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MAPPING NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS
INTO THE FREQUENCY DOMAIN

S.A. Billings, J.C. Peyton Jones.
Dept. Control Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD.

Abstract: A recursive algorithm is derived which computes the generalised frequency response
functions for a large class of nonlinear integro-differential equations. Applications to Duffings
equation, and the Van-der-Pol model are discused.

1. Introduction

The analysis and design of linear systems is a well established discipline which finds
wide application in many branches of science and engineering. Linear systems can be
described either in the time domain using a differential equation or impulse response
representation, in the s domain by a transfer function model or in the frequency
domain. The relationship between each of these descriptors is well understood and
standard algorithms are available which can be employed to convert any one represen-
tation into a model in any of the other domains,

Unfortunately the situation is much more complex when the system under investigation
1s nonlinear. Models have been developed in the time, ‘s and frequency domains [Bar-
rett 1963], [Schetzen 1980], but the relationship and more specifically the transforma-
tion between domains is far from striaghtforward in the nonlinear case. The classical
representation in the time domain is the Volterra functional series [Barrett
1963],[Schetzen 1980], which has been used extensively in the analysis and
identification of nonlinear systems [Billings 1980]. By introducing multidimensional
Laplace and Fourier transforms the Volterra kernals can be mapped into multidimen-
sional transfer functions and generalised frequency response functions respectively.
Numerous authors have studied the properties of the generalised frequency response
functions [Bedrosian,Rice 1971], [Bussgang Ehrman,Graham 1974] , but little work has
been done on the interpretation of these as a function of physical parameters in non-
linear differential equation models which are so often used in nonlinear analysis.

In the present study an analytical relationship between nonlinear integro differential

equations and the generalised frequency response functions is derived. This avoids the

.



complexity that occurs with previous methods as the order of the nonlinearity
increases, provides a great deal of insight into the relationships between the time and
frequency domain representations of nonlinear Systems and exposes the sensitivity of
the frequency domain characteristics to parameters in the differential equation model.
The frequency domain effects of changing physical characteristics such as the mass,
damping and stiffness in Duffings equation for example can therefore be readily inves-
tigated to provide engineering insight into system characteristics. The results represent
a natural extension of previous ‘work [Peyton-Jones,Billings 1989]Tvﬁichs]15wed how
to generate all the generalised frcquc-ricﬁ:y response functions from the coefﬁmentsof
estimated NARMAX (Nonlinear AutoRegressive Moving Average model with eXo-
genous inputs) models.

The paper begins in Section 2 with definitions of the Volterra series and generalised
frequency response functions. Because the main results of the paper are an extension
of previous work for discrete time systems Section 3 provides a brief overview of
these results. Methods of computing the generalised frequency response functions are
introduced in Section 4. A relationship which maps the parameters of nonlinear integro
differential equations directly to the generalised frequency response functions is
derived in Sections 5 and 6, and examples of applying the algorithm to both a Duffing
and Van der Pol model are given in Section 7. These results are extended to time
lagged nonlinear integro-differental equations in Section 8.

2. Generalised frequency response functions: The Volterra model

Linear systems posses the equivalent properties of superposition and homogeneity of
degree 1. For nonlinear systems however, superposition does not hold, and the output
may be expressed as the sum of N components y, (1),

N
Y@ =Y v, .1)
n=1

each of which are homogeneous of degree n. These ’n-th order outputs’ are them-
selves defined by an extension of the familiar convolution integral of linear systems
theory to higher orders,

oo o0 n
yn(t) = J- U J' hn(Th T ’Tn.) I_Iu(tbti) d'ti n>0 (22)
—os —oo =1
where the function h,(ty, - - - »T») would be recognised as the system impulse response
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for the (linear) case n = 1. More generally then h,() is called the ’n-th order impulse
response’ or ’'n-th order Volterra kernel’of the system, and (2.1),(2.2) define the time
domain representation of the Volterra model.

