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A New Decision Rule for Model Structure Identification

of A Class of Nonlinear Dynamic Systems

Hong Gan S.A.Billings
Control Engineering Deparmment
Sheffield University
Mappin Street, Sheffield S1 3JD

Abstract

This paper is concerned with the problem of deriving a statistical decision rule for model
structure identification of a class of nonlinear dynamic systems. The concept of a basis o
describe the mode! structure is introduced and the model structure space and corresponding alge-
bra structure are defined. Then, based on the Kullback-Leibler mean information, & new model
structure decision rule is developed by maximising the average log-likelihood function. Some
analytical and simulated comparisons of this decision rule with Akaike’s FPE and AlC, F-test,

and Bayes aposteriori decision rule are given.

1. Introduction

A key problem in applying system identificaton techniques is the appropriate choice of a
decision rule for determining the model structure based on the information provided by a finite
number of observations. The analysis of accuracy, convergence and consistency etc. of param-
eter estimators would be meaningless if the model structure was not tentatively known, Vari-
ous techniques, ranging from statistical tests to correlation analysis and statistical decision

theory, have been suggested in recent years.

Based on statistical tests and decision theory, some criteria for model structure
identification have been suggested, such as FPE (Akaike 1970), AIC (Akaike 1974, Sakamoto
1986), Cp (Mallows 1973), PIC (Kashyap 1977), R? (Hosking 1979), FPE, (Shibata 84),
correlation analysis ( Billings 1986) and hypothesis tests (Leontaritis and Billings 1987).
After analysing the log-likelihood function via the prediction error, Soderstrom ( 1977 ) pub-
lished results comparing Akaike's information criteria with the F-test and Cp plot etc. . This

study showed that Akaike's information criteria, the F-test and the likelihood ratio test are all
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G° = Q is a measurable function set with finite elements.

8 e @ is the corresponding parameter vector and @ < Q is the parameter set.
= O(=1)y(t=2),...y(2—d, ))
U = (u(t=1),u(t=2),...,u(t—d, ))

and y(t) € YcT; u(t) e UcT; Y and U are the output and input space of s, ,

respectively,

For a given system se§, an experiment record A (¢ ,zy ) is given by

A (to AN ) ={u(tf )! y(ri )’ l:Oxls-JV}

Denote
Y= (y(tl ),}’(fz ),--v,y(fN )) ’ y(ri )E Y
U= (u(t} ):u(tZ )!---’u(tN )) ’ u(ri )E U

xi = (ga (Yi_l !Ui-l )s 8 (Yz_l ,UZ—I )’"‘7gi (Y‘N—l ,UJN + ))

XE=(xy 2y e ) CXF kiand m e I,

So X%, cx° corresponds to the rank of all elements of G°.

1.2 Definition of Model Structure

Definition 1: each g; € G® and ie/ is called an element of a model structure. G is referred to
as the element set of a model structure of the system s. Any possible linear combination of

elements in G° is called a model structure, denoted by c,

ce:x X0 > Y kel | Yoyt
All ¢, , kel, comprise the model structure set for the identification of the system s, denoted by
C.

Definition 2: the matrix X° is called a realisation of G° conditioned on the given experiment
record A (¢ ,zy). The corresponding linear space xo sparmed by X° is called the basic structure

space. Each subspace x* is relevant to a realisation matrix X* and a model structure c*,
Definition 3: G? is said to be an independent set if all its elements are completely exclusive.

Definition 4: a subspace x* < %° is said to be of rank r if its corresponding realisation matrix
X* has rank r. A subspace ) < x° is said to be the maximum true subspace of y° if



Rank y, = Rank %° = ,

and the rank of any true subspace of X is smaller than r.

