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MINIMUM-VARIANCE CONTROL OF NONLINEAR SYSTEMS
S. A BILLINGSY and K. R. SALES%

A minimum-variance self-tuning controller with a nonlinear difference equation
structure is described with the adaptiveness being provided by an extended
least-squares estimation algorithm.  Performance analysis is discussed in terms
of a cumulative loss function and high order correlation functions that have
been derived specifically for use in conjunction with nonlinear ARMAX models.
Simulation results using the model of a practical process are described.

1. Introduction

In recent years Billings and Leontariis [8] have descibed a new class of nonlinear
difference equation model, the NARMAX model, that has a more general appeal for adaptive
control algorithms than previously reported methods. Research work so far reported has
concentrated on the Hammerstein model [2,6,7] and the bilinear model [5,10].  Although
they are both subsets of the NARMAX model, the failings of these models lie in their
specific nature and that they avoid the issue of maultiplicative nonlinear noise terms.
The problem of having to estimate several hundred parameters effectively precludes
functional series models from being a viable altenative, especially as this is compounded
with the fact that such models are difficult to interpret in terms of parametric models
and prior knowledge is not easily incorporated into this description.

2. A control algorithm for the NARMAX model

The NARMAX model in difference equation form is defined by,

z(t) = Fllz(t-1) ,.., z(t-n,);u(t-k) ,.., u(t-k-n+1)e(t-1) ..., e(t-n))] + e(t) (1)

Flo,t]

where z(1) is the system ouput, u(t) the controllable input, e(t) a =zero-mean Gaussian
noise sequence, / the degree of nonlineanty and n,, n, and n_, the orders of z(t), u(t)
and e(t) respectively

The purpose of the minimum-variance strategy [1,6] is to minimise the k-step ahead loss
function, e

Jy(t+k) = E[(z(t+k) - w(1))?] )
where w(t) is the demand input and E[-] the expectation operator.
Substituting the k-step ahead form of (1) into (2) gives

Jot+k) = E[(F[o,t+k] - w()?] (3)
Minimising (3) with respect to u(t) to find the new control action

dF'[e,t+k]

VD) | pr@pek) - wi) 2 =0 @

du(t) du(t)
and the control law becomes
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E[z(t+k-1) ..., z(t+k-n)u(t) ..., w(t-n+1)e(t+k-1) .., e(t+k-n)] - w(t)] = 0 (5)
3. Self-tuning strategy

The algorithm may be made self-tuning by employing an extended RLS estimator to directly
estimate the controller parameters [4]. Equation (5) may be written as

E[xT(t) 8] = 0 (6)
where y'(t) is the data vector and é(t) the parameter estimate vector at time t.

XX = [z(-1) ..., zt-n)u(t-k) ,.., ut-kn+1)e(t-1) ., etn),w(t)

z2(t-1) ... z(t-Du(t-k) .. z(t-De(t-1) ..
...... higher terms]
b =186, , én; An,-t-] - én‘-t-n"' én‘+n"+l 3 énl-rnn-m_r'l'o
6y, éln,n éln‘+nu+1
....... higher terms]

In practice the parameter for w(t) is preset to -1.0, (this is consistent with linear
systems) and not estimated to ensure unigueness.

4. Calculation of the noise estimates
The current noise terms may be estimated at each iteration by considering (1) and (6)

&) = z(t) - xT(tk)B(t-k) @)
Note that this is actually the system residual.
If kK > 1 then future noise terms exist in the control law. However, e(t) is a random
sequence and hence, is unpredictable. These values are set to zero; their conditional
mean, in the control law. Thus, the control law becomes

Flz(t+k-1) ..., z(t+k-n)u(t) ,., u(t-n+1)&(t) ..., &t-n)] - w(t) = 0 (8)