Alternatively the Volterra model may be expressed in the frequency domain by
defining an ’n-th order transfer function’ H,(joy, - - - jo,) as the multi-dimensional
Fourier transform of the n-th order impulse response,

=]

o, o) = oo [ by, oo gy eTOmr0m g g
Notice that (2.3) reduces to the standard linear transfer function definition for the case
n=1. Indeed just as in the linear case, the n-th order transfer function and its impulse
response form a Fourier pair; so the relationship (2.3) may also be written as an
inverse Fourier transform, namely,

hn(Tl’ e ,Tn) e 1 J‘ e J‘ Hn(]ml, .. \]mn) ef(ﬂ)111+ e +UJ,,T,,) dwl B o d(l)n (24)
@n* 2, —

Substituting (2.4) into (2.2) and carrying out the multiple integration on ALY 4

yields,

oo

Yalt) = (23:)" [ [ Hgoy, - - oy ﬁUgcoi) Ot AN g (2.5)
e — =]

where U(jw;) denotes the input spectrum.

Note that y,(r) is dependent on the value of the integral (2.5), and that this value may
not change even though changes are made to the function being integrated, (such as
changing the order of any two arguments in H,(-)). For this reason the n-th order
transfer function is not unique in yielding y,(r) unless it has values which are indepen-
dent of the order of its arguments. This "symmetric’ property is obtained by summing
an asymmetric function over all possible permutations of its arguments and dividin g by
their number, such that,

. . 1 - .
HY™joy, - - - jo,) = = X HPMoy, - jo,) (2.6)
* all permutations
of (01 o ml



3. Identification of nonlinear systems: the NARX model

The generalised frequency response functions described above form a non-parametric
black box description for a wide class of nonlinear systems. Unfortunately direct esti-
mation of these functions by non-parametric means, such as multidimensional FFT or
correlation techniques, is computationally burdensome, and results in inordinately large
system descriptions [Billings 1980)].

If the system under analysis can be described equally well by some compact
parametric model form, then another approach would be to perform identification using
this model, and then derive its frequency response analytically from the estimated
coefficients.

One such model is given by the NARMAX representation [Leontaritis,Billings 1985]
y() = Fly(=1), - - - y(=k), u@-1), - - - u@-k,), {@-1), - - - L=kl (3.1)

where F[] is some discrete time nonlinear function of lagged input signals u(r—k,).
outputs y(z—k,), and noise C(r—kg), with 7 used to enumerate the sampling intervals, and
k the lags. Algorithms for detecting the model structure, estimating the parameters,
and validating these models are now well developed, so physical systems are readily
identified from real plant data.

Once this identification process is complete, the Moving Average noise terms (which
were included to ensure unbiased estimation), may be discarded, yielding a determinis-
tic 'NARX’ model containing input and output terms only. The polynomial structural
form of the NARX model may be described by,

M
YO =3 v 3.2)
m=1
where y, (1), the 'NARX m-th order output’ of the system is given by,
m K
Ym(t) = Z Z Cp,q(kls T !kp+q) lEIy(t_kf) ﬁ u(t=k;) (3.3)
=0 kik, =1 =1 i=p+1
Each term is seen to contain a p-th order factor in Y(t—k;) and a g-th order factor in
u(z—k;) (such that p + g = m), and each is multiplied by a coefficient Cpqlkys = Ko i)s
while the multiple summation over the ki (k;=1,- - K), generates all the possible

permutations of lags which might appear in these terms. Thus for example a specific
instance of the NARX model such as,



(O = agy(t=1) + au(=1) + ay(E-2)u(t=1) + a;u(t-1)»> (3.4)
may be obtained from the general form (3.2),(3.3) with
c10(l) =ay coa(1) =a, (3.5)
1@ =ay  coa(lLl)=as,  else ¢, ()=0;

The NARX model has a comparatively modest parameter set because it encodes infor-
mation from past outputs as well as past inputs, and it is this recursive property which
fundamentally distinguishes it from the Volterra model. However an algorithm has
been developed to derive the Volterra transfer functions from the coefficients of a gen-
eral NARX model, [Peyton Jones, Billings 1989]. The algorithm, and the probing
method on which it is based, are briefly outlined in Section 4, while in latter sections
these results are extended to models having integro-differential form.

