chua,Ng 1979]. However
the multi-dimensional nature of these generalised fretiucncy response functions presents
two immediate difficulties; firstly how to interpret frequency spaces of increasing
dimension, and secondly how to relate such forms to the (uni-dimensional) system
input/output spectra, [Vinh et al. 1987], [Billings,Tsang 1989].

In the present study various multi-dimensional frequency representations are interpreted
in a simple graphical manner, with closely matching theoretical development. Within
this framework nonlinear phenomena such as intermodulation, harmonic generation,
and amplitude dependent gain/phase characteristics, may be resolved into two basic
interference effects. Intra-kernel interference (which occurs within any of the Volterra
kernels) is primarily nonlinear in frequency and describes the transfer of energy
between spectral components. Conversely inter-kernel interference (which occurs
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between each of the Volterra kemels) determines nonlinear input amplitude depen-
dency. These mechanisms also expose the relationship between the multidimensional
forms and the (uni-dimensional) system output.

Interpreting higher order frequency response functions in this way also gives insight
into the structure of describing function representations, [Atherton 19757, [Gelb,Vander
Velde 1968]. Indeed a worst case describing function may be obtained for a given
class of inputs and order of analysis.

The paper begins in Section 2 with definitions of the Volterra series and generalised
frequency response functions. Methods of interpreting the n-th order frequency
domain space are given in Section 3, and illustrated with a number of examples in
Section 4. Alternative frequency domain representations, which may be analytically
more convenient are discussed in Section 5. Within this framework the phenomenon of
intra-kernel interference is introduced in Section 6, and is used to develop an expres-
sion for the worst case n-th order output for all inputs within a given bandwidth and
spectral amplitude (Section 7). The inter-kemel interference effect is introduced in
Section 8, and the closely related concepts of generalised describing functions and
worst case describing functions are developed in Section 9.

2. The frequency response of homogeneous functionals

A regular homogeneous functional of degree n has the property that scaling the input u
by some constant ¢ will scale the output by the same constant raised to power n. Such
functionals clearly do not share the additve properties of linear systems, but are
widely used in the characterisation of nonlinear systems.

Consider for example the Volterra model, [Volterra 1959], where the output may be
expressed as the sum of N components Yn(2),

N
Yo = 3 v, (1)
=1

each of which are homogeneous of degree n. These ‘n-th order outputs’ are them-
selves defined by an extension of the familiar convolution integral of linear system
theory to higher dimensions,

W0 = [ [ ) T dt @
— =1

—
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where the ‘n-th order kernel’ or ‘n-th order impulse response’, h,(Ty, - T 1S SO
called because it reduces to the linear impulse response function for the case n = 1.

Equation (2) may also be expressed in the frequency domain by means of the Fourier
transform. Unfortunately the n-dimensional Fourier transform, which is appropriate for
the right hand side of (2), cannot be applied directly to the entire equation since the
left hand side y,(r) is one dimensional. It is common practice therefore to introduce
the ‘associated function’,

Yty 1) = [ - [ a1 ﬁu(f;‘“ti) dr (3)
S =1

—_0

from which the desired output Yn(?) can be recovered by the restriction,

yn(r) = yn(tl’ t rn) |[1= s s == (4>

The multi-dimensional Fourier transform may now be applied to both sides of equation
(3) without difficulty, ylelding,

V(o -+ - jo,) = Hyoy, - - jo,) [TUG®) (5)
&1

where the ‘n-th order transfer function’ or ‘n-th order frequency response function’,
H,(jw,, - - - jw,), is defined by,

oo

HyGoy, - joy) = [ - [ by, o 1) @ ron) dt, - dt, (6)

Notice that (6) reduces to the standard linear ransfer function definition for the case
n =1, and that (5) would then give the familiar one dimensional relation,

Y(jw) = H(jw) U(jw) (7)

A particular property of linear systems illustrated by this equation is that input fre-
quencies pass independently through the system. Thus an input at a given frequency ©

gives an output at the same frequency, and no energy is transferred to or from any
other frequency components.

By contrast nonlinear systems may _exhibit_harmonics or complex intermodulations
between..input frequency. components, and the resulting output is often highly depep.

dent on the precise combination of frequencies applied. Unlike linear systems there-
fore input frequencies do not pass independently through the system, and the output
may appear at some quite different frequency to the given input. The n-th order
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transfer function is able to describe these interactions by means of the n frequency
components which constitute its arguments.

The time and frequency domain representations (2),(5) therefore provide two
equivalent system descriptions, but their relationship by means of the Fourier transform
is complicated by issues of dimensionality, as illustrated in Figure 1. The frequency
mapping (5) operates between two n-dimensional spaces U7, Y7, while the time
domains U,,Y, are one dimensional. To convert between them therefore requires not
only a time/frequency transformation, but also a dimensional expansion/contraction.

For the input, the change to n dimensions is fairly straightforward; the input spectrum
is given by a one dimensional Fourier transform, and this is then expanded to n dimen-
sions, within the frequency domain, by means of a simple product as illustrated by
equation (5) and Figure 1. For the output, the change back to one dimension is less
convenient; the associated function Yalfp, © = - ,1,) is obtained by an n-dimensional
inverse Fourier transform, while the contraction to one dimension occurs, within the
time domain, by means of the restriction (4).

For these reasons it may be beneficial to combine the composite mapping
Y, — Y! > Y, into a single relation,

Yl = Fl¥@y, 0] e oo (8)
- 1 J‘ o J‘ Yn(jGJL A Jcon) e]'((ﬂl-r-m+&),‘)f dwl L d(ﬂn

Qn)" Sy

where F['] is used to denote the Fourier operator. Equation (8) coupled with (5) then
shows more clearly how the input is related to the output by the n-th order transfer
function, and thereby provides a basis for the interpretation of multi-dimensional fre-
quency response plots. In Section 5 it will also be shown that €quaton (8) may be

decomposed into the more meaningful composite mapping Yo = Y, = Y, (see Fig-
ure 2).

