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Abstract

This paper investigates the identification of discrete-time non-linear systems using
radial basis functions. A forward regression algorithm based on an orthogonal
decomposition of the regression matrix is employed to select a suitable set of radial-basis-
function centres from a large number of possible candidates, and this provides, for the first
time, a fully automatic selection procedure for identifying parsimonious radial-basis-
function models of structure-unknown non-linear systems. The relationship between neural
networks and radial basis functions is discussed and the application of the algorithms to real

data is included to demonstrate the effectiveness of this approach.

1. Introduction

Feedforward layered neural networks have been widely used in many areas of signal
processing and the advantages of realizing complicated non-linear mappings using neural
networks are now well-known (Cybenko 1989, Funahashi 1989). Chen et al (1989b)
investigated the identification of discrete-time non-linear systems using a two-layered neural
network model. The results obtained in this previous work suggested that the neural
network approach is very flexible and it offers a viable alternative to conventional methods.
such as a polynomial expansion, for modelling complex non-linear systems. Generally
neural network models are highly non-linear-in-the-parameters and parameter estimation
must be based on non-linear optimisation techniques, such as the prediction error
estimation method (Chen et al 1989b) which require intensive computation. Another
consequence of highly non-lingar'-in'ithe-parameters models is that the parameter estimate
may become trapped at a loq:_ai minimum of the chosen optimisation criterion during the

estimation process using a gradient based algorithm.

Using a feedforward néural network to model complex data can be considered as
performing a curve fitting operation in a multi-dimensional Spac;. Broomhead and Lowe
(1988) adopted this viewpoint and revealed explicitly the connections between feedforward
layered neural networks and radial basis functions. The method of radial basis functions is
a traditional technique for strict interpolation in multi-dimensional space (Powell 1985,
Micchelli 1986). If the strict interpolating restrictions are relexed, a radial-basis-function
model can be regarded as a special two-layered network which is linear-in-the-parameters
(Broomhead and Lowe 1988), assuming that there is a separate mechanism for selecting a

suitable set of radial-basis-function centres and non-linearities. Once the centres have been
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chosen, the hidden layer performs a fixed non-linear transformation and which maps the
input space onto a new space. The output layer implements a linear combiner on this new
space, and the adjustable weights of hidden-to-output layers can therefore be determined

using the linear least squares method, which is an obvious advantage of this approach.

The non-linearities within a radial-basis-function model can be chosen from a few
typical non-linear functions. Usually the centres are either chosen to be a subset of the data
or distributed uniformly within the region of the input space for which there is data. The
set of possible candidate centres in each case can be very large and an arbitrary selection by
a human operator may not produce a satisfactory procedure. "\A possible answer to this
problem is to regard the centres as adjustable parameters and to determine their values by
non-linear optimisation (Lowe 1989). This however will destroy the linear-in-the-

parameters structure and is equivalent to employing a two-layered neural network.

The present study adopts a different approach to the problem of selecting centres.
Because a centre can be considered as corresponding to a regressor in a linear regression
model, radial basis functions can be investigated within the framework of the extended
model set introduced by Billings and Chen (1989). This means that the orthogonal forward
regression routine (Chen et al 1989a. Billings and Chen 1989) can be readily applied to
select a suitable set of centres (regressors) from a large set of candidates. Such an approach
provides, for the first time, a practical and efficient identification procedure for fitting
radial-basis-function models to non-linear systems. The application of this identification
procedure to an automotive diesel engine. sunspot numbers and a heat exchanger is

included and the estimates are compared with results obtained from neural network models.

2. Non-linear system representation

In this paper the class of non-linear systems which can be described in terms of some
non-linear functional expansion of lagged inputs and outputs is considered. Mathematically

such systems can be represented by

y(@)=f, 0@ =10y (t=n ) u(t=1),...u(t=n,))+e(r) (1)

where
[y2(6) | (1) [e(1) ]

yo=1 - L ul)=] - | e@)=] - (2)

u (0) (1) en (1) |
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are the system output, input and additive white noise vectors respectively; n, and n, are the

i d

maximum lags in the output and input respectively; and f,(.) is some vector-valued non-

linear function.

The functional form f,(.) for a practical system is generally very complicated and is
rarely available. A model has to be constructed based on some known simpler function and
the present study uses a radial-basis-function expansion to model the input-output

relationship (1).

Equation (1) is a simplified version of the more general system description known as
the. NARMAX (Non-linear AutoRegressive Moving Average with eXogenous inputs)
model (Leontaritis and Billings 1985, Chen and Billings 1989a), which can be written as

follows

y(O)=f 0 -1,y (e =n)u(t=1),..u(r—n, ) e (1 =1),....,e(t —n.)) +e (r) (3
The identification procedure developed in the present study can be extended to this general

model.

3. Modelling by radial basis functions

A radial-basis-function model with » inputs and m outputs implements a mapping

[, R"=R™ according to

Mt
fr(x)=Ae+ T A

;=1
where x €R", &(.) is a function from R~ to R, ||.|| denotes the Euclidean norm.

;@ ix—e; D) (4)

A;€R™ j=1,....M_ are the weight vectors, Aj¢R™ is a constant (bias) vector and c;ER"

J=1,...,M_ are the radial-basis-function centres. Let

Aj—_-[klj”'hmj]r j=011a"‘aM¢- (5)

Then eqn.(4) can be written in a decomposed form

M
£ )= Mot Xy (| k=, 1) i=1,.om (6)
The functional form q;(.) and the centres ¢; are assumed to have been fixed. If a set of the
inputs x(r) and the corresponding desired outputs d (1) for =1 to N are provided, the
values of the weights A; for i=1.....m and j=0.1..... M, can be determined using the

linear least squares method.

The radial-basis-function expansion is a traditional technique for interpolating in

multi-dimensional space (Powell 1985. Micchelli 1986). The generalization to the form of
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eqn.(4) or (6) was introduced by Broomhead and Lowe (1988). The relationship between
the radial-basis-function expansion and a two-layered neural network can be clearly seen by
realizing eqn.(4) or (6) in the two-layered network structure depicted in Fig.1. The
diagram of Fig.1 can also be used to represent a general two-layered neural network. The
difference lies in the structure of the hidden layer. For a radial-basis-function model, each
node in the hidden layer performs a fixed non-linear transformation on the inputs and i:
contains no adjustable weights. Each hidden node in a two-layered neural network however
would contain an adjustable weight vector f\j and an adjustable threshold parameter u,,
and the output of the node would be given as a(f\.fx-hp.j) where a(.) is a non-linear
function from R to R. A radial-basis-function model can therefore be viewed as a specia.

two-layered network which is linear-in-the-parameters.