5. Prediction of the future output terms

The control law above contains future unknown but predictable output terms, z(t+k-d), d =
1, 2,., k-1. These terms may be proxied by their predictions. From (7)

z(t+d) = Xtk+d)B(t-k) ©
since &(t+d) is unpredictable.
Ktk+1) = [2(0)2(t-1) o ZEn AUk oy 0(tk-n+2)8(0) L B0 1), W ()
....... higher terms]
XN-k+2) = [2,(t+1),2(1) ..y 2(-042)0(tk+2) L., uC-k-n+3)E(0) .., E(-NA2)W(D)

we-.r. higher temms]



6. Performance analysis

Performance analysis is concerned with monitoring the operation of the controller and
estimator. One common and simple test is the cumulative loss function which can be
calculated as the sum of the squares of the errors between the demand and the system
output. It should converge to the sum of the squares of the unknown noise terms. This
test gives little insight into the cause of failuore and hence high-order correlation
functions have been denved. In model validation, Billings and Voon [3] have shown that
the conventional linear correlaton functions do not necessarily detect all possible
nonlinear terms and have defined a set of functions suitable for use with the NARMAX
model. These have been re-interpreted for use in closed-loop control and the system can
be said to be performing satisfactorily if and only if [9]

"
d(r) = (1)
0ue() Geeny(T) Oue(T)y Gp(T), = 0 V T2k

[ (10)
¢z.€('r)v ¢é(Ez](1)! ¢z"€(‘r)1 ¢za'ez(‘r), = 0 V T 2 k
() = 0 V1 )

7. Simulation results

The model used in this experiment was identified from data collected whilst a patient was
being anaesthetised. The ouput is a ‘"calculated score” based on pulse rate, blood
arterial pressure, respiratory rate, ftidal volume, etc. and the controllable input is the
drug flow rate. The model is given as

z(t) = 1.376z(t-1) - 0.008662(t-2) - 0.4703z(t-3) + 0.3315z(t-4) - 0.14422(1-5)
+ 0.00856u(t-3) + 0.00485u(t-4) - 0.3504z%(t-1) + 0.1067z(t-1)z(t-4)
- 0.8175z(t-1)z(t-5) - 0.1949z(t-1u(t-3) - 0.02395z(t-1)u(t4) - 0.3903z%(t-2)
+ e(t) - 0.6322e(t-1) + 0.2928e(t-3)

Using the derivation of §§2-5, the control law is

13762,(1+2) - 0.00866z,(t+1) - 0.4703z(t) + 0.33152(t-1) - 0.14422(1-2)

+ 0.00856u(t) + 0.00485u(t-1) - 0.350422,(142) + 0.10672,(1+2)z(t-1)

- 0.8175z2,(t+2)2(t-2) - 0.1949z,(t+2)u(t) - 0.02395z,(t+2)u(t-1) - 0.390322,(t+1)
+ 0.29285(t) - w(t) = 0

Initially the regulation is poor, the control input (fig 1.2) is limited to +7.0 and until
the parameter estimates (figs 2.1-2.15) start to converge, after about 50 samples, the
action desired by the controller is not implementable. Since the control law is unable to
take account of future noise terms and includes future output terms, it is inevitable that
the actmal loss function (fig 1.4) rises more steeply than the theoretical wvalue (fig
1.5). A more realistic test is to consider the residuals (fig 1.3) and model validity
tests (figs 3.1-3.9). The latter have been calculated over the final 500 samples in order
to allow the system to tune. Only ¢..(t) at lags 10 and 12 and ¢..(1) at lag 8§
are outside the 95% confidence bound, which suggests that non-convergence of noise model
parameters is being detected. These failings are of only minor concem since the
discrepancies are small and are at high lags in a very severe set of tests. These points
could reasonably be expected to come within the confidence bounds over a longer run. The
parameter estimates themselves have, in general, tuned well - the exceptions being those
that are associated with future output terms and the noise model, which for the latter is
consistent with linear systems.



An attempt to control the model using a "best-fit" linear controller resulted in both the

control and estimation blowing-up, even if the parameter estimates were preset
desired values, and no control being attainable.
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Figs 3.1-3.9 Model Validity Tests
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