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Abstract

Multi-layered neural networks offer an exciting alternative for modelling complex
non-linear systems. This paper investigates the identification of discrete-time non-linear
systems using neural networks with a single hidden layer. New parameter estimation
algorithms are derived for the neural network model based on a prediction error
formulation and the application to both simulated and real data is included to demonstrate

the effectiveness of the neural network approach.

1. Introduction

Both the theory and practice of non-linear system modelling has advanced
considerably in recent years. It is known that a wide class of discrete-time non-linear
systems can be represented by the NARMAX (Non-linear AutoRegressive Moving Average
with eXogenous inputs) model (Leontaritis and Billings 1985, Chen and Billings 1989b).
The NARMAX provides a descriptionhof the system in terms of some non-linear functional
expansion of lagged inputs, outputs and prediction errors. The mathematical function
describing a real-world system can be very complex and its exact form is usually unknown
so that in practice modelling of a real-world system must be achieved based upon a chosen
model set of known functions. A desirable property for this model set is that it should be
capable of approximating a system to within an arbitrary accuracy. Mathematically this
requires that the set is dense in the space of continuous functions. Polynomial functions
represent one choice that are known to have such a completeness property. This provides
the foundation for modelling non-linear systems using the polynomial NARMAX model
and several identification procedures based upon this model have been developed
(Leontaritis and Billings 1988, Chen and Billings 1989a, Chen et al 1989). Because the
derivation of the NARMAX model was independent of the form of non-linear functional
other choices of expansion can easily be investigated within this framework and neural
networks are an obvious alternative. Neural networks can therefore be viewed as just

another class of functional representations.

Feedforward multi-layered neural networks have been widely used in many areas of
signal processing (see IEEE Trans. on Acoustics, Speech, and Signal Processing, Vol.36,
No.7, July 1988). A common feature in these applications is that neural networks are
employed to realize some complex non-linear decision functions. Recent theoretical works

(Cybenko 1989, Funahashi 1989) have rigorously proved that, even with only one hidden



.

layer, neural networks can uniformly approximate any continuous function; The theoretical

basis for modelling non-linear systems by neural networks is therefore sound.

The present study develops an identification procedure for discrete-time non-linear
systems based on neural networks with a single hidden layer. New batch and recursive
estimation algorithms are derived for the neural network model based on the prediction
error principle. It is shown how the classical back propagation algorithm is a special case of
the new prediction error routines and model validity tests are introduced as a means of
measuring the quality of fit. The results of applying the neural network model to simulated

and real data are included and a discussion for further research is also given.

2. System representation

Under some mild assumptions a discrete-time multivariable non-linear stochastic
control system with m outputs and r inputs can be represented by the multivariable

NARMAX model (Leontaritis and Billings 1985)

Y= 0 =1 e (- Joe(r=1 Yyt =5 )2l =1 )@@ =m0 yre(e) (1)

where
[y1(1) | ()] (e,(0) |
yid=| + foowa=] ¢ | ete=] - @)
ym'(f) u,.(f) e,.-(r)

are the system output, input and noise vectors respectively; n,, n, and n, are the maximum

lags in the output, input and noise respectively; e (1) is a zero mean independent sequence;
and Vfr(.) is some vector-valued non-linear function.
" The input-output relationship eqn.(1) is dependent upon the non-linear function f (.).
In reality f (.) is generally very complex and knowledge of the form of this function is often
not available. The solution is to approximate f (.) using some known simpler function and
in the present study we consider using neural networks to approximate non-linear systems
governed by the model
y(@)=f((t=1),y(—n)u(t=1),....u(t—n,))+e(r) 3)
Notice that egn.(3) is a slightly simplified version of eqn.(1) because only additive
uncorrelated noise is considered. Extension of the results to the more general model

description eqn.(1) is discussed.