4. Computing the generalised frequency response: The probing method

Consider an harmonic input consisting of the sum of R exponentials,

R .
u@® = Y (4.1)

r=1

which is applied both to the Volterra model, and to some other model S. The outputs
from each of these models may then be equated, thereby relating the (unknown) n-th
order frequency response functions, H,(-), which parameterise the Volterra model, to
the (known) parameters 8 which describe the model S. Thus,

¥yt Hw,) = y(; 8,y,0,) (4.2)

where the notation y(t; H,®,) is used to denote an expression for the output y(r) as a
functional expansion of all the Volterra parameters H,(-), and the harmonic input.
Similarly y(z; 6,y,0,) implies that the model S, parameterised by 6, is a functional of
both output and input, and is therefore quite general.

The left hand side of (4.2) may be found by applying the input (4.1) to (2.1),(2.2), and
integrating to yield,

ot -+, )

N R
Yy Ho) = Y Y H,(jo,, - jo,) € (4.3)
=1 rr=1
N . . Jo,+ -+,
= Z Z Z Hn(fmr]: o J(Dra) g ! "

n=1 all combinations all permutations
of R frequencies of o, o
taken n at a time
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For the case R = n, the latter sum of permutations may be recognised as n! times the
symmetric n-th order transfer function, and this appears as the coefficient of

@t +O Eoyating such coefficients across (4.2) gives the probing method result
[Bedrosian and Rice 1971},

HY™(jo,, - - - jo,) = _1_1 X [coeﬂicienz of &+ O iy, B,H,m,)] (4.4)
n!
which may be abbreviated as,

HY™ oy, -+ j0) = = Co ¥ 0H0) ] @.5)

Note that the output terms in y(z; 8,y,0,) must be eliminated by substituting their
corresponding Volterra expansion, as indicated by the new notation y(z; 9,H,w,). For
this reason (4.5) does not necessarily possess a solution, since any coefficient in
y(r; 6,H,®,) is in general a functional of all Volterra parameters H(-). The equation
can however be solved recursively from H,(-) providing the model S is of polynomial
form.

4.1. Probing the NARX model
The probing method may be applied specifically to the NARX model, whose

coefficients c, () then correspond to the parameters 0 in equation (4.5). By equating
coefficients of & (@* T®)' in the harmonic expansion of the NARX model,
(1, cp‘q(-),H,a),), the following result is obtained,

K ‘
- Septky €7 By, - o) =
ki=1
K ok B
Z Co n(kls o vkn) e_J(ml £ * fika
k=1
n-1 n—q K B # 5 F ko)
+X X Xz Can(k]’ S ’kPﬁ?) e e Hn—qp(imls o an—q)
=1 p=1 kk=1
n K ) ‘
+ Z Z l:';.7,0(‘1‘:}0 U ’kp) Hn.p(]ml’ Cr JOy,) 4.1.1)
P=2 kl,kp=1
where H, ,(jw,, - - * ,jo,) is used to denote the contribution to the n-th order frequency

response function that is generated by the p-th degree of nonlinearity in the (recursive)

output. It is perhaps not surprising therefore that H, ,(-) itself may be expressed
recursively (for n=p) as, (4.1.2)



) n—p+1 . . ' . . o
chym(fcol, . J(Dn) = E Hi(]ml’ SR JU);')H —i.p-l(]mi+ls . Jmn) e j(y+ +)ks,

Note that the recursion finishes with p=1, and that H, ;(jo,, - - - j®,) has the property,

H, (o, - - jo,) = H(jo, - - - jo,) e Teh (4.13)

5. Modelling of nonlinear systems: Nonlinear integro-differential equation models

The NARMAX model of Section 3 was introduced as a practical means of identifying
black box nonlinear systems. The system’s frequency response may then be derived
analytically as detailed in the preceeding section. In some situations however there
may be considerable knowledge about the processes within the system, and a physical
analysis or modelling approach may have been adopted. Such analysis is generally
performed in continuous time, resulting in nonlinear integro-differential equation
(NIDE) models. A polynomial form for a wide class of these models may be
represented as,

M m L
2 2 X Gl p+q)lE[DLy(t ﬁ Dhu@) = (5.1)

m=1 p=0 lL.l.~L i=p+1

where p + g = m, and where the operator D is defined by,

d'x (1)
Dx(r) = + a (5.2)
t T2 :

I v jX(Tl)dt] e dTm [<0

—oca —co

20

L

Note that the lower limits of integration in (5.2) may be raised to zero for causal sys-
tems where x(1)=0 V1<0.