3. The input frequency domain and its interpretation

Rather than attempting to evaluate the integral (8) directly, it is worthwhile first exam-
ing the multi-dimensional frequency domain over which this integration is performed.
Not only does this provide a graphical insight into many of the more familiar
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analytical forms and methods, but it also gives meaning to the features of the fre-
quency response function which lie over this domain.

For example the second order transfer functon of Figure 11 exhibits several distinct
ridges which lie above lines in the 2-dimensional frequency domain, (see associated
contour plot). The lines may be considered as sub-domains of the overal]l 2-
dimensional space, and each defines a relation/constraint which must be satisfied by
the input frequencies if they are to excite that region.

In the following sections a number of such sub-domains are considered, and the con-
straints which they define are related to the input/output properties of the system so as
to provide a means of interpreting the higher order frequency response functions. For
ease of graphical representation the interpretations are illustrated mainly by second
order examples, though they also hold for the higher order case.

3.1. Sub-domains of constant input frequency

The simplest, and perhaps most trivial sub-domains to consider are those of constant
input frequency w,, given by,

W;, = ©; = const 1<isn )

Clearly the w,, axis is identical to any ®; axis, and these domains are easily drawn
graphically as shown for the 2nd order case in Figure 3. For this reason, and to distin-
guish it from other domain representations considered later, the w,, - - - ,0, domain
will be called the ‘input domain’.

Sub-domains of constant input frequency are closely related to the spectral components
of the input U(jw), and help to identify the points at which these interact to excite the
system. For example a two tone input having spectral lines at tw, and *w, will excite
a second order system as shown in Figure 4. Notice that the system is excited only at
the intersection of constant input frequency sub-domains corresponding to the cartesian
product JTU(jw,) of equation (5). These points therefore also correspond to the partic-
ular harmonic or pairwise intermodulation of frequencies given by their frequency
domain co-ordinates.



3.2. Sub-domains of constant output frequency

Just as it important to understand which points in the multi-dimensional frequency
domain are excited by constant input frequencies (Section 3.1), so it is also important
to understand which points in the multi-dimensional frequency domain generate con-
stant output frequencies. The sub-domains of constant output frequency thereby defined
can then be used to expose the relationship between the multi-dimensional frequency
function Y,(jw; - - - jw,) and the unidimensional output spectrum Y,(j®,,), (see Sec-
tion 5). :

Consider first equation (8). Inspection of the exponential term shows that the output
¥n(?) contains a component at frequency ®,,, given by,

n
Woy = Y ; = const (10)
i=1
Any set of points on Y,(jo,, - - - jo,) therefore, whose co-ordinates conform to (10),

contribute to the same output frequency w,,; in other words (10) describes a sub-
domain of constant output frequency.

Consider for example a system with an isolated quadratic nonlinearity in the input.
The second order output would be of the form,

0 = 721?)5 [ ] TG joy &% o, dw, (11

Inspection of the exponential term, or direct application of (10), shows that the
domains of constant output frequency are given by the lines,
Wy = W) + (12)

while w,,, itself must increase in an orthogonal direction, namely along the line
®; = ®,. These concepts are illustrated schematically in Figure 5.

Suppose then that the input was the two tone example of Section 3.1 and Figure 4. By
superimposing on that figure the diagonal lines of equation (12), the output frequency
corresponding to each harmonic or intermodulation is clearly seen, (Figure 6). Hence

by simple graphical means a considerable insight into the nonlinear behaviour of the
system is obtained.

Notice also from this example, that an output component at frequency ®,,, is always
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paired with one at —w,,. Indeed for any order of frequency response, it is only
strictly necessary to consider the region defined by 0 < ®,, since the remaining half
of the multiple frequency response may be found by conjugate symmetry through the
origin. This is reassuring since it implies that real inputs give real outputs.

A similar development may be applied to higher order response functions. In the 3rd
order case any portion of the integrand (8) lying above the planar domain,

Wy = O + 0 + @, (13)

again contributes to the single output frequency ®,,, only this time the ®,,, ‘axis’ now
runs (orthogonally to these domains) along the line W) = W, = (), as illustrated in Fig-
ure 7.

In general, although the dimensions of the constant output frequency domains increase
with the order of the output (from a line to a plane and so on), the w,,, ‘axis’ will
always be the line orthogonal to (10) given by,

(ﬂl = "~ = (!)n (14)

Equations (10) and (14) therefore form a useful framework with which to interpret the
output properties of frequency response functions.

3.3. Sub-domains of constant frequency difference

Whilst the constant input or constant output frequency characteristics of a system are
undoubtedly important, the behaviour of some nonlinear systems is dominated by the
difference in input frequencies. This is the case when a particular intermodulation
characteristic is less dependent on the absolute values of the frequencies concerned,
but more dependent on their relative frequency separation. For this reason it is of
interest to define sub-domains of constant frequency difference, Aw,,, between any
pair of input arguments ®,, ®, according to,

Awy, = 0, -, = const (15)
Thus in the second order case such domains are given by the lines,
Awy = - (16)

as shown in Figure 8. Note that a point on the line of zero difference is excited by a
single frequency component, (since ®; = ), and gives an output at twice that



frequency, (since ,, = @, + , = 2w;). Thus the line Aw,; =0 corresponds to that
on which harmonics of the input are generated.