Based on these definitions, the identification of the model structure can be stated gas-

For a given System s €§ with experiment record A (t5 2y ), design an independent ele-
ment set G° and establish the basis X, Then find an optimal subset G* from G° such

III. Decision Rule for Model Structure Identification

IIL1  The General Form.of the Decision Rule

Consider a System se S, for which the relationship of the inputs and outputs obeys the
probability distribution YA) and the probability of the System obeying a mode] o « C is real-
ised by the structure space x* < x and described by fAXlc* ,0% ). The Kullback-Leiblerg (K-L)
mean information ( Kullback 1951) of the system can then be represented by

ICLAAIE,0%) = B, {logﬁ%?} (3.1)

The average log-likelihood is defined by

S AN .0%) = [1og A1 Mic* 6% ) y () e (3.2)
The K-L mean informatiopn can be written as

100 AN 65)) = 50, ) - 500, 7 Ac* 0ty (3.3)
which has the following properties:
@ Iy ANt ,05)) 20
i) ICY AN ,0%) =0 iff %" C ang 0" € © thary ()) =flAlc",0")
in terms of Lebesque measure.

where, ¢ and 8" define a mode] which describes the " e relationship " between the input
and output of the System s.



These properties imply that minimisation of the K-L mean information would be a rea-
sonable decision rule for model structure selection. This has been widely accepted in most sta-

tistical decision problems.

For a given measurable system, the first term in the Eq (3.3) is constant. Therefore,
minimising /( ¥, & Mc* ,8%)) in Eq (3.3) is equivalent to maximising S(A, f{ A |c* 6% )) in Eq
(3.2). Moreover, in any one experiment, it is assumed that the measurement record A (to, tv)
is sufficient so that the ergodic property is satisfied. Such that the ensemble average of the
log-likelihood in Eq (3.2) can be approximated consistently by the average in time with proba-
bility one. Thus, the decision rule for the model structure identification problem described in
section II is simplified to finding a ¢" € C and 0" € @ such that

. " max
Jf e 87 ) =0 c 8 JA c*,0%)) (3.4)
e C
where,
1 =N
JIR c*,0%)) = ~ Z1ogfU A, oy It 8%) (3.5)
=1

III.2  The Decision Rule under Gaussian Distribution
Consider the stochastic variable w*:
whk=Yy — y* (3.5)
Yt = X* g% (3.6)
where, Y € Y; Y e xk cxandefe e,

which gives the difference between the measured output space and the model structure space. It
is known that if the model c* is completely controllable and observable, the average log-
likelihood function of the system s obeying the model structure c¢* under the condition of
Aty , ty ) can be approximated as

J(A 0% ) = JA wh ) (3.7)

where,
13 Nk
JA W) = ro Ylogfl w(i)* ) (3.8)
=1

assumption 1  Just the first and the second moments of the distribution of fiw* ) are con-
sidered and fAw* ) can be approached by the Gaussian distribution



where,

assumption 2

Therefore,

fowk )= N(# ,R)

the statistical properties of Y and X* satisty

=0

R, __AE{(Y—EY )(Y—EY)T}=pyE

R A z{(x" — EX*)(x* — EX*¥YT }: diag(R 4 )

[1]

Rxf=px

Ry & E{(Y = EY Y&~ Exk ¥ }: 0

R* =RE+RE R 0F+ REQ 0% oF

= (p, + 0 REB*)E

where, i,k € | and Z is the unit matrix.

The decision rule defined in Eq(3.4) can be obtained by

where,

D(A)=c"

max
= argument 18* € 8 J(f{ c* 0* )
teC

= argument {Hngnc J c ))}

J(f(c")):% log detli;k-i--%f- IY - X 0" I,

(3.9)

(3.10)

(3.11)



A

R = (p,+ 0" Ro) = (3.12)
1

Py =+ I¥- EY|? (3.12)

R: =E{(X"—EX“)T(X"‘—EX")}=d£ag( Bt Bt - By) (3.13)
= Lok gy

by =~ IXF - EXE| (3.14

0" =x“ xtylxy kel (3.15)

Comment 1 The assumption of a Gaussian distribution refers just to w’, Nothing is assumed
about the probability density of Y and Y*.

Comment 2 For each functional structure in G, there is a corresponding realisation in the

structure space.