For (5.1) to represent a valid input/output map however, there must exist at least one
non-zero linear output term, and this will become apparent in the final result (6.4.2).
For the present a suitable device is to assume the coefficient ¢; o(0) # 0, and rearrange

(5.1) to give,
o0y = 3§ }: b TID0 T Dy 53)
m=l p=0 Ilp = i=1 i=p+1
except cm({])

Thus for example the expansion of (5.3) up to 2nd order gives,



L
0@y = ¥ cpoly) Diya) +
L=-L
axce;;r c1,06(0)

L !
Y coa(y) Du)
[1='—L

L L ; ;
+ 3 X collyly) Dy() D?(r) +
el L=k

L L
S Y el DYy Du@) +
I‘tl:—L IFPL

L & ! !
Y X coalyly) D ulr) D7u(r) (5.4)
=L l=L

Alternatively a specific instance of the NIDE model such as the well known Duffings
equation,

DHy(1) + 2Lo,Dy(r) + 02y() + wley(®)? — u(r)=0 (5.5)

may be obtained from the general form (5.1) with
c102) =10, o) =2Le,; o) = (5.6)
c30(0) = w2e; cp1(0) =10 else ¢, () =0; (5.6)

where ( is the damping ratio, and o, the natural frequency of the Duffings oscillator.
Once again the advantage of the NIDE model is its relatively small parameter set, and
its widespread usage in physical system modelling. The remaining task is now to map
these physical parameters to obtain the Volterra frequency response characteristics of
the system under analysis, and this is achieved by applying the probing method.

6. Probing the NIDE model

6.1. Pure Input Nonlinearity

The simplest sub-class of NDE to consider corresponds to p=0 in expression (5.3),
which yields,

M L "
—c00 ¥ = Y X coglly, ) [10"u@) (6.1.1)
m=g=1 L.l~L =]

-8 -



Applying the D operator to the harmonic input (4.1) gives,

; R ;
D" f & = ¥ (o) & (6.1.2)

r=1 r=1

so that the harmonic expansion of (6.1.1) becomes,

M L R :
—c00)y® = X X cogln iy ﬁ ) (jo,)" & (6.1.3)
m=g=1 IJ=L 1 rel
M L R o
= 3 3 oAy 3 TIGe) e
m=g=1 IJ=L rure=l i=1

By the probing method, the n-th order frequency response function from pure input
terms is given as the coefficient of & " in (6.1.3), with R=g=n. Thus

, ) - Y Y.
- ¢1000) Hp2™(joog, - - - Jjo,) = X conlly, o ln) G - - - (o,
I,1=1

" (6.1.4)

and a pure n-th order term in u(?) is seen to contribute only to the n-th order kernel, or
frequency response of the system.

6.2. Pure Output Nonlinearity

A much more complicated sub-class of NDE contains only pure output nonlinearity
terms, and corresponds to g=0 in expression (5.3). This yields,

M L P ‘
—o @y =Y X oty ) TIDH0) (6.2.1)
m=p=1 L,=L i=1

except ¢, o(0)

which again is of polynomial form, only this time in terms of the output y(r). A Vol-
terra model, and its frequency response, are however functionals of the input, so the
n-th order frequency response is obtained by applying the probing method. A har-
monic expansion of (6.2.1) is obtained by substituting for each output term using the
corresponding Volterra model expansion of (4.3),

. N R , ‘ Cjl@, 44w )t
Diya) = Y o 3 Hfjw,, - jo,) D¢ /

=1 rir=l

(6.2.2)

where 7y is being used to enumerate the various order terms, and where the dummy
variable o=1 is included to keep track of all terms homogenous to degree Y.