The same ideas may be extended to higher orders. The second order line of constant
frequency difference becomes a plane for the third order case, and so on. Note how-
ever that in these higher order cases, the pairwise definition (15) yields not one but
several sub-domains of constant frequency difference. For example the third order
domain has three such planes, Aws,, A®,, Awys, , depending on which pair of fre-
quencies are differenced. For analytical purposes it may be desirable to specify one of
these only, and this may be achieved with the new definition,

Aw = W, -®,; = const (17}

Although this may appear restrictive, its use in conjunction with symmetric functions
(where the order of arguments is immaterial) presents no difficulties.

3.4. Other sub-domain definitions

The sub-domains discussed in previous sections were chosen because they correspond
to many of the features commonly found in multi-dimensional frequency response
functions. It should be remembered however that any reladon between the input argu-
ments @, - - - ,W, constitutes a sub-domain definiton, and that input constraints in a
particular situation may often have graphical as well as analytical meaning.

Consider for example a situation where the input is known to consist of a number of
pure harmonics. This might arise for example in a nonlinear cascade or feedback
situation where one nonlinear system generates harmonics which are fed to the input of
another. Mathematically harmonic frequency components are related by the equation
@; = mw,, or more specifically for the second order case,

®, = moy m= %,1,2,..-M (18)

L

7
Thus the harmonic constraint defines lines within the second order domain of increas-
ing gradient, representing the only points which can be excited by such an input. See
Figure 9 for an illustration of these ideas. In a similar way other known relations

between input frequencies may be mapped graphically, and used to indicate the regions
of interest within the overall frequency domain space.



3.5. Symmetry within the input domain

Having explored various sub-domains of the input domain space, it is now worth con-
sidering the integrand Y,() of (8) in more detail. In particular notice that this function
is not unique , since permutation of any of its arguments will change the form of the
function, but yield the same output y,(f) when integrated in (8). Notice also (from (5))
that this effect is experienced only through the transfer function H,(je, - - - JO,),
since (by commutativity) the order of arguments in the input U(jo,) is immaterial.

The use of the 'symmetric transfer’ function is therefore widespread, since it alone is
unique in this sense, having values which are independent of the order of its argu-
ments. This property is obtained by summing an asymmetric function over all possible
permutations of its arguments and dividing by their number, according to,

HY™Goy, o jo) = — % Hyo, o) (19)

n! all permuations
of @ - - - ©,
It 1s perhaps reassuring to note that all the permutations defined by (19) contribute to
the same output frequency, since the equation W, = @; + * * - + ®, is unchanged by
rearrangement of the ®; Indeed graphically speaking such functons will have
reflectional symmetry about lines of -cqua.l arguments, as shown symbolically by the
two dots included in the figures of this section. The appearance of the various sub-
domains discussed above is therefore unchanged by the symmeterisation process.

4. Examples

4.1. Co-incident quadratic nonlinearity

Consider then a NARX model (Nonlinear Auto-Regressive, with eXogeneous inputs)
[Chen,Billings 1989], with a simple input nonlinearity,

y(@® = 0.84u(r-1) + 0.8y(r-1) — 0.64y(:—2) — 0.04u(r-1)? (20)
Such models are readily obtained for practical systems, using existing algorithms for
structure detection, parameter extimation, and model validatdon. In this case equation
(20) represents a linear digital resonator with (normalised) natural frequency +m/3

rads/sec, together with a quadratic nonlinear term. Indeed the first order response
functon is generated by the linear terms alone, see Figure 10,

0.84¢7/@
1 — 0.8¢79 + .64 %
_9.

H(jju) = (21)



The second order response however is computed by a recursive ‘probing’ algorithm,
[Peyton Jones, Billings], giving

o 0.04¢ 7@ + @)
Hy(jo, jo,) =

1 — 0.8 (™1 + @) | ( gq,U(n+ o) )

which is plotted in Figure 11, together with the corresponding contour diagrams. The
magnitude plots exhibit three distinct ridges lying along sub-domains of constant out-
put frequency. By graphical measurement, two of these ridges correspond to output
frequencies ®,,, = w;+®, = +7/3. Thus input components whose frequencies conform

to this relation transfer their energy by intermodulation to an output resonance at the
system’s natural frequency.

This interpretation is readily validated from the analytical form (22) whose characteris-
tic equation is identical in form to that of (21) but with ® in the latter replaced by
(w; + ®y). Thus any inputs ®;,w, which sum to the linear resonant frequency #m/3,
will excite the poles of the second order response and thereby generate the ridges
observed in the figure. Features generated in this way are quite common in higher
order frequency response plots, since it is generally the case that models of this type

possess poles at output frequencies which match those of the first order characteristic
equation.

There is however a third ridge which can be seen in Figure 11, corresponding to the
constant output frequency domain, w,,, = ®+w, = 51/3. This output therefore occurs

above the Nyquist sampling frequency of = rads/sec, and represents aliassing of some
lower frequency feature.

More generally the aliassing effect causes the plots to have reflectonal symmetry
about the Nyquist limit ®,,, = ©;+; = 7, so by inspection of Figure 11 the spurious
ridge in this case was caused by aliassing of the one at @, , = 7/3.