The objective of the present study is to use radial basis functions to model non-linear

systems described by eqn.(1). Define

- ! =
n= mny Trhn,

and

x(0)=DT(=1)yT (e =ny )uT (1 =1)--u” (t =n,)] (8)
The radial-basis-function expansion f,(x(z)) can then be used as the one-step-aheau
prediction for y(r). The identification thus involves determining values of \,; based on the

input-output observations {u (1 ),y (1 )} ,.

The linear-in-the-parameters structure of the radial-basis-function expansion is of
course obtained under the assumption that the function ¢(.) and the centres have bee:

fixed. Typical choices for ¢(.) are the thin-plate-spline function

$(v)=vlog(v) (9)
the gaussian function

$(v)=exp (—v¥/p?) (10)
and the multi-quadric function

p(v)=Vyvi+p2 (11)

where 8 is a real constant. The centres ¢; j=1,...,M, must suitably sample the domain of
the model inputs and they are usually chosen either to be a subset of the data or distributed
uniformly in the input domain. In the former case the possible candidates for ¢, are the

data points x (1), the number of which is often very large. In the latter case the choices are
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in effect infinitely many. Assume that the number of possible candidate centres is M, one
thousand say. An adequate radial-basis-function expansion may require only M, , say thirty
centres if they are wisely chosen. These centres may be selected by an operator who inspects
the candidate centres and picks those he or she thinks are appropriate. It is, however,
desirable that this selection should be automated and preferably optimal in some sense to
ensure that an adequate radial-basis-function model is obtained. By combining the radial-
basis-function expansion with the extended model set representation introduced in Billings

and Chen (1989), a new algorithm can be formulated to achieve this aim.

4. Extended model set representation

Linear-in-the-parameter models can be represented in the following general form

()= p, ()8, +£(0) (12)
This is a linearJ regression model where the p,(r) are the regressors, (1) is known as the
dependent variable, &£(r) is some modelling error which is assumed to be uncorrelated with
the regressors, and the 6, are unknown parameters to be estimated. A constant term is
included in eqn.(12) by setting the corresponding p;(t)=1. In the context of system
identification, z(r) is y;(z), the /-th element of v(1); &(z) is ¢ (), the i-th element of the
one-step-ahead prediction error or residual; and the p;(r) are some fixed non-linear

functions of lagged outputs and inputs, that is

p;(1)=p;(x (1)) (13)
where x (1) is defined in eqn.(8).

The primary choices for the regressors are monomials of x(r). Other non-linear
functions that commonly exist in non-linear systems can be included as the choices for p;(t)
and some examples are shown in (Billings and Chen 1989). The set that contains a variety
of choices of regressors is referred to as the extended model set (Billings and Chen 1989)
since it provides a much richer description of non-linear systems than the polynomial model
set alone. Effective modelling can be achieved by selecting a parsimonious subset model

from this extended model set.

It is obvious that a given centre ¢, with a fixed non-linearity &(.) corresponds to a
regressor p;(r) in eqn.(12). The radial-basis-function expansion is therefore a particular
choice of the extended model set representation. The problem of how to select a subset of

centres from a large number of candidate centres can thus be regarded as an example of
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how to select a subset of significant regressors from a given extended model set. An
efficient solution to this general problem has been developed (Chen et al 1989a, Billings

and Chen 1989), and is summarized in the following section.

5. The orthogonal forward regression procedure

Assume that the data length is N. Collecting eqn.(12) from 1 =1 to N together yields

the matrix equation

z=PO+= (14)
where
(1) | 0, | e(1) |
z= , P=[pypyl, O= == (15)
g (N) _BM | §(N)
and
p;=[p,(V)p; (N j=1...M (16)

The matrix P is known as the regression matrix. An orthogonal decomposition of P is

given as
P=WA (17)
Here
oap ap -+ - 0 gy :
1 oo Cop
A= (18)
1 opom
1

L J
is an M XM unit upper triangular matrix and

w={w1...wM] (19)

is an N XM matrix with orthogonal columns that satisfy

WTW =D (20)

and D is a positive diagonal matrix

D =diag{d, -d,} (21)



with
dj=<wj,wj> j=1,....M (22)

where <.,.> denotes the inner product, that is

N
<w,w >=wlw, =S w (1)w (1) (23)
r=1

Equation (14) can be rearranged as

z=[}A*][A@}+E=W@+

I
—~

(4]

B
S—

where
AbO=g (25)
Because £(1) is uncorrelated with the regressors, it is easy to show that
g=D"TWTz : (26)
or
_ <w,,z> =1 M "
gj-w J = dyeenyt (._.7)

Alternatively by normalizing the columns of W and augmenting the resulting matrix
with N =M further orthonormal columns to make up a full set of N orthonormal vectors

for the N -dimensional Euclidean space. an equivalent decomposition to (17) is obtained

_lol
P=W |, | (28)
L]
where Q is an M XM upper triangular matrix with positive diagonal elements and
W =[Wy Wy ] (29)
iIs an N XN orthogonal matrix that satisfies
_ (1 i=j
<w“wj>={k0 l’r":j (30}
Multiplying wT by z yields
W7z =[5 Gy yrin ] (31)
It is readily seen that the parameter estimate © can be obtained from
QO=[5-5,] (32)

Several orthogonal least squares methods can be used to obtain the triangular svstem
(25) or (32) and, consequently, to solve for the parameter estimate ©. These include the

classical Gram-Schmidt and modified Gram-Schmidt methods (Bjorck 1967), and the
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Householder transformation method (Golub 1965).

As mentioned previously M, the number of all the candidate regressors, can be verv
large even though adequate modelling may only require M, (<<AM ) significant regressors.
By modifying and augmenting the orthogonal least squares estimators, an efficient forward
regression procedure has been derived (Chen et al 1989a) to identify these significant
regressors. From (24), the sum of squares of the dependent variable is

M
Lzg>= Fpiaw; wssaE B (33)

j=1
The error reduction ratio due to w; is thus expressed as the proportion of the dependent

variable variance explained by w

2
g <wW,,w. > .
{err]j=—1—-ez’zT’ 1=j=M (34)

If the decomposition (28) is employed, a similar definition for error reduction ratio is giver
as

i
lerr)y = <y o>
y

l==M (37,
The error reduction ratio offers a simple and effective means of selecting a subset ot
significant regressors from a large number of candidates in a forward-regression manner.
the i-th step, a regressor is selected if it produces the largest value of [err], among the i
of candidates. The selection procedure can be terminated when

M.l

1= [err ], <p ) (36)
=1
where 0<p<1 is a desired tolerance, and this leads to a subset of M, regressors. !

parameter estimate @, for this subset model is then computed from

AJ®J=gJ or Q.l'@.!:[z_]....z_ﬂ'f‘]T (3’:
where A, and Q, are the M, XM, unit or positive upper triangular matrices respectively

The detailed description of the selection procedure can be found in (Chen et al 1989:

Billings and Chen 1989).