3. Modelling by neural networks

Neural networks employed for function approximation are feedforword type networks
with one or more hidden layers between the inputs and outputs. Each layer consists of
some computing units known as nodes. Fig.1 shows the structure of a multi-layer neural
network. Inputs to the network are passed to each node in the first layer. The outputs of
the first layer nodes then become inputs to the second layer, and so on. The outputs of the
network are therefore the outputs of the nodes lying in the final layer. Usually all the nodes
in a layer are fully connected to the nodes in adjacent layers but there is no connection
between nodes within a layer and no connection bridging layers. The input-output
relationship of each hidden node is determined by connection weights w;, a threshold
parameter p and the node activation function a(.) as follows

y=a(Zwixtp) (4)
where x; are the node inputs and y is the node output. The activation function a(.) for
each output node is specifically chosen to be linear and the output of an output node is a

weighted sum of the inputs

y=2ZWx (3)

The overall input-output relationship of an n-input m-output network with one or
more hidden layers is described by a function f :R"=R™. Under very mild assumptions on
the activation function a(.), it has been rigorously proved that any continuous function
f:DCR"-R™ can be uniformly approximated by an f on D where D is a compact subset

of R" (Cybenko 1989, Funahashi 1989).
Our aim is to use neural networks with one hidden layer to model non-linear systems

described by eqn.(3). Define n=n, +n,,
x(0)=[xs(0) o (OF =Ly (1 =1)y (2 =, Ju (1 =1)-u (1 =, )] (6)

and introduce the notations

n: number of hidden nodes
w®™:  threshold of i-th hidden node
w"): " connection weight from x;(1) 1o i-th hidden node
0, (t): output of i-th hidden node
wle):  connection weight from i-th hidden node to k-th output node
Let (':)=[61---e,,6}3r be all the weights and thresholds of the network ordered in a chosen

way. The network is then defined by the model

$(1,0)=F (x(1);0)=[f 1(x (1):0) o (x (1);0)] (7)



with

& "h My n
5 (1,0)=£i (x(1):0)= Z wilo, (1)= Twia (Twfx;(t)+u), 1=k=m  (8)
i=1 i=1 i=1
Without the loss of generality, the activation function a (.) will be chosen as

_ 1
@)= l+exp(—2z) )
The network model eqn.(7) is therefore the one-step-ahead predictor for y(r) and the

prediction error or residual is given as usual by

€(r,0)=y()-y(1,0) (10)
The first step in modelling non-linear systems using eqn.(3) is therefore to select
values for n,, n, and n,. The next is to determine values of all the weights and thresholds

or to estimate ©. The gradient of y (1 .®)

V(1,0)= [i*—f,’—(;@l =4 (x(1):0) (11)

an nyXm matrix, plays an important role in determining ©. The combination of eqn.s (7)

and (11)

o] [fee)e]
[W(: o s (12)

will be referred to as the extended network model. Stability of eqn.(12) is of vital
importance in any implementation. The set of all @ that each produces a stable extended
network model will be denoted as D,. Notice that, for the chosen activation function
eqn.(9), D, is the whole ng-dimensional Euclidean space and in this sense the
corresponding extended network model is unconditionally stable. Furthermore the elements

of ¥(r,0) for 1=i=ngy and 1= =m are given by

0 (1) if 8, =wf), 1=sk=n,
0)= dy;(1,0) _ Wjiajohk (1)(1—0u (7)) if ,=p"), 1sk=n, i
¥y (1.0)= de, | w0 (1)(1—0, (1))x, (1) if 0,=w{), 1=k=n,, 1=l=n (13)
0 otherwise

4. Identification algorithm

The network model eqn.(7) is non-linear in the parameters. This section applies the
well-known prediction error estimation method to derive both the batch and recursive

algorithms for estimating the parameter vector © in eqn.(7).



4.1. Off-line prediction error algorithm

A good measure of the closeness between y (1) and y(r,0) is the quadratic form

Q(e(r,0)=€" (1 ,®)A (1 ,0) (14)

where A is a given m Xm symmetric positive definite matrix. Assume that a block of data

{u(1),y (1)}, is available. The best ® may then be selected by minimising the loss function

12
I(©)= 57 3.0(<(1.6)) (15)
over ®€D,. Such a method of obtaining © is known as the prediction error estimation

method.

The minimisation of criterion (15) can be performed efficiently using the following

Gauss-Newton algorithm

O®)= ¢ -4 sk (@* -1 3) (16)
where
n(0,8)= —[H,(0,8)]'VJ,(0) (17)
is the optimising direction vector, and
N
VJ,(0)= —;,—2 V(1 ,0)A (1 ,0) (18)
r=1
N
H,(0,8)= ﬁ-zw OAT(1,@)+5] (19)
1=1

are the gradient and the approximate Hessian of J,(©) respectively. & is a non-negative
small scalar and / is the identity matrix with appropriate dimension. The scalar s®) is
obtained by minimising

J1(8% D+ 5 (O¢1,5)) (20)
over 0<s <1 using a linear search technique such as the golden section search. In practice,
the direction vector m(©,8) is computed as follows. The square root decomposition method
is first used to factorize the Hessian as

H,(©3)=UTU (21)
where U is an upper triangular square matrix. n(®,8) is then solved from

UT(Un(0,8))=-V/,(0) (22)
by the forward and backward substitution algorithms (Bierman 1977).