Similar comments can be made about the phase plots and their contour diagrams
whose features are clearly aligned with the same domains of constant output fre-
quency. Notice however the conjugate symmetry about the d.c. output sub-domain
Wy = W1+ = 0, which reassuringly implies that the time domain output will be real
valued. In practice phase characteristics may be of considerable importance in deter-

mining interference effects between components at the same output frequency, (see
Section 6).
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4.2. Dynamic quadratic nonlinearity

Other features of frequency response functions may also be recognised as instances of
the constant sub-domains discussed in Section 3. Consider for example the system

y(®) = 0.84u(r-1) + 0.8y(r-1) — 0.64y(:=2) — 0.04u(t—1)u(1-3) (23)

where the co-incident nonlinearity u(t—ll)2 of the previous example has been replaced
by the dynamic nonlinearity wu(r—1)u(r—3). The linear response remains unchanged
from (21) and Figure 10. The second order response shown in Figure 12 also exhibits
the same ridges as before, and the same discussion applies. An additional feature how-
ever is given by the deep gorges cutting across the second order response function
along lines of constant frequency difference. By graphical measurement these gorges
correspond to difference frequencies Aw = @, —p =31/2,3n/2. Thus input com-
ponents whose frquencies conform to this relation scarcely excite the second order ker-
nel, and the response to this input would be purely linear.

This interpretation may also be confirmed analytically. The second order response for
the modified system (23) is given by [Peyton Jones, Billings],

004[ e‘f@h + 30y + e‘j(30)1 + @) ]

Hy(jo,jo,) = (24)

1 —0.8¢7® @) | (ggp720r + @)

Comparing with (22) the new features must be generated by the numerator of (24), i.e.
the zeros of the system. Such zeros occur whenever the two exponential phasors can-
cel, i.e. whenever,

O+ 30, = 30, + 0, = Cm+D)r m=0,1," - (25)
which can be rearranged to give,
Am:col—a)z=i-(2—m;-l)£ m=0,1, - 26)

Thus frequencies whose difference conforms to (26), excite zeros of the second order
response, and thereby generate the gorges observed in Figure 12.

4.3. Nonlinearities in continuous time

While parametric models are often used for system identification, continuous integro-
differential models often result when the system is modelled from the constituent phy-
sical processes. An advantage of frequency domain interpretation however, is that it
provides a common link between many model descriptions whether in discrete or
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continuous time. Consider for example the continuous time model,

:;‘;1 . 2gmn% + oy - @2u + 0.00502? = 0 @7

with @, = £100%/3, { = 0.2. The linear terms are designed to give a continuous reso-
nator with characteristics similar to the discrete model of equaton (20). The first
order response, illustrated in Figure 13, is given by,

w?

H,({ =
1) (jw)? + 2Lw,(@) + w2

(28)

In this case however the nonlinearity is in the output terms, giving the second order
frequency response [Billings,Peyton Jones 1989],
H,(jwH, (jo,)

Hy(jo,jw;) = —0.00502x
2001/ (o+iw,)? + 20w, (o, +w,) + w?

(29)

which is plotted in Figure 14. As before the second order characteristic equation is
identical in form to that of the linear response, but with ® in the latter replaced by the
constant output frequency (@, + ,). Thus the poles of Hy(-) are excited whenever
Wour = @1 + Wy = Tw,, thereby generating the diagonal ridges of the second order mag-
nitude response, (see solid lines in the contour plot). Notice that compared with the
discrete case that there are no similar ridges generated by aliassing.

There are however a number of additional ridges lying along lines of constant input
frequency, (see dashed lines in the contour plot). The origin of these features (and
their input dependency) may be seen by the inspection of (29), where a ridge is gen-
erated whenever one of the factors H, (") is excited at the linear resonant frequency,
£100m/3. Local peaks may also occur whenever two or more such ridges intersect, as
marked by the dots in the contour plot of Figure 14.

Such examples illustrate how an understanding of the input domain (Section 3) can
prove a useful aid in the interpretation of multidimensional frequency response func-
tons. The approach may also be extended to give representations in transformed
domains whose analytic charactersitics may prove advantageous.

- 1



5. Representations in transformed domains

5.1. Input/Output domain representation

The integration (8) is defined in variables of the input domain, and therefore relates
closely to constant input frequency sub-domains. Interest in the output frequency
response might however motivate a change of variables, so that the integration is
expressed more directly in terms of the constant frequency domains defined in equation

(10), and the output frequency axis given by equation (14). Making the change of
variables,

o, =Y (30
i=1
whose inverse is,
, n—1
0, = 0,-3Y o (AL
i=1
defines what will be called the ‘input/output domain’ Wy, "0, 1,0, and gives from
equation (8),
(32)
= " p : T = @ o ’
yat) = — [ [ VG, - jo, e X 0]) €97 doy, - do, de’,
ot e £l

It should not be surprising in view of the discussion Section 3.2, to note that equation
(32) is in the form of an inverse Fourier transform,

1 " < 7 [ ’
= — Y n
y,(0) o -L 200 €97 do’, (33)
where
, 1 3 PO N
Yn(](ﬂn) = (2n)n_l J' sore I Yn(]ml’ e J(Dn_h][(!) u—z CDI]) dGJl, . ’dmn—l (34)
iy i i=1

Notice from equations (30),(10), or alternatively by direct inspection of equation (33),
that sub-domains of constant output frequency are now given by,

W,y = @, = const (35)

and that the output frequency axis is identcal to the @’, axis. This is shown for the
2nd order case in Figure 15.
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5.2. Output domain representation

The geometric regularity of the constant output domains, and the simplicity of equation
(33), makes analysis in the input/output domain appear initially quite attractive. The
form (34) is however rather cumbersome, and may be simplified if the process of
changing variables is extended until the entire input domain has been transformed.
Making the new change of variables,

k
o = Y o (36)
=1
whose inverse is,

& o g (37)

defines what will be called the ‘output domain’ w’}, - - - ,’,, and gives from (8),

Y0 = [ [V lo=a, - - o' ]) dar; - der,  (38)
Tc —cn —o0
As before the n-th order output can be expressed as a simple inverse Fourier transform
(33), only in this case, (39)
i 1 P F T ’ 7 . ’ ’ ’ ’
Yo'y = oy [ ] ragojleyon), - jlo,—of, ) doy - - - doo n-1

Notice with reference to Secton 2, that equations (33),(39) decompose the single map-
ping Y§, — Y, given by (8), into the composite Yg, — Y, — Y,, (see Figure 2). By
comparison with the alternative composite Figure 1, this represents a considerable
advantage, for not only does it dispense with the artificiality of the associated function,
but it introduces the more meaningful spectrum Y(jw).