It is obvious that 1—3[err]; is the proportion of the unexplained dependent variable
variance. The tolerance p is an important instrument which affects both the prediction
accuracy and complexity of the final model. Notice that an appropriate value for p can be
learﬁed during the forward regression procedure so that the regressor selection becomes an

automatic procedure. This aspect is fully explained in (Billings and Chen 1989).
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The criterion (36) emphasizes only the performance of the model (variance of
residuals). Because a more accurate performance is often achieved at the expense of using
a more complex model a trade-off between the performance and complexity of the model is
often appropriate. Akaike’s information criterion which provides a compromise between

the performance and the number of parameters takes the form

AIC (m)=Nlog(ad)+ M, (38)
where of is the variance of the residual £(r) and m is the critical value of the chi-square
distribution with one degree of freedom for a given level of significance. m=4.0
corresponds to the significance level of 0.046 and is often a suitable choice (Leontaritis and
Billings 1987). If the criterion (38) or (36) is coupled with model validity tests (Bohlin
1978, Billings and Voon 1986, Leontaritis and Billings 1987, Billings et al 1989b), an

adequate subset model can often be found very quickly.

In the above discussion it is implicitly assumed that PTP is positive definite so that
nonsingular D or Q exist. This assumption however was introduced only for the benefit of
the derivation and is not really required. Notice that <w,,w,>=0 means that p, is a
linear combination of p,; to p,.;. Therefore if <w,,w,> is less than a small
predetermined threshold, the regressor p, will not be selected and numerical ill-
conditioning can thus be avoided. A more detailed discussion of this aspect is given in
(Billings et al 1989b). The inclusion of this mechanism in the selection procedure has an
important implication for fitting radial-basis-function models. If the centres are improperly
chosen (for example, some centres are too closé). numerical ill-conditioning will occur. To
combat ill-conditioning, Broomhead and Lowe (1988) suggested the use of more robust
techniques such as singular valued decomposition (e.g. Golub and Reinsch 1970) for
parameter estimation. The orthogonal selection procedure discussed above should avoid

numerical ill-conditioning problems and this is obviously an advantage.

6. Real data identification

This section applies the orthogonal forward regression procedure to fit radial-basis-
function models to some real industrial data. All the data sets concerned were generated
from single-input single-output (r=1 and m=1) non-linear systems. For multi-input
multi-output systems, the identification procedure is similar because. as shown in eqn.(6),
each element of the svstem output vector requires one radial-basis-function expansion and

each model can be identified separately. The non-linearity ¢(.) was chosen to be the thin-



- 11 -

plate-spline function (9). Some definitions are first introduced. Given a radial-basis-

function expansion f,(.), the one-step-ahead prediction is defined as

y(O)=F (x@)=f, ¢ =1),y (e =n, )u(t =1),....u (1 =n,)) (39)

The prediction error or residual is accordingly given by

e(t)=y(1)-y (1) (40)

The model deterministic output is defined by

Ya(@)=fr(x4())=f,Gua(t-1), . . ., Ya(t =y )ou (e =1),....u(t —n,)) (41)

and the deterministic error is then given as

€ (1)=y )=y, (1) (42)
Model validity tests employed are the following simple correlation tests (Billings and Voon

1986, Billings and Chen 1989)

P, (k)
P, (k)
Peayk) ¢ (43)
2 (k)
®,» (k)

u

Example 1. The data was collected from a turbocharged automotive diesel engine in a low
engine speed test. A detailed description of the experiment design can be found in work by
Billings et al (1989a). The data set, named as mob6shv2.dta in (Billings et al 1989a),

contains 410 points and has been shown to be inherently non-linear.

The dimension of the radial-basis-function input was set to n=n,+n, =1+2. All the
centres were to be chosen from the data, thus giving rise to a total of more than 400
candidate centres. The orthogonal selection procedure was used to identify a subset of
significant centres and the selection was terminated when AIC(4.0) achieved a minimum
value. The final model chosen contained a constant term and M, =34 centres. The
coefficients associated with the estimated model are illustrated in Table 1. The model thus

takes the form

¥(1)=3.8036+9.33930(| [x(r)—e,||)— - —8.68960(| [x(r)—c|])
where @(.) is defined in eqn.(9) and

Ix(t)=¢, | |= V3t =1)=cy; )2+ (4 (1 =1) —c o, 2+ (u (1 =2) —c5, )2 i=1 10 34
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€y» € and ¢y, for i=1 to 34 are also listed in Table 1. The model validity tests are

displayed in Fig.2, and the data set and the model response are shown in Fig.3.

A two-layer neural network model was also fitted to the data as a comparison. The
difficulty encountered in fitting the neural network model to this data set highlights a
possible pitfall associated with models which have a highly non-linear-in-the-parameter
structure. The input order of the neural network model was chosen to be n =n,+n,=1+42
and the number of hidden nodes was set to n, =7. This gave a total of 35 parameters. The

activation function a (.) for each hidden node was chosen to be the sigmoid function

e L
) l+exp(—v)

(44)
The activation function for the output node was chosen to be linear and no threshold
parameter was introduced in the output node. The prediction error estimation algorithm
(Chen et al 1989b) was used to produce parameter estimates. The initial parameter values
were set randomly between -0.3 to 0.3. It was found that the algorithm quickly stopped,
possibly trapped in a local minimum. Random perturbation had to be applied in order to
continue the identification process. This situation occurred again and again. Finally after
several perturbations and more than two hundred iterations, we gave up and accepted the
results. The estimated model is given in Table 2. and the model validity tests and the model

response are illustrated in Figs. 4 and 5 respectivelv. Most of the model validity tests, Fig.4.

are well outside the 95% confidence bands indicating that the model is deficient.

We emphasize that it should be possible with this neural network model to provide a
much better fit to the data than the results shown in Figs. 4 and 5. The problem is how to
obtain an adequate parameter estimate. A gradient-based algorithm can fail in highly non-
linear-in-the-parameter cases as shown here. Other algorithms (e.g. Hoptroff and Hall
1989) capable of finding a global minimum may have to be used. Unfortunately these
algorithms are very complicated and the associated huge increase in computation often

deter their application.

Example 2. The time series of annual sunspot numbers for the years 1700 to 1955 are
considered. These 256 observations are listed in Appendix Al of Tong (1983). The first
221 observations were used to fit a model and the last 35 observations were used as the test

set.