The above Gauss-Newton algorithm is known to converge to at least a local minimum.

Other loss functions can also be employed, and a different example to eqn.(15) is

1,(@)= ;—Iogder (C(©)) (23)



with
1 N
C(@)= FEE(I 0" (1,0) (24)
=1
The gradient and the approximate Hessian of J,(0) are
N
VI(0)= - 5 (1, 0)CHO)e(:,©) (25)
N
H(0,8)= %72 (1,0)C(©)¥T (1,0)+5] (26)

respectively. If @" is a minimum of J,(®), an optimal choice of A for the loss function
J(®) is C(®"). Choosing the criterion (23) is therefore equivalent to choosing the
criterion (15) with a A approaching an optimum. More detailed discussion of loss functions

can be found in (Goodwin and Payne 1977, Ljung 1978).

4.2. Recursive prediction error algorithm

Many applications require recursive or adaptive updating of parameters. Ljung
(1981), Ljung and Stderstrdm (1983) systematically studied recursive approximations of the
prediction error method. Although they used the linear model in their studies, the principle
is actually more general and can readily be applied to non-linear models as shown in (Chen
and Billings 1989a). For the extended network model eqn.(12), the standard form of the

recursive prediction error (RPE) algorithm based on the loss function (15) is

ya) ] [f ()6 —1))]

\P(r)J‘ 8 (x(1):00 ~1) | (27)
e(t)=y(1)-y() (28)
R(t)=R (1 =1)+~(0)[¥ (1 )AWT (1)+8] —R (1 =1)] (29)
O(1)=00( —1)+y(1 )R (1 )¥(1)Ae(r) (30)

where ©(1) is the estimate of © at time ¢ and +y(¢) is the gain at 7. Notice that €(r), y(r)
and ¥(r) depend upon all the old estimates ©(r —1) to ©(0). Thus eqn.(27) is time-
varying.

R (1) in eqn.(29) can clearly be viewed as a recursive form of eqn.(19). W¥(r)A (1)
corresponds to the gradient of Q(e(r)) and is therefore a noisy or stochastic gradient.
R (1)¥(t)A'e(r) can thus be regarded as an approximation of the Gauss-Newton search
direction eqn.(17). Eqn.s (29) and (30) are mainly used for theoretical analysis. In practice

they are implemented in the equivalent form (with §=20)

P(1)= T)_{P (t=1)=P(-D)Y()NOHA+YT ()P (1 1)V ()] ()P (1 -1)} (31)

O(1)=00 -1)+P (1)¥(1)A"e(r) (32)



where

P(1)=v(r)R7(r) and A(r)=v(r=1)(1—y())/v(r) (33)
The simplest choice for A is /. A time-varying A

A()= A =1)+v(1)[e(r)e” (1) —A(r -1)] (34)
can however replace the constant A. The resulting RPE algorithm can be viewed as based

on criterion (23).

By applying a general method known as the differential equation method for analysis
of recursive parameter estimation algorithms developed by Ljung (1977), the convergence
of algorithm eqn.s (27) to (30) can be proved. The underlying ideas of Ljung’s method are

as follows.

Assume that a projection is employed to keep ©(1) inside the stable region D,

lim ty(1)=p>0 . (35)

R(1)=3! for all 1 and some >0 (36)
and some regularity conditions hold. Let ®€¢D,, then the time-invariant non-linear

difference equation (12) is stable. The stability of the time-varying non-linear difference
equation (27) will be guaranteed if O(k) varies in a sufficiently small neighbourhood of @,
and for sufficiently large + and some M, the influence of O(k) k=t—M —1,...,0 then

becomes very small, that is,

[,f(z) 1 [.f (.00 -1).....6(0) | _ [,\?(r B(r -1),....6(: -M)) far)

Y| V(1,00 -1),....000) | |¥(,6(-1).....,60 —M))