Not unnaturally the sub-domains of constant output frequency remain as shown in Fig-
ure 15, with the output frequency axis identical to the @’ axis, Indeed for the second
order case equatons (34),(39) are identical. However the difference between the
input/output and output domains becomes apparent for higher orders.

This difference is best illustrated by considering the representation of sub-domains of
constant input frequency in the newly defined forms. In the input/output domain these
are largely unaltered, and only the n-th input frequency domain is changed according
to (31). In the output domain however all (bar the first) sub-domains of constant input
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frequency are changed according to the relation (37).

Although the second order example does not highlight this difference, it does serve to
show how a sub-domain of constant input frequency is transformed by the change of
variables (31) or (37), - that is (see Figure 16),

W, = 0y- ) = const (40)

Note in comparison with Figure 3, that it is more difficult to visualise domains of con-
stant input frequency within the output frequency domain, than it is to visualise
domains of constant output frequency within the input frequency domain.

For completeness consider also how sub-domains of constant frequency difference map
into the output domain. Substituting for 0, ®, ; in equation (17) gives from equation
(37) (for the case n = 2),

Aw = o5 =20 = const 41

and these second order sub-domains are shown in Figure 17. Notice again that the

ransformation has adversely affected the geometric appearance of the Aw sub-
domains.

Thus the output domain representation may sometmes present some analytical advan-
tages, and certainly makes sub-domains of constant output frequency appear more reg-
ular. However this is achieved at the expense of other sub-domains of interest, whose
geometric representation is more difficult to visualise in the new form. For this rea-
son, and for reasons discussed under ‘Symmetry’ below, the output domain representa-

tion will be used in analytical arguments, but these will be illustrated in input domain
graphical form.

5.3. Other domain representations

The process of changing variables described above may be used in a similar way to
define many other domain representations. For example a ‘difference’ domain,

@y, +  +,@",, which caused sub-domains of constant frequency difference to appear
more regular, could be defined as,
m‘ — (01_1 1< I1<n
= ; 1=1 (42)
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Unfortunately transformations such as equation (42) posess similar difficulties of visual
interpretation to those experienced within the output domain, but may not yield
analytical advantages of the latter. Meanwhile other transformations, such as a simple

rotation, may preserve visual features but complicate analysis by introducing non-unity
Jacobians.

5.4. Symmetry within transformed domains

The process of changing variables described above implicitly defines new frequency
response functions in each domain. Thus for example,

GRA(jo’y, + - Ja'y) = Gl 1l 01], - -+ Jl@ =0 py]) (43)
defines a new function in the output domain. Indeed the ‘regular’ transfer function of

Mitzel et al [Mitzel,Clancy,Rugh 1979] is derived (from their ‘mriangular’ function) in
such a way.

Such functions may be unique in the sense that they were calculated by transformation
of an input domain symmetric funcdon, but not in the symmetric sense discussed in
Section 3.4. Indeed an input domain symmetric function transformed for example to
the output domain, has its symmetry warped by the new co-ordinate axes,

(note the symbolic dots included in Figure 17 which are no longer symmetric about
the line of equal arguments). However symmetrisation analogous to (19) may be
applied directly in the new domain, giving functions whose values are once more
independent of the order of their (transformed) arguments.

As expected functions symmeterised in this way become analytically more amenable.
For example it is then possible to rewrite (33) for any ®’;, and any axis could be used
as the w,,, axis. However graphical visualisation may become more complicated; for
example symmeterisation of the output domain introduces reflectional symmetry about

lines of equal arguments, so that domains of constant frequency difference now appear
as shown in Figure 18, (compare Figure 17).

= 1.



6. Intra-kernel interference

Having identified those points in the frequency domain which contribute to the same
output frequency (Section 3.2), it is also important to understand how these (mult-
dimensional) components combine and collapse to form a uni-dimensional output spec-
trum. Mathematically this process is given by equation (39), which shows that the
final output Y(jw) at any given frequency results from an integration across the
corresponding constant output frequency sub-domain.

Consider for example the two tone case of Figure 6, (illustrated in the input domain).
Since the system is excited only at a few discrete points, the integration (39) reduces
to a simple summation across each diagonal sub-domain of constant output frequency.
Thus the d.c output results from a summation of four contributions, the intermodula-
tion output w,~, from a summation of two, and so on. Notice however that each
contribution is a complex or vector quantity having magnitude and phase. The
integration/summation therefore consists of a vector addition of components which
may act constructively or destructively upon one another. Thus equation (39) is highly

significant, for it describes an interference effect between output components which
will be termed ‘intra-kemel interference’.

To illustrate this phenemenon consider again the example system 4.3, with a continu-
ous time quadratic nonlinearity. Suppose the system were excited in such a way as to
produce two intermodulations, marked a,b, within the same constant output frequency
sub-domain, as shown on the contour plots of Figure 14. The gain/phase response at
each point may be represented by a phasor, so that their combined contribution to the
output at that frequency is given by the vector diagram Figure 19(a). Notce that the
two contributions are broadly in phase, so that the phasors a,b combine constructively
giving a large resultant R, .