The dimension of the centres was set to n =n,=9 and all the data points x(7,) 1,=10

to 221 were used as candidate centres. The error reduction ratio criterion (36) was
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employed to terminate the orthogonal regression procedure. An appropriate tolerance
p=0.04 was found during the regression procedure and the final selected model contained
25 centres (the constant term was not selected). The estimated radial-basis-function model

thus takes the form

25
.‘?(I)=§1M¢(| [x(t)—c. |])

where

| |x(¢)—c, | |=\/§9:(y(r —k)=cy)? i=11025
The selected centres ¢, andktlie values of the estimates A, are listed in Tables 3 and 4
respectively. The response of this radial-basis-function model is shown in Fig.6. It !
interesting to see that the unforced response of this model, which is a sustained osillation
with an approximate 1l-year period, is similar to those produced by a two-layer neural
network model (Chen et al 1989b) and a polynomial subset model (Chen and Billings
1989b). The neural network model and the subset polvnomial model are given in Tables 3

and 6 as references.

Example 3. The data was generated from a heat exchanger and contains 996 points.
description of this process and the experiment design is given in (Billings and Fadzil 1985
The first 500 points of the data, depicted in Fig.7. were used as the identification set o

the rest of the data as the test set.

The dimension of the centres was chosen to be n=n,+n,=5+5 300 candidate

centres were generated by randomly selecting points from the region

[V mins Ymax) * X [Mmia» Ymax) “CR™XR"™
where v i, Ymins Ymax a0d u .. are the minimum and maximum values of the system output
and input respectively. The error reduction ratio criterion (36) was used to stop the
selection procedure and an appropriate value for p was found to be 0.0007. The orthogonal
regression procedure selected a constant term and 27 centres. The estimated model takes

the form

§()=hot SRi(| [x (1) =c, | 1)
i=1

where

5 10
Hx ()=, [ |= (1 —k)=cu )P+ 3 (u(1+5-k)=c ) i=11027
x()—c, || \/20(‘ e+ 3 +5-k)=e,)! i=lio
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The chosen centres and the associated coefficients are shown in Tables 7 and 8 respectively.
The model validity tests for both the identification and test sets are shown in Figs. 8 and 9
respectively, and the test set and model response for the test set are illustrated in Fig.10.
The results shown in Figs. 8 to 10 are extremely similar to those produced by a two-layer
neural network model (Example 3 in Chen et al 1989b). As a comparison this neural

network model is given in Table 9. ’

7. Discussion for further research

If modelling complex data is regarded as performing a curve fitting in a high
dimensional space, the two basic concepts in neural networks, namely learning and
generalization, have particularly simple meanings. From this viewpoint, learning
corresponds to producing a surface in multi-dimensional space that fits to the set of data in
some best sense, and generalization is equivalent to interpolating the test data set on this
fitting surface. When fitting radial-basis-function models, it is possible that the learning
error will be continuously reduced if we keep adding more centres. At some point,
however, the generalization error may stop decreasing and may even start to increase as
more centres are introduced into the model (see Lowe 1989). This is because at some point
the model starts to fit to the noise rather than the underlying process and, although the fit
seems to be improved, the generalization error correctly reveals that this is a misjudgement.
The performance of generalization is a more "genuine"” indicator for the "goodness" of the
model. A new criterion for terminating the orthogonal regression procedure can be
introduced based on the above discussion. The data set is partitioned as the fitting set and
the test set. The former is used in the model selection procedure and the latter is used to
compute the generalization error, that is the variance of the residuals over the test set
computed based on the selected model. The selection procedure is terminated when this
error is minimized. Such an identificaion procedure is of course not restricted to radial-

basis-function models.

8. Conclusions

An identification procedure has been developed for discrete-time non-linear systems
using a radial-basis-function expansion. By viewing radial basis functions as examples of the
extended model set representation, it has been shown that the orthogonal forward
regression procedure provides a powerful method for fitting parsimonious radial-basis-

function models to practical systems.
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selected centre

weight estimate

error reduction ratio

0 constant 0.38036E+1 0.97467E+0
1 | 0.28236E+1 0.37439E+1 0.37439E+1 | 0.93393E+1 0.11922E-1
2 | 0.28694E+1 0.37439E+1 0.37439E+1 | -0.17323E+2 0.12066E-1
3 | 0.33887E+1 0.37633E+1 0.37633E+1 | 0.58415E+1 0.67927E-3
4 | 0.39310E+1 0.37439E+1 0.45200E+1 | -0.84067E-1 0.67316E4
5 | 0.40073E+1 0.45006E+1 0.45006E+1 | 0.39437E+1 0.13198E-3
6 | 0.47329E+1 0.50051E+1 0.58006E+1 | 0.16579E+1 0.20961E-3
7 | 0.37630E+1 0.37439E+1 0.37439E+1 | 0.18548E+0 0.90146E4
8 | 0.40073E+1 0.45200E+1 0.45200E+1 | -0.38228E+1 0.30101E-4
9 | 0.35491E+1 0.37633E+1 0.45394E+1 | 0.69678E+0 0.14630E-4
10 | 0.33887E+1 0.37439E+1 0.37439E+1 | -0.36682E+1 0.22750E-4
11 | 0.46183E+1 0.58006E+1 0.58006E+1 | -0.53896E-2 0.11112E-4
12 | 0.32131E+1 0.45006E+1 0.37439E+1 | -0.39181E-1 0.24663E-4
13 | 0.42746E+1 0.58200E+1 0.50439E+1 | -0.53673E-1 0.10515E-4
14 | 0.46183E+1 0.50051E+1 0.58006E+1 | 0.56102E+1 0.75975E-5
15 | 0.28923E+1 0.37439E+1 0.37439E+1 | 0.69630E+1 0.48470E-5
16 | 0.32284E+1 0.37633E+1 0.37633E+1 | -0.19294E+1 0.79217E-6
17 | 0.46030E+1 0.50051E+1 0.50051E+1 | 0.10838E+0 0.75915E-6
18 | 0.30756E+1 0.37439E+1 0.37439E+1 | 0.19209E+1 0.64292E-6
19 | 0.46412E+1 0.58200E+1 0.50439E+1 | -0.24009E~+1 0.42742E-6
20 | 0.30909E+1 0.45200E+1 0.45200E+1 | 0.34243E+1 0.62074E-6
21 | 0.34651E+1 0.45394E+1 0.45394E+1 | -0.61526E+0 0.13478E-5 |
22 | 0.45572E+1 0.58006E+1 0.50051E+1 | -0.10082E~+1 0.12400E-5 ,
23 | 0.33505E+1 0.37633E+1 045394E+1 | -0.47078E+1 0.74268E-6 f
24 | 0.46565E+1 0.50245E+1 0.58006E+1 | -0.11648E+2 0.46292E-6
25 | 0.44656E+1 0.45006E+1 0.45006E+1 | -0.43427E+1 0.68426E-6
26 | 0.44579E+1 0.45200E+1 0.45200E+1 | 0.42991E+1 0.12320E-5
27 | 0.43281E+1 0.50245E+1 0.58006E+1 | -0.36752E+0 0.36844E-6
28 | 0.46565E+1 0.50439E+1 0.58200E+1 | 0.45455E+1 0.99245E-6
29 | 0.31291E+1 0.45006E+1 0.45006E+1 | -0.40826E+1 0.53569E-6
30 | 0.33047E+1 0.45006E+1 0.45006E+1 | 0.13578E+1 0.48056E-6
31 | 0.45954E+1 0.58006E+1 0.50245E+1 | 0.35441E+1 0.46165E-6
32 | 0.33887E+1 0.37439E+1 0.45394E+1 | 0.12561E+2 0.26585E-6
33 | 0.34804E+1 0.37439E+1 0.37439E+1 | -0.11516E+1 0.25359E-6
34 | 0.34193E+1 0.37439E+1 0.45394E+1 | -0.86896E+1 0.23850E-6
variance of residuals o ? 0.37194E-3