Pure output nonlinearities may therefore be expressed as,



P . N R m,+ C 0, )
o0 = 1 S oS Hgo,, - jo,) D™ ? (6.2.3)
=1 =1 'Yzl rl,T-Y:]
N o sy 2 R ‘ O
= Yy a 11 X Hye,, - Jjo, ) D'e
=l =l el

By inspecting the power of the dummy variable @, (6.2.3) is seen to contain terms
from order p up to Np. The leftmost summation may therefore be subdivided into
terms of like order n, giving,

N n—p+1 Heop -ty )i
]E[Dl‘}’(t) = f o p+ ]EI E H,(j,,, - -+ jo, ) D T (6.2.4)
=1 n=p

Y1 -YP i=1 Fyy r.r—l

| Yy=n

where the constraint that ¥ Y;=n also lowers the limit N to n—p+1.

Now by the probing method, the contribution to the n-th order frequency response
function that is generated by a p-th degree of nonlinearity in y(z), is given by the
coefficient of & * in (6.2.4), with R=n; that s, |

. n—p+1 14 n ) I; ](UJ, '+(1),1.)f
MHIM) = G| £ 11 X HyGw,, - jo,) De ! (6.2.5)
Y[,'Yp:l i=1 r;,r.,:l
| Yy=n

Each permutation described by the multiple summation over r is an ordered set,

(denoted W), of v, frequencies, taken from the n input harmonics. Applying the pro-
duct would then generate terms with arguments given by the union of W, , i=1.p. As
expected there are n such arguments (since Y Y; = n), but these will contain repeated
frequencies unless the sets W,, and their elements are disjoint, i.e. unless
Wy,,”Wn =0 Va#b, and 0, # ©,, V azb.

The simplest construction of such disjoint sets W, may be obtained by choosing

Wy = {ox, - Wy} where X = >Y,,x=1.i~1. The union of such sets then

comprises the n different frequencies {®; - - - ,}. Thus, (6.2.6) .
m n_ﬁq L O+ +0),.X+T)I

nl HYZ'(C) = €, E ﬁ Hy(jo,. .. i,M) D'e

Y=l ry =1
| ¥y=n T#Ts V a#b

where X is given as above, and where the multiple summation over 7 now generates all

- 10 -



other constructions of disjoint sets by permutation. However given,

n

n‘ H's-ym(]ml, . J(Dn) = z H%:gm(iml, o Jﬁ)n) (627)
rl,r,‘=1
ra2ry Vazb
then it is more simple to write, -
. n—p+tl  p ] ' g, JABg s ¥ 5 +<»,X+T_)I
HEZPO) = €, > 11 Hy (o, - erxﬂj) D'e (6.2.8)
'Yl.r’Yp=1 =1
| Xye=n

Applying the D operator, and then extracting the time exponential term from within
the product, gives Hz2™(") as,

n—p+1
: : . ?
Ha3"() i ]E[ Hy(jo,, . " Jco,x‘n) (o, + +j(1),x1_?l_) (6.2.9)
Ny~ =1
| Zye=n

Equation (6.2.9) may be cast in recursive form by expanding the last term of the pro-
duct. This yields,

n—p+1

; g s I}
HZ2™() = Z H, (j0p 15 JO) (Wpy it - H0,)7 (6.2.10)
P ] T Yp
Y=
(=Y -(p-1)+1 p-1 . . ) . I
X 3 I1 HyGo,,.,, - Jo,,) (o, + -+, )
T Yp1=1 i=1 : '
I v=n—,
ngtl . . . Y .
= Y;] HYPUO)”—YPH’ t J(On) (]mn—‘yp+1+ T +jmn)p H n—Yp p—l(.’ml ’ Jmn—‘yp)
e

Equation (6.2.10) may be written more convieniently using new subscripts, and a
different (aysmmetric) permutation of frequencies, as,

n—p+1
HZ" ) = f Hjoy, - JO)H, (0, - - - JO,) (O - He)?  (6.2.11)