Suppose now that the input is changed so that the system is no longer excited at point
b, but at another point ¢ (still within the same constant output frequency sub-domain).
In this case the vector combination of a and ¢ are not so well aligned, causing destruc-
tive interference and a smaller resultant output R, ¢, shown in Figure 19(b).

Particularly dramatic examples of constructive/destructive intra-kernel interference may

also be seen by inspection of Figures 11,12. In the former case, all points within a
given output domain are perfectly in phase, giving the maximum superpositon of the
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output components. In the latter case however the phase is reversed as the domain of
constant output frequency is traversed by one of the gorges in the figure. Points either
side of these gorges are therefore in perfect anti-phase, giving the maximum cancella-
tion between any such output contributions.

Such examples illustrate that intra-kernel interference can have a very profound effect
on the final output, and in particular that it may be misleading to interpret the magni-
tude response alone without regard to the phase of those points of interest.

When more input frequencies are involved the situation becomes more complicted to
visualise, but the same principle underlying equation (39) applies. Consider for exam-
ple a system excited by white noise of variance A. The input therefore has a flat spec-
trum of amplitude A, and excites every point of the transfer function into the response.
Indeed using equation (5) the output spectrum (39) may be rewritten,

AP
(275)"_1

Y (jo) = [ | HuGo'le' '], - - - fle =) da’y - - - dw',y (44)
showing again how the multi-dimensional response is collapsed down to a one dimen-
sional output spectrum. In the process of this complex/vector integration all the points
within a given sub-domain of constant output frequency interact in the manner
described above. Depending on the exact form of H,(-) they may act constructively,
but equally it is possible that they may act destructively, with one intermodulation can-
celling the effect of another. The white noise response therefore does not necessarily
give the worst case output, and cannot guarantee that every nonlinear mode reaches the
final output. However the concept of a (unidimensional) worst case response could be
useful, and is further developed below.

7. Worst case n-th order output response

The discussion of Section 6 illustrates how it is possible to obtain a unidimensional n-
th order output response for a nonlinear system, but only for a particular known input
or combination of input frequencies. Indeed it is for this reason that a nonlinear
transfer function is multi-dimensional in frequency so that any possible input combina-
tion may be accomodated.

However in spite of the interpretations given in this paper, the multi-dimensional form

< I8 =



is not easy to assimilate, particularly for higher orders. In addition there are many
cases where the precise form of the input is not known. Another approach therefore
might be to sacrifice the detail of such descriptions for the clarity of the unidimen-
sional response, and introduce instead bounds of uncertainty to accomodate a range of
possible inputs. Of course if an interesting feature were detected in this *worst case
n-th order output’, then the analyst could examine it in more detail by reverting to the
multidimensional form.

A suitable class of inputs to consider might be defined as falling within a frequency
bandwidth ), and spectral amplitude range <A. The worst case output can then be
obtained in a manner similar to that already described for white noise, only in this case
every point is forced to act constructively by integrating only the modulus of the fre-
quency response, and assuming that all points are in phase, (45)

An

Y:or.ﬂ‘( (l)) — :
2m)™

[ [ H (0"l -w'y], - - - JO' =0 Dl de'y - - dw,

Thus the worst case input is similar to white noise in the sense that it excites every
point of the n-th order transfer function into the response, but it has the additional pro-
perty that its phase brings all these contributions in line so that they all act construc-

tively. The resulting output spectrum then has a magnitude bound given by equation
(45) and arbitrary phase.

Finally some consideration must be given to the bounds of integration, for although the
input is bounded by ®,, equation (45) is expressed in the output domain @', - - - ',
The new limits may be found by applying the input constraint on equatons (36),(37),
giving

lﬂ)’il < imb 1<i<n (46)

|(l)’i B (D’i—].l 1< i <n

Since the output frequency @’ is fixed, equation (47) may be rewritten with shifted
indices and rearranged to give,

'l 2 o', - o, 1<i<n-1 (48)

Using (46),(48) equation (45) may be given more explicitly as, (49)

min (i, (©L+o,))

API

(270"_1 max {—i®,(w,;~-w,))

Y:or.s‘r (CD) =

H, (o' jlo'—w'], - - JIO 0, Dl de’y - - - dw’,_,

=19 =



which using (43) may also be written,

min {i®y,(0;+w0y)}

A’l

(ZTC)H_I max {*.I:mb.(mi.u"mg)]

Yo(@) = HGa', - - - jo',) dofy - - - dol, (50)

7.1. Examples

Consider again the continuous time nonlinear system of equation (27) excited by any
input within the bandwidth ©p, = 100w, and spectral amplitude range A <0.8. The
worst case second order output spectrum for this class of inputs may be found by
integrating |H,(-)| along sub-domains of constant output frequency according to equa-
tons (49), or (50). Performing this integration numerically collapses the second order
transfer function of Figure 14 to the magnitude bound shown in Figure 20, while the
phase is arbitrary. This form, being one dimensional in frequency, is easier to
comprehend, but still retains some of the dominant features of its multidimensional
counterpart. For example the resonance of Figure 20 corresponds to the diagonal ridges

of Figure 14, which are in turn generated by the poles of the second order transfer
function as discussed in Section 4.3.

The same approach may also be applied to higher order responses which otherwise
have no graphical representation. Consider for example the third order transfer func-
tion of equation (27) which is given by,

Hy(jo,j@yjws) = (51)

—0.005w2 JG0)H(0,j03) + 2H, (jay)Ho(joy jas) + Hy(jos)Hy(jeo, jo,)
2 (oo tjortjes)? + 20w, oy o) + w?