Comment 3 The variances §, and Iéﬁ can be computed independently from the parameter 6.
Consequently, many effective filtering

and estimation algorithms can be used for this purpose.

Comment 4 Eq (3.15) is a basic formulation in regression analysis. Therefore, most tech-

niques of regression analysis can be applied to the decision procedure.
IV. Discussion and Comparison

IV.1  The Principle of Parsimony

The principle of parsimony suggests a compromise choice between the residual variance
and the number of parameters, which is stated as follows "given two models fitted to the same
data with residual variance p; and p, which are close to each other, choose the model which
involves the smaller number of parameters”. In most current suggested criteria, like FPE, AIC,
FPE, and the Bayesian criterion given by Kashyap, this problem is approached by adding
some function of the number of parameters to the criterion. This has proved to be useful in
the determination of the order of time series models and transfer functions. But for most mul-
tivariable systems and nonlinear systems, the candidates of model structure for the
identification decision are unnested. It is evident that just the variance of the residuals and the

number of parameters is not sufficient for the decision concerning the model structure . '

The decision rule proposed in this paper includes not only the dimension of the model

structure and the residuals, but also the the variance of each coordinate of the structure basis.



When the variance of the basis for two model structures and the residuals are close, the model
structure with the smaller parameter dimension will be chosen. If the dimension of the two
model structures are equal and their residuals are close to each other, the model structure
which involves the smaller structure variance will be selected. This property makes the cri-

terion more effective to the structure decision of MIMO and nonlinear systems.
IV. 2 Robustness

The Robustness of a criterion reflects its ability to tolerate deviations which occur in
practical applications from the theoretical assumptions and uncertainties. In AIC, the deriva-
tion was based on the assumption that the parameters are " very close to the true ones " and
the aposteriori distribution is Gaussian. Similarly, in Kashyap’s Bayesion criterion, a priori pro-
bability of the parameters was assumed. This limited the design of the structure space, espe-
cially for nonlinear systems. Whereas, no requirement on the probability of the parameters in
the decision rule is suggested here. Almost all previous criteria used just one kind of informa-
tion measure for goodness of fit, the residuals or the prediction errors. But in practice, espe-
cially for nonlinear systems, the residuals and prediction errors do not just include information
about the model. They are often disturbed by measurement noise both in inputs and in outputs
and the estimation error of the inital states. Consequently, the single measure for goodness of

fit, either by residual or prediction error, may fail to give a reasonable assessment.

The decision rule suggested here includes and combines three kinds of information. The
first is the residual, which measures the distance between the output space and the structure
space. The second is the prediction errors, which measure the distance of the predicted model
output to the output spacé. The third is the equation error, which gives the deviation of the
predicted basis from the measured basis. These three pieces of information describe the
behaviour of the system obeying the model in different directions and provide a coinciding

measure of goodness of fit. This property makes this criterion more robust when the observed
data are disturbed.

V. Numerical Examples

The simulation computation and practical utility of the methods are demonstrated in this
section. The numerical comparative results of seven criteria are presented. These seven criteria
are Jy the variance of residual; J, the Cp statistic; J3 the FPE test; Jy the AIC test; Js the
Bayesian aposteriori criterion; Jg the variance of prediction errors; J7 the new decision rule.

The forward orthogonal regression algorithm and the one step backward orthogonal regression



algorithm are used.
Example 1 : A linear dynamical system with coloured noise.

The simulated system model is
(&) = L.61y(r=1) — 1.61y(+=2) + 0.78y(+-3) + 1.2u(t—1) — 0.95u(s-2) + 0.2u(z-3)
+ e(f) + 0.1e(t-1) + 0.25e(r-2) + 0.87¢(t=3)
Where, the noise e(t) is a Gaussian sequence with mean zero and variance one, ( e(t) = N(0,1)

). An ARMA model set with dy=5and d,=35 is used. The results are shown in Fig. (1) and
Table (1).

Example 2 A nonlinear dynamical system .