Table 1. RBF model of Example 1



position

parameter estimate
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threshold of 1st hidden node
¥ (1 —1) to st hidden node
1 (r—1) to 1st hidden node
u (1 —=2) to 1st hidden node
threshold of 2nd hidden node
¥ (r —1) to 2nd hidden node
u (¢ —1) to 2nd hidden node
u (t =2) to 2nd hidden node
threshold of 3rd hidden node
¥ (t —1) to 3rd hidden node
u (t =1) to 3rd hidden node
u (t —2) 1o 3rd hidden node
threshold of 4th hidden node
¥ (1 —1) to 4th hidden node
u (r —1) to 4th hidden node
u (t =2) to 4th hidden node
threshold of 5th hidden node
¥ (¢ —1) to 5th hidden node
u (1 —1) to 5th hidden node
u (1 —=2) to 5th hidden node
threshold of 6th hidden node
v (1 —1) to 6th hidden node
u (1 —1) to 6th hidden node
u (1 —2) to 6th hidden node
threshold of 7th hidden node
y (1 =1) to 7th hidden node
u (1 —1) to 7th hidden node
u (r —2) to 7th hidden node
1st hidden node to output node
2nd hidden node to output node
3rd hidden node to output node
4th hidden node to output node
5th hidden node to output node
6th hidden node to output node
7th hidden node to output node

0.75616E+0
-0.17303E+1
-0.14154E+1
-0.11941E+1
0.14623E+1
0.16123E+1
0.19052E+1
0.51908E+0
0.83829E+0
-0.56831E+0
0.41929E-1
0.36044E+0
0.20483E+0
-0.12419E+1
-0.14822E+1
-0.14106E+1
-0.99735E+0
-0.10030E+1
-0.17959E+1
-0.11205E+1
-0.22396E+0
-0.93772E+0
-0.17224E+1
-0.22313E+1
-0.13540E+1
-0.34612E+0
0.12376E+0
0.57185E+0
0.19615E+1
0.52446E+1
-0.10368E+2
0.14119E+1
0.40043E+1
0.28167E+1
0.80448E+1

variance of residuals o}

0.10167E-2

Table 2. Neural network modcl of Example 1




[ Cu Ca Csi Caj Csi
Cei Cqi Cgi Co;

1 0.8500E+1 0.2750E+2 0.4780E+2 0.7090E+2 0.6700E+2
0.6420E+2 0.4960E+2 0.3630E+2 (0.1660E+2

2 0.2200E+2 0.2600E+2 0.2800E+2 0.3900E+2 0.6000E+2
0.6300E+2 0.4700E+2 0.2700E+2 0.1100E+2

3 0.3000E+1 0.8000E+1 0.1000E+2 0.2000E+2 0.2900E+2
0.5800E+2 0.3600e+2  0.2300E+2 0.1600E+2

4 0.1800E+1 0.4000E+1 0.6600E+1 0.1560E+2 0.2390E+2
0.3010E+2 0.4110E+2 0.4580E+2 0.3540E+2

5 0.0000E+0 0.3000E+1 0.8000E+1 0.1000E+2 0.2000E+2
0.2900E+2 0.5800E+2 0.3600E+2  0.2300E+2

6 | 0.3560E+2 0.7100E+1 0.6300E+1 0.6800E+1 0.1310E+2
0.2540E+2 0.5220E+2 0.6350E+2 0.6370E+2

7 0.8100E+1 0.1010E+2 0.2810E+2 0.4220E+2 0.4750E+2
0.4310E+2 0.4500E+2 0.3400E+2 0.1450E+2

8 0.2670E+2 0.2620E+2 0.4180E+2 0.6400E+2 0.7800E+2
0.8510E+2 0.7300E+2 0.3560E+2 0.7100E+1

9 0.1100E+2 0.3500E+2 0.4700E+2 0.7300E+2 0.1030E+3
0.1220E+3 0.7800E+2 0.4000E+2 0.2100E+2

10 | 0.7000E+2 0.3400E+2 0.1600E+2 0.5000E+1 0.1100E+2
0.3500E+2 0.4700E+2 0.7300E+2 0.1030E+3

11 | 0.5000E+1 0.2700E+1 0.9500E+1 0.1210E+2 0.2670E+2
0.2620E+2 0.4180E+2 0.6400E+2 0.7800E+2

12 | 0.1061E+3 0.6980E+2 0.3780E+2 0.1140E+2 0.2090E+2
0.3640E+2  0.4510E+2 0.6120E+2 0.8590E+2 |

13 | 0.8480E+2 0.1259E+3 0.1544E+3 0.9250E+2 0.1980E~+2 |
0.7000E+1 0.3060E+2 0.3480E+2  0.6650E-+2

14 | 0.5480E+2 0.2270E+2 0.4300E+1 0.6700E+1 0.2060E-2
0.3900E+2 0.5410E+2 0.6450E+2 (.6660E~2 ;