The response, having three dimensions, cannot easily be plotted graphically. However
the third order worst case output spectrum can be obtained by integrating |H,(-)| over
all the planar sub-domains of constant output frequency within the input bandwidth

according to equations (49), or (50). The resultant magnitude bound is shown in Fig-
ure 21.



8. Inter-kernel interference

Having examined the factors affecting the n-th order output response, it now remains
to see how the response of different orders combine together.

The total output response at any given frequency may be given by the Fourier
transform of equation (1),

Yjo) = ¥ ¥,gw) (52)
=1

and is clearly dependent on the n-th order responses. To separate these two discus-
sions therefore, it will be assumed that the input spectrum remains unchanged, except
perhaps for a pure change in scale A. Each n-th order output Y,(jw), being homogene-

ous, is therefore also constant apart from a change in the scale of A”. Equation (52)
then becomes,

Y(Ajo) = % A" Y, (jw) (53)
=1

where the Y, (jw) may be considered as some constant set of spectra which have been
pre-determined according to equations (34) or (39). The summation of equation (53),

which combines the contributions from each order, can then be considered in relative
isolaton.

Firstly it is important to note that equaton (53) is one-dimensional, and that the final
output at frequency @ is obtained only from components in each n-th order output at
this frequency. Unlike intra-kernel effects therefore, this combination of components

from different kemels does not involve any intermodulaton or transfer of energy
between frequencies.

However it should also be noted that the contributions from each kernel at a given fre-
quency, being complex (phasor) quantities, may act constructively or destructively on
one another in the summation (53). This equation is therefore highly significant, for it
describes an interference effect between output components from different orders
which will be called ‘inter-kernel interference’.

To demonstrate this phenomenon consider the case where the n-th order responses at a

given frequency ®, are those given in Figure 22(a) — (These values have been chosen
for clarity of illustration, and do not correspond to any of the examples in Section 4).
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Each response, having magnitude and phase, may be represented by a phasor, so that
their summation can be depicted by the vector diagram, Figure 22(a). In this case the
original magnitude of the linear frequency response Y(jw) is increased by the phasor
addition of higher order contributions, and the inter-kernel interference effect may be
classified as ‘gain expansion’. At another frequency ), the same system may have the
n-th order responses shown in Figure 22(b). In this case the magnitude of the linear
frequency response Y,(jw) is decreased by the addition of the nonlinear components,
giving a destructive interference effect or * gain compression’.

As well as altering the magnitude of the linear response, inter-kernel interference also
modifies the phase. For example the nonlinear contributions of Figure 22(a) retard the
phase of the resultant relative to that of Y,(jo), while those of Figure 22(b) cause
phase advance. Such phase effects should not be overlooked, particularly in control
applications where the phase crossover point can be vital in the design of stable con-
trollers. Notice  also  that phase advancement/retardation  and gain
expansion/compression can occur in any combination since the resultant output phasor
may lie in any of the areas shown in Figure 23.

Another property of inter-kemnel interference is the dependence on the input amplitude
A. By inspection of equation (53) a value of A < 1 gives a decreasing weight to the
higher order output response contributions, while values of A > 1 increase their
significance. This is in agreement with the observation that nonlinear systems may
appear almost linear at low input amplitudes, but become increasingly nonlinear in
their behaviour as the input amplitude is increased.

Such amplitude effects may again be illustrated using phasor representations. If for
example the input amplitude for the vector diagrams of Figure 22 were doubled, the
linear output ¥;(jw) doubles, the second order phasor Y,(jw) quadruples, and so on.
The increased input amplitude results in an unequal scaling of the phasor contributions
of each n-th order output, and considerably modifies the shape of each diagram, as
shown (half scale) in Figure 24(a),(b). Notice that the change in input amplitude was
sufficient to drive the resultant output at frequency w, from an area of gain expansion
into one of gain compression, (compare Figures 22(a),24(a)). Indeed high amplitude
gain compression is fairly common, and corresponds to saturation of the system.
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9. Generalised describing functions

The output response resulting from inter-kernel interference has close links with the
describing function approach to nonlinear systems analysis. The latter is a quasi-linear
(but amplitude dependent) transfer function relating input and output components at the
same frequency,

NAjo) = % (54)

Equation (54) might suggest that input frequencies pass independently through the Sys-
tem, whereas in reality there may be considerable interaction through intermodulations
and intra-kemnel interference. For this reason the describing functon definition is res-
tricted to a specific input waveform such as, for example, a single sinusoid, and the

approach is rarely extended beyond the two tone case. More generally however, equa-
tions (53),(54) may be combined to give,

1

N jo) = m

N
> A Y (o) (55)

n=1

where N(A,jw) is considered to be undefined at any frequencies U(jw) = 0. Note that
the spectrum Y, (jw) is given by the intra-kernel equations (34) or (39), and therefore
accomodates any given frequency combination.

Expanding the first term of equation (55) yields,

o 1L & i
NAjo) = H (o) + T EZA Y, (jo) (56)

Thus the describing function is given by the linear response, whose gain and phase are
modified by the inter-kernel interference terms of higher order.

While equation (56) may be illustrated by the phasor diagrams similar to those of the
previous section, the describing function representation enables input and output to be
related more directly. For example the amplitude dependence of gain
compression/expansion at a given frequency may be illustrated using a ‘gain response
curve’ as shown in Figure 25(a). If the system were in fact linear, then the input/output
amplitudes would be related by the dotted straight line of the figure, whose gradient is
indeed the linear gain IH,(jw). Nonlinear components modify this response, giving an
augmented output (gain expansion) at points above the dotted line, or a decreased out-
put (gain compression) below it. The two marked points correspond to the phasor plots
Figures 22(a),24(a), and demonstrate how these curves may be obtained by evaluating

.95 .



equation (53) at different input amplitudes.