=1
Note that the recursion finishes with p=1, and that H,(j®;, - * - j®,) has the property,

H, (i@, + -+ Jo,) = Hyjo, - - jo,) o+ - - 4w (6.2.12)

Whilst equation (6.2.11) gives the contribution to the n-th order frequency response
function generated by a p-th nonlinearity in y(f), it is seen from (6.2.1) that the output
is composed of many such terms. Their combined contribution to the n-th order

o I 5=



frequency response function is therefore,

n L

= ¢10(0) H™(oy, -+ jo) = X X cpolky, v okp) Hyplioy, - - @) (6.2.13)
Fl [lulp:_L
except ¢, o(0)

where the uppermost limit on the first summation has been reduced from M to n since
H,p()=0 for p>n. This merely reiterates that the p-th nonlinearity in y(z) cannot
contribute to kernels less than p, although it will contribute (recursively) to all higher
kemels.

Finally note that the linear terms in the output, corresponding to p=1, may be collected
and brought over to the left side of equation (6.2.13), thereby defining the poles of the
n-th order transfer function. Thus (6.2.13) may be rewritten as,

L
— | T crolly) ot - - - o) | HE™ oy, - - jo,) = (6.2.14)
L=-L

n L
2 Z Cp,D(lla e !lp) Hn,p(fmla < B E J(J)P)
p=2 hi=L

6.3. Pure cross product nonlinearity

The largest sub-class of NARX, which contains only pure cross product terms,
corresponds to p#0,¢#0 in equation (3.3), giving,

M m-1 L
Cag0y0 = Y T S ool 1D T Du 63D)
=1

m=1 p=1 b, ~L i=p+1

This structure suggests that the n-th order frequency response function is obtained by
multiplying the pure g-th order response function in u(z) with the pure (and recursive)
(N—q)-th order response function in y(r), within the major summator. Fortunately the
multiplication is a relatively simple operation, for although the response of an output
term contains many (recursive) components, the response of an input term contains
only one, and there are no awkward cross terms.

For notational reasons however, it is convenient to rewrite (6.3.1) with g, the order of

the input nonlinearity, as the major summator; substituting p =m — g, and reversing
the direction of summation, then gives,

212 -



M m-l i m-q ptg L
oy = Y Y Y gl il TIPSO TI Du  (632)

m=1 g=1 hl.=L =1 i=m—q+]
The corresponding frequency response, (for n>1), is then,

= ¢10(0) HR2™(jwy, * * - Jwp) = (6.3.3)

n-1 n—g

XX ”ZL s g (@)™ (0 )P Hy g (01, 0 )
g=1 p=1 iyi=

where the upper limits on the summations have been lowered as before (since
Hn"(-) = 0 for m = p+q > n), and where H,_, () is generated by the recursive relation

(6.2.11). This somewhat heuristic approach may be validated by applying the probing
method directly as in Section 6.2.

6.4. Combining NIDE sub-classes

The total frequency response of the NIDE model may now be found by summing the
contributions from the various sub-classes,

Hy(joy, - - jo,) = H, () + H, () + Hy() (6.4.1)

Substituting (6.1.2),(6.2.14) and (6.3.3) in (6.4.1) gives the total frequency response,

L
>, cyo(ly) (gt - - +iw,)"| Hoy, - jo,) =
[1='—L

L

S conlh, k) Gt - Gioy)”

11 ,Ia=—L

n-1 n—q

. L ged . I : ;
+ Z Z Z Cp q(llv T ’lp+q) (](Dn-q-!»i)wl T (](Dp-i-q)m Hn—q,p(]mla B J(Dn—q)
g=1 p=1 Ll=L

n L
+ 3 X ol ) Hpp(ioy, - - - jooy) (6.4.2)
P-_-2 Ihlp:-L

together with the recursive relation (6.2.11). Note that (6.4.2) gives the asymmetric
Volterra transfer function, although it is a simple matter to obtain unique symmetric
values by applying (2.6).