15 | 0.2700E+1 0.9500E+1 0.1210E+2 0.2670E+2 0.2620E+2 |
0.4180E+2 0.6400E+2 0.7800E+2 0.8510E+2

16 | 0.9850E+2 0.6150E+2 0.4010E+2 0.1500E+2 0.1070E+2
0.2420E+2  0.3670E+2 0.6460E+2 0.8570E+2

17 | 0.1220E+3 0.7800E+2  0.4000E+2 0.2100E+2 0.1100E+2
0.2200E+2 0.2600E+2 0.2800E+2 0.3900E+2

18 | 0.9250E+2 0.1980E+2 (0.7000E+1 0.3060E+2 0.3480E+2
0.6650E+2 0.8160E+2 0.1008E+3 0.1061E+3

19 | 0.2130E+2 0.4100E+2 0.4690E+2 0.6000E+2 0.6660E+2
0.8990E+2 0.1181E+3 0.1309E+3 0.1320E+3

20 | 0.9580E+2 0.9380E+2 0.5480E+2 0.2270E+2 0.4300E+1
0.6700E+1 0.2060E+2 0.3900E+2 0.5410E+2

21 | 0.2280E+2 0.3850E+2 0.6810E+2 0.8480E+2 0.1259E+3
0.1544E+3 0.9250E+2 0.1980E+2 0.7000E+1

22 | 0.1320E+2 0.8500E+1 0.2750E+2 0.4780E+2 0.7090E+2
0.6700E+2 0.6420E+2 0.4960E+2 0.3630E+2

23 | 0.1390E+2 0.1220E+2 0.5000E+1 0.1400E+1 0.0000E+0
0.2500E+1 0.8100E+1 0.1010E+2 0.2810E+2

24 | 0.2410E+2 0.1020E+2 0.2280E+2 0.3850E+2 0.6810E+2
0.8480E+2 (0.1259E+3 0.1544E+3 0.9250E+2

25 | 0.1240E+2 0.1130E+2 0.1700E+2 0.4470E+2 0.6620E+2 |
0.1016E+3 0.1112E+3 0.1390E+3 (.7400E~+2 l

Table 3. RBF centres of Example 2



centre number

weight estimate

error reduction ratio

1 0.74432E-2 0.76100E+0
2 -0.38507E-4 0.22344E-1
3 0.50951E-2 0.67346E-1
4 -0.86575E-2 0.45552E-1
5 0.47966E-2 0.10875E-1
6 -0.76933E-2 0.16170E-2
7 -0.91306E-2 0.63600E-2
8 -0.63918E-2 0.11488E-1
9 -0.12441E-2 0.27480E-2
10 -0.81618E-2 0.51441E-2
11 0.15415E-2 0.18138E-2
12 -0.69548E-2 0.16772E-2
13 0.23785E-3 0.45099E-2
14 0.15499E-1 0.16742E-2
15 -0.83772E-3 0.32627E-2
16 0.79692E-2 0.12948E-2
17 -0.78409E-2 0.17721E-2
18 0.27459E-2 0.27495E-2
19 -0.21946E-2 0.15405E-2
20 0.62307E-2 0.18582E-2
21 0.18980E-2 0.94094E-3
22 0.39493E-2 0.75510E-3
23 0.13891E-2 0.75840E-3
24 0.47437E-2 0.45238E-3
25 -0.44277E-2 0.90901E-3

o ? for fitting set 0.12101E+3

o2 for test set 0.17614E+3

Table 4. RBF model of Example 2




position estimate position estimate

1 1st hidden node threshold | -0.28658E+1 | 31 4th hidden node threshold -0.53484E+0
2 y (+ —1)/1st hidden node | 0.80735E-1 | 32 y (t —1)/4th hidden node -0.43177E+0
3 y (t —2)/1st hidden node | -0.30500E-1 233 y (z —2)/4th hidden node 0.15600E+1
4 | y(r—3)/1sthidden node | -0.77910E-2 | 34 | y(r —3)/4th hidden node | -0.70270E+0
5 | y(r—4)/1st hidden node | -0.71225E-3 | 35 | y(r —4)/4th hidden node | 0.20755E+1
6 y (r =5)/1st hidden node 0.10319E-1 36 ¥ (r —5)/4th hidden node -0.12969E+0
7 | y(r —6)/1st hidden node | -0.10192E-1 | 37 | y(r —6)/4th hidden node | 0.14612E+1
8 ¥ (t —=7)/1st hidden node | 0.41369E-2 38 ¥ (r =7)/4th hidden node 0.87202E+0
9 ¥ (r —8)/1st hidden node 0.97482E-2 39 ¥ (1 —8)/4th hidden node -0.31423E+0 |
10 | y(r —9)/1st hidden node | -0.50582E-2 40 ¥ (1 —9)/4th hidden node -0.90798E+¢
11 | 2nd hidden node threshold 0.24668E+0 | 41 5th hidden node threshold -0.57649E+0 |
12 | y(z —1)/2nd hidden node | -0.67449E+0 | 42 | y(r —1)/5th hidden node | 0.91878E+0
13 | y(r —2)/2nd hidden node | -0.66665E+0 | 43 | y(z —2)/5th hidden node | -0.76083E-1

14 | v (r —3)/2nd hidden node 0.35548E-1 44 ¥ (r —3)/5th hidden node 0.12793E+1
15 | y(r —4)/2nd hidden node | -0.47036E+0 | 45 | v(r —4)/5th hidden node | 0.20041E+0
16 | y (¢ —5)/2nd hidden node | 0.50561E+0 | 46 ¥ (1 —5)/5th hidden node -0.96107E-1

17 | y(1 —6)/2nd hidden node | -0.374S8E+0 | 47 | y(r —6)/5th hidden node | -0.56305E+0 |
18 | y(r —7)/2nd hidden node | -0.54623E+0 | 48 v(r —7)/5th hidden node 0.62144E+C :
19 | y(r —8)/2nd hidden node | -0.56262E+0 | 49 | v (r —8)/5th hidden node | 0.94449E+0
20 | y(r —9)/2nd hidden node | -0.44019E+0 | 50 | v (r —9)/5th hidden node | 0.71099E~0
21 | 3rd hidden node threshold | -0.10178E+2 | 51 1st hidden node/output node 0.88947E+2 |
22 | v(r—1)/3rd hidden node | -0.31298E-1 52 | 2nd hidden node/output node | -0.95587E+0 i
23 | y(r—2)/3rd hidden node | -0.73172E+0 | 53 | 3rd hidden node/output node | 0.14143E<+2 }
24 | v(r—3)/3rd hidden node | 0.64585E+0 | 54 | 4th hidden node/output node | 0.66357E+ ;
25 | v(r—4)/3rd hidden node | -0.30200E+0 | 55 | Sth hidden node/output node | -0.22212E+;
26 | y(t —5)/3rd hidden node | -0.33024E+0 |
27 | y (1 —6)/3rd hidden node | -0.70718E+0 o 2 for fitting set 0.18375E+ 3
28 | y(r —7)/3rd hidden node | 0.12325E+1 o 2 for test set 0.28777E+3
29 | y(t —8)/3rd hidden node | -0.37358E-+1 )
30 | y(r —9)/3rd hidden node | 0.52889E+1 l