The effect of amplitude on phase advancement/retardation may also be depicted in a
similar manner by means of a ‘phase response curve’ as shown in Figure 25(b). In
this case the linear phase is independent of input amplitude, giving the horizontal dot-
ted line of the figure. However inter-kemnel interference from nonlinear components in
the output can cause phase advancement, raising the curve above the dotted linear
response, or retardation which lowers it. Again the marked points on the figure

correspond to the phasor plots Figures 22(a),24(a) which illustrate the interference
mechanism at any given amplitude.

9.1. Worst case describing functions

While the expression (56) provides a means to derive a describing function for any
given input, it then remains specific to that input. An alternative might be to derive a
describing function with bounds of uncertainty to accomodate a whole class of inputs.
The basis of this approach lies in the worst case n-th order output response function of

Section 7, and the describing function equaton (56). A worst case describing function
may then be defined as,

N
N(A,]'O))wwsr - Hl(]ﬂ)) + E An—l Y:'orsl(w) (57)

=2

Note that Y;*"*(w) represents a magnitude bound with arbitrary phase, and division by

the unity amplitude spectrum U(jw) in equation (56) is therefore immaterial in this
case.

The lack of phase information also makes it impossible to distinguish between gain
compression or expansion, or between phase advancement or retardadon. Instead the
worst case describing function gives circles of uncertainty of radius AH(w),

N N
AH(@) = 3 AH (@) = 3 A1 yworsg) (58)
n=2 n=2

which are imposed on the linear response as shown in the phasor plot Figure 26.
Notice that the maximum phase uncertainty A¢, introduced by the nonlinearites,

depends on the magnitude of the linear response, since by simple trigonomewy from
the figure,
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AH(w)

Ad = arcian [E-(}m_)l] (59)
The gain and phase uncertainties, AH(w),Ad, have the same amplitude dependence as
any describing function, i.e. doubling the input amplitude, for example, doubles the
second order uncertainty, quadruples that of the third order, and so on. This effect may
be depicted using gain or phase response curves similar to those of the previous sec-
tion, only in this case the curves themselves are replaced by bands of uncertainty as
shown in Figure 27. However the existance of a well defined input at all frequencies
within the specified bandwidth ensures that equaton (57) is also well defined at all fre-
quencies of interest Thus the gain and phase response plots, which relate amplitude
dependence at a constant input frequency, may be complemented by worst case Bode
or Nyquist plots across all the frequencies of the bandwidth, but at constant amplitude.

9.2. Examples

Consider once again the continuous time nonlinear system of equation (27) excited by
any input within the bandwidth @, = 1007, and spectral amplitude range A <0.8. The
worst case second and third order output spectra shown in Figures 20,21 may now be
combined with the linear response to give a worst case describing function according
to equation (57), with analysis truncated above third order, The result is plotted in
Figure 28, with the familiar linear transfer function shown in solid line, surrounded by
bands of uncertainty AH(w),Ad shown in dotted form.

The bands are quite wide and may in practice be overly pessimistic. Nevertheless they
do provide a useful overview of the system behaviour. For example the major uncer-
tainty in this case is at low frequencies, and the dominant resonance stil occurs at the
linear resonant frequency. The gain and phase margins also have been seriously
encroached by the system nonlinearities, though for this (truncated) analysis the system
remains stable. Notice also that if more information were available concerning the

system inputs, it might be possible to contract the bands of uncertainty by restricting
the class of inputs considered.

-25.



10. Conclusions

The n-dimensional frequency domain has been interpreted by defining sub-domains
which relate directly to the system input/output behaviour. Based on these forms vari-
ous alternative domain representations which stress system output properties have also
been considered. The interpretation of the n-dimensional frequency space gives mean-
ing to the generalised frequency response functions of nonlinear systems, and exposes
the relationship between the (uni-dimensional) input/output spectrum and the multi-
dimensional model form. In particular nonlinear effects may be divided into those
which are intra-kernal and primarily frequency dependent, and those which inter-kernel
and primarily amplitude dependent. These mechanisms which reduce dimensionality
give insight into describing function analysis, and also enable the *worst case’ response
for a specified class of inputs and order of analysis to be determined. In some cases

the latter may be overly pessimistic but can still provide a useful overview of the Sys-
tem behaviour.
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a: H,(jo,/2jw,/2) =20.7 103 £ 60 °

b: Hy(—jo,2je,) = 10.0 103 £ 15 ° ¢ Hy(—joo /2,3jw/2) = 11.6 103 £ —49 ©

b

Fig 19 (a) Fig- 19 (b)
Constructive intra-kemel interference Destructive intra-kemel interference
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Fig 20 Worst case 2nd order output
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Fig 21 Worst case 3rd order output



Y (w,) =129103 £ 75 ° Y, (o) =164 103 £ 114 °
Y,(jw,) = 6.7 103 £ 30° Y,(op) = 72103 £ -125°
Yi(w) = 37103 £-116° Ys(jop) = 2.6 107 £ 16 °

Fig 22 (a) Fig 22 (b)
Gain expansion, phase retard Gain compression, phase advance
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Fig 23 Regions of gain compression/expansion, and phase advance/retard



Fig 26 Worst case circles of uncertainty
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Fig 27 Worst case gain/phase response curves
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Receiver §7 Receiver §6 Receiver |5 Receiver f4 Receiver #3 Receiver 2 Receiver §1

Receiver §8

Receivers Activities
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Figure (19)
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