Furthermore, assumption (35) implies y(r )-0 as r-e. For sufficiently large r, y(r) will be

arbitrarily small, and it is seen that {®(s)} will change more and more slowly. That is,

O -1)=--=0(1 —-M)=0 (38)
As a consequence, the time-varying difference equation (27) behaves more and more like
the time-invariant difference equation (12), and problems like convergence with probability
one, possible convergence points and asymptotic behaviour of the recursive algorithm can
thus be studied in terms of an associated differential equation (for more details see, for
example, Ljung and Sbderstrdm 1983). The results show that the RPE algorithm has the
same convergence properties as its corresponding off-line algorithm. One of these properties

is that (1) converges with probability one to a local minimum of

7i(@)=lim 5 SE[0 (<(.0)] (39)

where E [.] is the expectation operator.
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For the neural network model eqn.(12), a projection to guarantee O(1)€D, is not

actually required because D, is the whole space R°". The above convergence results are
obtained under assumption (35), which implies y(r)-0 as r-% (or A(r)~1 as r-). In order
to track time-varying parameters, y(r) should not tend to zero. It is reasonable to believe
that analysis under condition (35) will have relevance for the case where y(r) tends to some
small nonzero value. As in any non-linear optimisation problem, initial conditions have
important influence on convergence and convergence speed. The performance surface
eqn.(39) for a general network model is very complex and is known in general to contain
many local minimums. A study of this performance surface and the influence of ©(0) on

the algorithm egn.s (27) to (30) is beyond the scope of this paper.

Strictly speaking, algorithm eqn.(30) or (32) is only a crude approximation of the
off-line Gauss-Newton algorithm because —W (1 )A ~'e(r) is hardly a good approximation of
the gradient eqn.(18). A modified RPE algorithm is proposed here by introducing a
smoothed stochastic gradient |

A()=AG=1)+v()[¥(1)Ae(r)—A(1 —-1)] (40)
so that in parameter updating

O )=0( —1)+v(1)R1(1)A() or O@1)=0(r —1)+P (1)A(r) (41)
The new algorithm is thus a truly recursive Gauss-Newton algorithm. Using a smoothed
stochastic gradient usually improves the performance of the recursive algorithm at the cost
of more computation in each recursion. Smoothed stochastic gradient algorithms can be
directly obtained from this new algorithm by making some simplifications. One example is

O(1)=0( =1)+5(1)A() (42)
The so-called back propagation algorithm (Rumelhart et al 1986) is a simple version of this
smoothed stochastic gradient algorithm with §(r) in eqn.(42) and y(z) in eqn.(40) fixed to

some constant values.

In adaptive identification, 0<A(r)<1. If the covariance matrix P (z) is implemented
in its basic form as given by eqn.(31), a phenomenon known as "covariance wind-up" may
occur. That is, P (1) may become fairly large. When this occurs and in addition the
gradient is dominated by noise, changes in @(1) are unlikely in the direction of improving
the model output and this can cause a problem known as "parameter drift". Two factors are
likely to introduce covariance wind-up when applying the RPE algorithm to neural network
models. Because of the complexity of the non-linear structure, it is possible that two

different values of @ can result in the same input-output relationship from eqn.(12). When



s Jil}e=

the parametrization is not unique, covariance wind-up can occur (see Janecki 1988). If the
signal excitation is poor, covariance wind-up may happen (see Sripada and Fisher 1987).
For the recursive least squares algorithm, similar difficulties can arise and many numerical
modifications have been developed to overcome these problems in the single-output (m =1)
case. A technique often used is the constant trace adjustment in which P (¢) is adjusted in
such a way that its trace remains constant. A more sophisticated technique called

exponential resetting and forgetting (Salgado et al 1988) can also be employed.

5. Model validation

If modelling is adequate, €(r,®) will be unpredictable from (uncorrelated with) all
linear and non-linear combinations of past inputs and outputs. Model validity tests for other
non-linear models (Billings and Voon 1986, Billings and Chen 1989, Billings et al 1989,
Leontaritis and Billings 1987) were developed based on this principle and can therefore be
applied to the current neural network model. For simplicity only single-input (r =1) single-

output model validity tests are briefly summarized.