Table 5. Neural network model of Example 2



selected term

parameter estimate

1 y(t=1) 0.11171E+1
2 y(1=2) -0.91963E-1
3 y (1 =9) 0.38299E+0
4 y3(r=1) -0.28084E-4
5 y(—=1)y(t-8) 0.44321E-2
6 | y(t=2)y(t=5)y(—8) -0.16203E-3
7 y¥(1 =9) -0.25043E-2
8 | y(t=1)y(r=5)y(—8) 0.95842E-4
9 y(t =5)y2(t =7) 0.11992E-4
10 y (1 =3) -0.21815E+0
11 | y(r=2)y (@t =3)y (1 —4) 0.95906E-5
o? for fitting set 0.12311E+3

o2 for test set

0.17769E+3

Table 6. Subset polynomial model of Example 2




Cri Ca; Cy Ca Cs;
Ce Cai Cg Co; C1oi
1 0.10730E+2 0.48105E+1 0.44015E+1 0.10281E+2 0.49365E+1
0.50978E+1 0.59454E+1 0.36107E+1 0.46295E+1 -0.16897E+1
2 0.43947E+1 0.58497E+1 0.65888E+1 0.55126E+1 0.63810E+1
-0.63816E+0 0.48672E+1 0.86241E+0 0.29730E+1 0.37378E+0
3 0.61937E+1 0.44838E+1 0.75266E+1 0.42324E+1 0.78787E+1
0.51713E+0 0.47697E+1 0.21983E+1 0.17473E+1 0.27374E+1
4 0.10142E+2 0.49572E+1 0.43386E+1 0.10005E+2 0.97342E+1
-0.56596E+1 0.25487E+1 0.30751E+1 -0.5254E+0 0.21745E+1
5 0.47521E+1 0.90093E+1 0.49024E+1 0.62287E+1 0.73210E+1
-0.14426E+0 0.53636E+1 0.23469E+1 0.26821E+1 -0.21996E+1
6 0.84442E+1 0.97073E+1 0.83585E+1 0.60480E+1 0.83650E+1
-0.58780E+1 0.46791E+1 -0.57376E+1 0.15661E+1 0.32116E+1
7 0.91619E+1 0.10681E+2 0.10248E+2 0.79788E+1 0.59730E+1
-0.70590E+0 0.55186E+1 -0.29881E+1 0.30784E+1 0.10231E+1
8 0.44671E+1 0.67735E+1 0.77331E+1 0.10118E+2 0.59616E+1 !
-0.51030E+1 0.22469E+1 0.58893E+0 0.16169E+1 0.84655E+0 5
9 0.63035E+1 0.53274E+1 0.10758E+2 0.64871E+1 0.41489E~1 |
-0.33397E+1 0.55870E+1 -0.29784E+1 0.49710E+1 -0.55263E+1
10 | 0.10785E+2 0.10564E+2 0.79311E+1 0.10212E+2 0.92241E+1
-0.44918E+1 0.23565E+1 0.14982E+1 0.14907E+1 0.52527E+0
11 | 0.72888E+1 0.10881E+2 0.63223E+1 0.73839E+1 0.88146E+1
0.12981E+1 -0.28209E+0 0.29325E+1 0.57439E+1 -0.70413E+0
12 | 0.48986E+1 0.57077E+1 0.10821E+2 0.91361E+1 0.49397E+1 |
-0.52644E+1 -0.55796E+0 -0.33763E+1 0.46836E+1 0.38739E+1
13 | 0.10183E+2 0.84113E+1 0.92295E+1 0.96563E+1 0.71646E+1
-0.22482E+1 0.34594E+1 0.46223E+1 0.30885E+0 0.33795E+1
14 | 0.81493E+1 0.82471E+1 0.90886E+1 0.64985E+1 0.85780E+1
-0.42699E+ 1 0.50132E+1 0.55254E+1 0.15923E+0 -0.33745E+1
15 | 0.85782E+1 0.84725E+1 0.47643E+1 0.41189E+1 0.10579E+2
0.20861E+1 0.56745E+1 -0.51807E+1 0.25977E+1 0.46805E+1
continue

Table 7. RBF centres of Example 3



16

17

18

19

20

21

22

23

0.57993E+1
0.10156E+1
0.58484E+1
-0.42773E+1
0.86802E+1
0.16962E+1
0.48705E+1
0.20232E+1
0.10907E+2
0.42299E+1
0.74207E+1
-0.15020E+1
0.94784E+1
-0.94079E-1
0.87107E+1
0.12829E+1
0.68011E+1
0.46377E+1
0.79544E+1
-0.52976E+1
0.65234E+1
-0.97348E+0
0.68422E+1
-0.44312E+1

0.10341E+2
0.53332E+1
0.65139E+1
0.26217E+1
0.79164E+1
0.23639E+1
0.64785E+1
0.13841E+1
0.10629E+2
-0.15428E+1
0.99884E+1
-0.32949E+1
0.41383E+1
0.48546E+1
0.10291E+2
0.52081E+1
0.77665E+1
0.16682E-1
0.10342E+2
-0.50760E+1
0.10805E+2
-0.34912E-1
0.56610E+1
0.19245E+0

0.915%0E+1
-0.52810E+1
0.96002E+1
0.11905E+1
0.93173E+1
0.27592E+1
0.46762E+1
0.60182E-1
0.73837E+1
0.71127E+0
0.47531E+1
0.47079E+1
0.10814E+2
-0.35511E+1
0.6565TE+1
-0.53658E+1
0.10283E+2
-0.10170E+1
0.96978E+1
-0.13009E+1
0.10404E+2
0.30863E+1
0.51511E+1
0.57948E+1

0.96197E+1
0.73098E+0
0.61347E+1
0.59480E+0
0.91086E+1
-0.28571E+1
0.61347E+1
0.68656E+0
0.69014E+1
-0.36490E+1
0.10821E+2
0.28941E+1
0.43518E+1
0.39188E+1
0.75886E+1
0.49687E+0
0.54849E+1
0.35971E+1
0.46820E+1
-0.40418E~+1
0.92026E+1
0.45714E+0
0.94633E~+1
-0.44061E+1

-0.45013E+1

-0.17538E+1

0.10304E+2
-0.12890E+1
0.81367E+1
0.70246E+0
0.83180E+1

0.44335E+1
-0.29954E+1
0.77045E+1
0.21935E+1
0.92408E+1

0.43961E+1
0.28930E+0
0.56123E+1
-0.37771E+1
0.99005E+1
0.34109E+1
0.40850E+ 1
-0.33909E+ 1
0.47703E+1 |
0.28937E+1 |
0.77392E+1 |
0.14927E+1 |

Table 7. RBF centres of Example 3



centre number

weight estimate

error reduction ratio

constant 0.15643E+2 0.98539E+0
1 -0.19479E-1 0.10458E-1
2 0.28817E+0 0.19889E-2
3 -0.94923E-2 0.10727E-3
4 -0.47691E-1 0.49406E4
5 -0.12648E+0 0.34403E4
6 -0.18401E-1 0.59714E4
7 0.45193E4 0.14976E4
8 -0.85851E-2 0.12031E-3
9 0.22686E-1 0.25194E-3
10 0.50058E-1 0.75817E-4
11 0.50162E-2 0.80147E-4
12 0.21515E-1 0.25299E-4
13 0.10867E-1 0.84137E4
14 0.21019E-1 0.10289E-3
15 -0.10753E-1 0.13684E-4
16 -0.30959E-1 0.36280E-4
17 -0.13874E+0 0.15841E4
18 0.33549E-1 0.65978E-4
19 -0.57112E-1 0.98660E-4
20 0.71061E-1 0.35300E-4
21 -0.40188E-1 0.63064E-4
22 -0.85792E-1 0.61189E-4
23 0.55479E-1 0.14886E-4
24 0.35190E-1 0.24787E4
25 -0.24433E-1 0.11069E-4
26 -0.41399E-1 0.97732E-5
27 0.46347E-1 0.18176E-+4
o 2 for fitting set 0.52555E-1
o 2 for test set 0.59605E-1