The simulated system model is
¥(®) = 0.75y(¢=1) + 0.22p(t=2) + 0.2u(t~1) — 0.8u(1—2)
= 0.024y(+=2)y(+=2)y(+=2) — 0.043y(—1)y(—1) — 0.19u(+~1)y(+~1)
— 0.016u(t=2)u(r=2)y(1=2) — 0.016u(t—1)u(—1)y(t—1)
— 0.15u(e=2)y(t=2)y(+-2) — 0.16u(t=2)u(~2)u(t=2) + N(?)
n(z) = e(z) + 0.1e(r~1)

Where, the noise e(t) is a Gaussian sequence with mean zero and variance one, ( e(t) = N(O,
0.2) ). A polynomial NARMAX (Nonlinear AutoRegression and Moving Average eXogenous)
model set with /=3 (I is the maximum order of the polynomial set ), dy=2and d,=2 was

used. The results are shown in Fig. (2) and Tables (2) and (3) respectively.

Example 3 : The empirical data used here was collected from an experiment on a pilot scale
liquid level system. The model set is the same as that in the example 2. The first 700
recorded data were used for model structure identification and the first 500 records were used
for parameter estimation. The results are shown in Table (4) - Table (7) and Fig. (3) - Fig.
(10) respectively.

YI. Conclusions

A new decision rule for model structure identification has been developed based on the
Kullback-Leibler mean information. Some analytical and simulated comparisons of this deci-
sion rule with Akaike’s FPE and AIC, Mallows’s statistical Cp plot and Bayes aposteriori deci-

sion rule have been given. The results suggest that this new criterion may be superior in the



case of disturbed inputs and outputs, especially for nonlinear systems. Since the identification
procedure based on this new proposed decision rule can be implemented without the aid of any
subjective judgement, its application to problems in nonlinear system identification should sim-

plify the often complex procedure of determining the model structure.
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table 1. Decision Results for Example 1

Jl .Jrz .13 J‘ .Jrs Jﬁ J'J
¥(i-1) ¥(=1) y(-1) y(-1) yi-1) y(t-1) y@-1)
¥(i-2) yi-2) y(-2) ¥(1-2) y(i-2) y(1-2) ¥(1-2)
y(i-3) ¥(1-3) y(1-3) ¥(1-3) yi-3) y(i-3) y(1-3)
u(-1) u(i-1) u(i-1) u(t-1) u(i-1) u(i=1) ut-1)
u(i-2) uft-2) wi-2) u(l-2) u(t-2) ul(l-2) ufi-2)
u(-3) u(1-3) u(t-3) u(1-3) u(t-3) u(L-3) u(i-3)
u(t-5) o(t-5) u(t-5) u(1-5) u(L-5) u(t-5)
yi-4) y(-4) yli=4) ¥(i=-4) y(1-4)
¥(t-5) y{1-5) Y5 | yu-5) yii-5)

u(1-4) =
03146401
Output
0.
-3126401 4
0.8986+00
Inout
bl Ul
li- :|.< ) l 1 I“!
o i“ lrlﬂ gw‘ I |[ T l} vf i]“ﬂ ik
i ]
—B840e400
Trme imtarvol

fig. 2. input and output of example 2.

bl
1 ,f\ &iw:mm

|

0.29Be+02

-283e+02 4
Tims wtarval

0140402

Inout

~.1500402

Tima wtarval

fig. 1. input and output of example 1.