- 13-



7. Examples

7.1. Duffings equation

Consider then the example of Duffings oscillator given in equation (5.5),
Dy(r) + 25w,Dy() + 0ly(D)+whey(®y-u()=0

where the cubic output nonlinearity derives physically from the cubic stiffness of a
spring. However the majority of terms are linear, and as expected the first order fre-
quency response obtained from (6.4.2) is,

1

H+(j =
109 = o + 2Lania) + o

(7.1.1)

This response has been plotted in Figure 1, with the values { =0.01, o, =45n%, and
€ = 3.0, giving a resonant peak at a frequency of 22.5Hz.

The cubic term of (5.6) however generates frequency response functions for orders 3
and higher. In the third order case, the absence of other nonlinear terms means that
the response from (6.4.2) is simply,

H (jo)H,(jo,)H(jos)
(j+Hj0yHj3)? + 20, (i@+HwrHos) + oy

Ha(jojm, jon) = 02e x (7,1.2)
and this is plotted in Figure 2, for the same values given above, (and with f1=f;). The
plot contains a number of resonant peaks and ridges, which can also be seen on the
contour plot, Figure 3. The origin of these features may may be understood by inspec-
tion of (7.1.2). The ridges are generated whenever one of the factors H() in the
numerator of (7.1.2) is excited at the linear resonant frequency, namely £22.5Hz, and
the peaks occur when this is true for all three factors, (see dotted lines on Figure 3).

Notice also that the poles of Hi(*), given by the denominator of (7.1.2), have the same
form as the linear characteristic equation, and so these are excited whenever
©HD+03 = ©,, (see solid line on Figure 3). It is for this reason that the resonant
peak at H;(jw,,—j®,jo,) is larger than the others.

The example therefore demonstrates how the features of higher order frequency
responses may be related to parameters (such as the damping ratio and natural fre-
quency of H,()) in the original oscillator equation. In this way equation (6.4.2) may

not only be useful in computing higher order frequency response functions, but may
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also aid designers in shaping nonlinear frequency characteristics through the parame-
ters under their control.

7.2. Van-der-Pol model

As a second example consider the Van-der-Pol model,

D%y(1) + 2L, ((1)* — 1) Dy(t) + oiy@)-u@) = 0 (7.2.1)

In this case the nonlinearity occurs in the damping term, so that for small displace-
ments the damping is negative (self-exciting), and for large displacements the damping
is positive (limiting). The linear terms however are very similar to those of the previ-
ous example, and yield the first order response,

1
H(jw) = e .
= o — 2w 00 + 7

This response has been plotted in Figure 4, with the same values for {, ®, as above,
and it is seen that the changed sign of the damping term merely reverses the phase
characteristic, (compare with Figure 1).

The nonlinear damping term, though cubic as before, contains a factor in the
differential of y(z), and gives the third order response function (from (6.4.2), symmeter-
ised by (2.6)),
2Lw, y (jOHw+Hwa) Hy(jw,)H,(jo)H,(jox)

6 (O Wy4j3)? + 20w, (j0+HyHw3) + ©F

which is shown together with its contour plots in Figures 5,6. These still exhibit the
same peaks and ridges as the third order Duffings equation response, (compare with
Figures 2,3), and the same discussion applies.

The additional feature of the third order Van-der-Pol response is however the deep
gorge running across the magnitude plot. This is caused by the zero (jo;+/w,+jw,) in
H;(-) which was introduced by the differential factor in the cubic nonlinearity. The
zero is excited whenever ®;+m,+w; =0, and there is consequently no response at
points where this condition is satisfied.

Finally notice from (7.2.3),(7.1.2) that the Van-der-Pol and Duffings third order
response also differ in their scaling factors. The former is dependent on the product of
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the damping factor and natural frequency of the system, whereas the latter depends on
the spring stiffness €, and the square of the natural frequency. This is in agreement
with the original equations (7.2.1),(5.5).