Table 8. RBF model of Example 3



position

parameter estimate

1 threshold of 1st hidden node 0.41542E+1
2 ¥ (r —1) to 1st hidden node -0.86652E+0
3 y(# =2) 1o 1st hidden node 0.65748E+0
4 y (r —3) to 1st hidden node -0.92485E+0
5 | y(r—4) to Ist hidden node -0.14368E+1
6 v (1 =5) to 1st hidden node -0.13881E+1
7 u (r —1) to 1st hidden node 0.95717E-1
8 u (1 —2) to 1st hidden node -0.24441E+1
9 u (t —3) 1o 1st hidden node 0.32247E+1
10 | u(r—4) to 1st hidden node 0.10609E+1
11 u (r =5) to 1st hidden node 0.28496E+0
12 threshold of 2nd hidden node -0.19307E+1
13 | ¥(r—1) to 2nd hidden node 0.28604E+0
14 | y(r—2) to 2nd hidden node -0.21059E-2
15 | ¥ (r —3) to 2nd hidden node 0.10688E+0
16 | ¥(r—4) to 2nd hidden node -0.50079E-1
17 | ¥ (r —5) to 2nd hidden node -0.50801E-3
18 | u(r—1) to 2nd hidden node 0.14850E+0
19 | u(r —2) to 2nd hidden node 0.16681E-1
20 | u(r—3) to 2nd hidden node 0.20725E-2
21 u (1 —4) 1o 2nd hidden node -0.49558E-2
22 | u (1 —5) to 2nd hidden node -0.26427E-1
23 threshold of 3rd hidden node -0.15231E+1
24 | v (1 —1) to 3rd hidden node -0.30419E+0
25 ¥ (1 —2) to 3rd hidden node 0.98374E+0
26 | ¥ (1 —3) to 3rd hidden node -0.88712E+0
27 | ¥ (r—4) to 3rd hidden node 0.12615E+1
28 | y(r—35) to 3rd hidden node 0.10536E+1
29 | u(r-1) to 3rd hidden node -0.30323E+0
30 | (1 —2) to 3rd hidden node 0.63262E+0
31 u (1 —3) to 3rd hidden node -0.47314E+0
32 | wu(r—4) to 3rd hidden node -0.16157E-1
33 | u(r—>5) to 3rd hidden node -0.45640E-1
34 | 1st hidden node to output node 0.89170E+1
35 | 2nd hidden node to output node 0.10030E+2
36 | 3rd hidden node to output node 0.14756E+1
o 2 for fitting set 0.54283E-1
o 2 for test set 0.52497E-1

Table 9. Neural network model of Example 3




Fig.1. Schematic of RBF model
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Fig.2. Model validity tests for RBF model (Example 1)
(a) Pulk); (0) Pyuy(k); (¢) Py (k); (d) @,2(k); (e) P, ra(k). Dashed line: 95%

confidence interval.
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Fig.3. Data set and RBF model response (Example 1)
(@) u(r); (b) y(2); (c) y(1);
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Fig.3. Data set and RBF model response (Example 1)
(d) e(t); (e) €4 (2); (D) Yul(r).
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Fig.4. Model validity tests for neural network model (Example 1)
(a) q)u.(k); (b) (Dl{il)(k); (C) {Dnt(k)s (d) (:D“I"(k); (ﬁ) ¢u2"2<k)' Dashed line: 95%

confidence interval.

(a)

(b)
1 g
; FaN

E ANV !
4

0 20

(d)

1

|
0

-10 0 10

5k k
0 20
(c)
1 o "
0 —
] + & k
-10 0 10
(e)
1
07
-1
-10

10



Fig.5. Neural network model response (Example 1)

() y(r); (b) e(r);
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Fig.5. Neural network model response (Example 1)

(c) ey (); (d) ya(2).
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Fig.6. Observations and RBF model response (Example 2)

(a) observations; (b) one-step-ahead predictions; (¢) unforced response, first 9 observations

used as initial condition.
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Fig.7. Identification data set (Example 3)

(a) u(r); (b) y(z).
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Fig.8. Model validity tests using identification set (Example 3)
(a) @.(k); (b) Daylk); (c) @, (k); (d) D 2 (k); (e) @ »a(k). Dashed line: 95%

confidence interval.
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Fig.9. Model validity tests using test set (Example 3)
(a) Pulk); (6) Puuy(k); (©) Bu(k); (d) ®,z,(k); (€) D2 (k). Dashed line: 95%

confidence interval.
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Fig.10. Test set and model response (Example 3)

(@) u(t); (B) y(r); () ¥(r);
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Fig.10. Test set and model response (Example 3)
(d) (r); (e) es(1); () ¥4 (r).
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Fig.1. Schematic of RBF model

Fig.2. Model validity tests for RBF model (Example 1)
(a) DPu(k); (B) Puuyk); () @,.(k); (d) P 2 (k); (e) @ ».(k). Dashed line: 95%
confidence interval.

Fig.3. Data set and RBF model response (Example 1)
(@) u(r); (B) y(r); (c) (1);
(d) e(r); () es(¢); (£) Ja(r).

Fig.4. Model validity tests for neural network model (Example 1)
(a) @ (k); (b) Puy(k); (c) P, (k); (d) P2 (k); (e) P 22(k). Dashed line: 95%
confidence interval.
Fig.5. Neural network model response (Example 1)
(a) y(1); (b) e(1);
() es(1); (d) £, (0).
Fig.6. Observations and RBF model response (Example 2)
(a) observations; (b) one-step-ahead predictions; (c) unforced response, first 9 observations
used as initial condition.
Fig.7. Identification data set (Example 3)
(a) u(r); (b) ¥(2).
Fig.8. Model validity tests using identification set (Example 3)

(a) P (k); (b) Pyalk); () Py lk); (d) P2 (k); (e) P 2a(k). Dashed line: 95%
confidence interval.

Fig.9. Model validity tests using test set (Example 3)
(3) Dulk); (b) Duuyik); () Duclk)s (d) D2 (k); () b,z (k). Dashed line. 957
confidence interval.

Fig. 14. Test set and model response (Example 3)

(a) u(r); (b) y(1); (c) ¥();
(d) e(r); (e) €4 (1); () Ya (1)