-

-

table 3. Decision Results for Example

decision rule | model structure

J] 1411628193 21852922
0131220 T4
03177151617 24
2681033934

Ja [ 1 ane

Ja 1411628153218 525 230

Ja 1416

Js 14

Jg 1 411 628153251825

Jq 1 A12E19325 1828

table 2, Element Set of Mode! Structure of example 2

1 oy-l) B y(-Dy-1)ya-1) i 15 uft-1nuit-1jui-1) 2 y(-2ui-2) 2% u(t-Drut-1)y(-1)
2y 9 y(-I)y-1)yq-2) 16 uft-Tu(i-1jui-2) 23 y-Dyn-Iufi-1) 30 uft-lnut-1)yn-2)
3 uil) 10 F-1)y(1-2)y11-2) 17 uft-1Ra-2)ult-2) 24 Fit-1)y(-Trt-2) 1l u(t-Du(t-2)ya-1)
4 u(e2) 11 ¥(-2)y(-2)yti-2) TP wit-2)ufi-201-2) I y(l-1)ya-2u(-1) 32 wit-lult-2)ya-2)
5 yit-1)y@-1) 12 ui-w-1) 19 yi-Dun-1) 26 w(t-1)y(u2)ufi-2) 3 ut-2nf2)ya-1)
6 Yy | 13 ulua) 20 y(l-lune2) 27 yeDytdugel) | 34 weZpuz)ve-2)
! 7 oyeuy0) | 14 wezue) | 21 yoaween 2B Y 2y0-ani2)
table 4. Decision Resuls for Example 3
0762400 A
decision rule mode] smucrure Dueout Aﬂh Vh’, h h Mmm. s M
Y Lf ll' D ) ‘i U W o0
Jy 13411192820 61530 2]
203151413 24 1733 16 15
1227252610239 829
%732
Ja 13411 1928 222 6
Ja 1 411628193251829 2426 Time interva
Ja 1341119252 261830 21 GRBEEOD
20315141324 17 33 16 15
1277252610239 8 Input
Js 13 411 1928 l h i kl l !
- l ﬂd L1 LILIL l!t i fil 1A JIE R 1h1Y
Js 1341119282 226183021 ) N AT, e AR W AU
20315141326 1733 1615 1 | {IMAL
1227252610239 8 ! |
Jq 13411192826183021
-.840e400

=11 «

Time marvel

fig. 3. input and output of example 3.
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teble 5. model decided by criterion J4

Terms

yit- 1)=
uft- 1)=
wlt- 2)=
ylt= 2)=y(t= 2)=y(t-
yit= 1l)~"u(t= 1)=
yilT= 2)%y(t=- 2)=ult=
yit= 2)=
yit= 1i*y{t- 2}=
uit- 2)vu(r- 2)-u(t-
y(t= 2)*oit=- 1)=

[ora—

s

Estimates

0.7835e+00
0.4013e+00
| =.7240e-01
2)= -, 22B1e-01
| -.2866e+D0
2)= - 1362e+00
0.1541e»00
.3755e-01
~.1595e+00
0.4674e-01

2)=

ERR

(0.874e+02)
(0.144e+01)
(C.271e+00)
(0.22%e+00)
(0.553e~01)
(0.133e+00)
(0.956e=02)
(0.209e-01)
(0.203e-01)
(0.B2le=-D3)

Stoev

(0.495e~-01)
(0.157e-01)
{D.192e-01)
10.610e-02)
{D.544e~D1)
(0.14%7e-01)
(0.4B4e=D1}
(0.105e-01)
(0.405e=01)
(0.54Be-01)

Pl

fig. 5. prediction errors and residuals by model J,

table 6. model decided by criterion J,

Tezms ! Istimates ERR Stdev
yit- 1)= 1 C.7661e+00 (D.B74e+02) (C.501e-02)
vit- )= | £.23574e+00 (0.144e=D1) (L.260e-01)
Lt~ 2i= | --2037e+00 (C.272e400) (C.16€5e-02)
Y= 2i*yli- 2V=yit= 2)1 - 2987e-01 (L.127e+00) (C.6D0e-02)
yit- dysutr- 1= 1 -.2252e+00 (D.553e-01] (C.224e-03;
yit= 2)=yiv= 2¥=ui(t= 24 - 227pe400 (C.172ze~-Ci;
yit- 2)= C.2104e40C (0.996a=02) fC.4Ehe~-D1)
yit- 2 *u(t- 2,- C0.E3DBe-0L (L. 13be-02) (C.260e~01;
yt- 1)tytr- 2:= -.490be~3: (L.264e~02) (C.103e-02)
S
] s e e~