8. Extension to time-lagged nonlinear integro-differential models

Whilst the NIDE model of Section 5 is sufficient for a wide variety of modelling
needs, it cannot adequately describe systems which have time delays. Such systems
can be described however by combining the time-lagged structure of the NARMAX
model, with the integro-differential NIDE model. This results in the 'Time-lagged
Nonlinear Integro-Differential Equation’ (TNIDE) model, (8.1)

M m L I q L
— Cl,O(O) y@) = Z Z Z Z Cp.q(llkl’ SR Jp+qkp+q) ﬁ D ‘y(t—ki) ﬁ D u(r—k;)
m=1 p=0 I,l..~L kkg i=1 i=p+1
except ¢y o(0)

where in this case the lags K > k; 2 0 are defined as a finite set of positive real
numbers. In practice many physical systems have only one dominant lag, and equation
(7.1) does not contain an inordinate number of terms.

The n-th order frequency response of the TNIDE model follows directly from those
already derived for the NARMAX and NIDE forms; the lags merely introduce a (time
independent) factor which is not affected by time differentiaton/integration. The
desired response is therefore,

L ‘ B W
Y Feyoliky 7O R 4w | HoGoy, - - jo,) =
l]-T—L kl

L N A
2 2 conlliky, o lhky) TT Goop)' e

htlp=L kyk, i=1
n-1 n—g E ) . + ) L (ks
+ E E 2 Cp’q(l]s T slp+q) Hn-—q‘p(,mlo Cha Jo‘)n—q) ﬁ (_’OJ[)I' (4 Omi)ki
g=1 p=1 L,l=L E=n—g+1
n L
+ Z Z Cp.O(li’ e ’lp) Hn,p(jmlﬂ T J0y,) (8.2)
p=2 L=L
together with the modified recursive relationship, (8.3)
m n—p+1 ; : s 3 5 b =il o)k,
HZ"C) = X HGoy, -« -+ JodH, jp (0, -« - Joo,) (ot - - - Hjo)*? e '
i=1
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9, Laplace and Z-transform results

The results of previous sections have been presented entirely in the multi-dimensional
frequency domain. It is a simple matter to cast these into the corresponding Laplace

or Z-transform representation, and for completeness such equivalent results have been
included below.

Replacing eim" by z, in (4.1.1), (4.1.2) gives the Z-transform of the NARX model as,

K
1= ook Gy z) | HEO™zy, o 2, =

kl—_—l
K
—k -k
p 2 CO,n(kl’ L 4 Tl LRy Y
ky k=1
n-1 n—q K —k —k
+2 2 b3 cp.q(kl’ o ’kp+q) zn-;[f-? C Zpyq Hn—q,p(zl’ T =2n-q)
=1 p=1 kk=1
n K
+3 X cpolky, o okp) Hpplzy, oo zp) 6.1
p=2 k].kpzl
where,
S n—p+1 —k,
Hpp ™2y, v 020) = i Hiz.* + 2)Hpip1(@iys 020 (@100 0 2) 9.2)

=1

Likewise, by replacing jw, by s, the reladons (6.4.2),(6.2.11) for the NIDE model
become,

L
- IZ cyoly) (51+ -+ +s ) Hy(sy, o8 =
=L

- I I
Y conly - k) (1) (5R)”

Il,ln:—L

n—1

n L
T S gl g G G Hugpons S

ﬂ—q)

n L
+ E Z Cp.O(lls e ’lp) Hn,p(sls a8 (9.3)
=2 hi=L
where,
- n—p+1 :
HiZ™sy, - 58e) = X Hilsy, oo SOH i p-1(i1s ~** Sp) (S1F 70 - +8)7 9.4)
=1
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The Laplace transform representation for the TNIDE model of Section 8 is very simi-
lar to (9.3),(9.4), but with exponential terms of the form e

delays.

accounting for the

10. Conclusion

An analytical relationship which expresses the generalised frequency response func-
tions in terms of the coefficients in nonlinear integro-differential equations has been
derived. This allows the generalised frequency response functions of any order to be
calculated in a manner which avoids most of the disadvantages of prevoius methods.
Application of the results to the Duffing and Van der Pol equations have been included
to demonstrate how the new approach provides insight into the relationship between
physical parameters in the differential equation model and the higher order frequency
response functions.
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