1 = = al N —
-y o o

—mmn—sop -

fig. 7. prediction errors and residuals by model J,

table 7. model decided by criterion Jy

Tezms Estomates ZRR Stoev
yit= 1)= C.7705e=00 (0.9742+02) (C.€%9Be~-01)
vit= 1}= i 0.2956e~00 (D.144e=01) (C.275e-02)
ult= 2)= ©=.872%€-01 (D.271e+00) (C.26%e=01)
Y= 2)*y(t- 2)"y(t- 2)= -, 620%e=~00 (C.127e=00) (0.531e+00)
wiT= l)=u(t= )= -.52B4e+00 (0.553e-01) (C.3B6e+0D)
Y= 2)ey(t- 2)"u(t- 2)= =-.1402e+0% (C.133e+00) {0.10ze+01}
yit- 2)= 1 0.2027e+00 (0.996e=-02) (0.67%e-01)
vit= 2}mu(t- 2)= —-.4432e+00 (0.13be-02) {0.371e=00)
ylr= 1)=y(t= 2)= ‘D.Z?SIE*DD (D.264e-01) (D.167e+00)
uit= 2)*u(c- 2)"u(t= 2)=| 0,2607e+0D (0.165e~01] (0.237e=-00)
ult=.1)"u(t- l)=y(t= 2)={ - 252pe+00 (0.B04e-02) (0.1Z3e+0D)
yit= 21mu(t- 1)= D.2654e+00 (D.405e-02) (0.3BZe~0D)
yit= 1)=u(t- 2)= 0.6200e=00 (0.316e-02) (C.3B7e+0D)
ult= 1l)*u{t- 2)=y(u- 1;-]0.2152»00 (0.545¢-03) (0.26ze+00)
yit— l)"y(t- 1i= =.3226e+00 (0.126e-01) (0.172e+00)
uit= 2)*uft- 2)= ! -.2016e+0C (C.161e-02) {D.B4le-01)
wit= 1)*u(t=- 2)= 1 D.2582e=03 (0.470e-02) (0.132e+00)
Y- L)*y(t- 1) u(t- 2)={- 1655e+01 (0.365e~05) (0.112e+01)
vit= 1)*u(t=- 2)*u(t- 2]-}-.57252900 (0.2BZ2e-02) (0.560e+00)
vlt= 2)*u(r= 2)*y(r- 1)=: - 8445e-01 (0.200e~-03) (C.152e~0D)
ViT= l)y=u(t- 1)~u(t- 2)= U.43€5e+00 (0.286e-02) (0.543e+00)
uft= l)*u(t- 1)=u{t- 1)=| C.6074e-01 (0.604e-03) (0.22ze+00)
vit- 1)*u(t= 1)~ 1C.2015e-01 (0.326e=02) (0.795e-01)
yit= 2)*y(t=- 2)=u(t- 1l)=: 132Be+02 (C.7BBe=C2) {0.543e+00)
yit- 1)=y(t= 2)=u(r- 1)=!D, 2417e+01 (0.127e=02) (0.201e+01)
Y- l)*y(t- 2)*vit- 2)=10.3013e+01 (0.143e-02) (C.205e+01)
yit= l)=y(t= 2)=y(t- 2)=i(.2561e+01 (C.146e~02) (0.194e+01)
YT~ 1)vy(t- L)su(t- 1)b=:-_33p5e+02 (C.116e-03) (£.111e+01)
ylz= 1)*yit- l)"v(t= Z)=- (C.215e-03) (0.223e=01)
yir= l)=yit= 1)*y(t~- 1l)= C.139ze+02 10.254e=02) (C.8%7%e-0D)
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fig. 8. prediction errors and residuals by model J,
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fig. 6. predicted output superimposed on actual output using
model from J
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fig. 8. predicied output superimposed on actual out
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fig. 10. predicted output superimposed on actual output using

model from J3