If the identified model is adequate, the prediction errors should satisfy the following

conditions (Billings and Voon 1986, Billings and Chen 1989)

2 ¢>,¢(k)=éﬁ impulse function
L D, (k)=0 for all £

| Ba(k)=0 k=0 : (43)
/ @2 (k)=0 for all k
| @,,(k)=0 for all k

where @, (k) indicates the cross-correlation function between x(¢) and z(r),
eu(t)=e(t+Du(r+1), u¥(1)=u(1 )——uT(r—j- and uT(T)— represents the time average or mean
value of u?(r). Therefore if these correlation functions are within the (95%) confidence

intervals =1.96VN , the model is regarded as adequate.

Alternatively a statistical test known as the chi-square test (Bohlin 1978, Leontaritis
and Billings 1987) can be employed to validate the identified model. Let €}(r) be an s-
dimensional vector-valued function of the past inputs, outputs and prediction errors, and

rr= 13 0007 0) (44)

=1
Then the chi-square statistic is computed using the formula

(=Np"(I"T)"n (45)
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where

N Y
b= 13 0()e(r 0o, (46)
Nr=1

@ is the estimate of ® and o2 is the variance of the residuals. Under the null hypothesis
that the data are generated by the model, the statistic { is asymptotically chi-square
distributed with s degrees of freedom. A convenient choice for {(r) is

Q) =[w()w(-1)u(t—s+1)] (47)
where w(z) is some chosen (non-linear) function of the past inputs, outputs and prediction
errors. Thus if the values of { for several different choices of w(r) are within the acceptance

region (95%), that is

{<xi(a) (48)
the model can be regarded as adequate, where x?(a) is the critical value of the chi-square

distribution with s degrees of freedom for the given significance level a (0.05).

To sum up the discussion so far, the identification of a structure-unknown system
“described by eqn.(3) using a single hidden layer neural network involves the following
procedure:

‘.‘(i) Choose values of n,, n, and n, .
f/"(ii) Estimate ©.
i\ (iii) Validate the estimated model. If the model is adequate, the procedure is terminated;

otherwise goto step (i).

6. Simulation study

The parameter estimation algorithm used in this simulation study was the off-line

prediction error algorithm and only single-input single-output examples are given.

Example 1. This is a simulated system. 500 points of data were generated by

¥ (1)=(0.8—0.5exp (—y(1 =1)))y (1 =1) —(0.3+0.9exp (=y*(1 =1)))y (t =2)
+u(r=1)+0.2u (1 =2)+0.1u(r —1)u (t =2)+e(1)
where the system noise e (1) was a Gaussian white sequence with mean zero and variance

0.04 and the system input u (1) was an independent sequence of uniform distribution with

mean zero and variance 1.0.

The input order of the network model was chosen as n=n,+n, =2+2. When the

number of hidden nodes was increased to n, =5 (ny=30) the model validity tests were
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satisfied. Fig.2 shows the system and model response where the model deterministic output

4 (1,0) is defined by

)Sd (I !@)=f ()?n’ (I -1=®)}-“ajd (f —ny ’é)!u (" —1)1---’1‘ (I —-n, )s(:)) (49)

and the deterministic error €, (r,0) is given as
€, (1,0)=y(1)—5,(1,0) (50)
Fig.s 3 and 4 display the correlation tests and some chi-square tests for the estimated

model.

It can easily be verified that the unforced response (that is e(r)=0 and u(r)=0) of
this simulated system is a stable limit cycle as illustrated in Fig.5. The unforced response
from the estimated model with the same initial condition is plotted in Fig.6, where it is
seen that, although the shape is different to that in Fig.5, the estimated model does
correctly predict the existence of a limit cycle. The data shown in Fig.5 was used to
identify a network model with n=r,=2 and n,=10 (ne=40). The resulting model
produces a limit cycle shown in Fig.7 which is much closer to that produced by the

unforced system.

Example 2. This is the time series of the annual sunspot numbers. Observations for the
years 1700 to 1979 can be found in (Tong 1983, Appendix Al). The first 256 observations
are plotted in Fig.8 (a).

It has long been noticed that the record of sunspot numbers reveals an intriguing
cyclical phenomenon of an approximate 11-year period. Chen and Billings (1989c¢) fitted a
subset polynomial model with n,=9 and polynomial-degree 3 to the first 221 observations.
The unforced response of this subset polynomial model is a sustained oscillation with an
approximate 11-year period as shown in Fig.8 (c). In the current study a neural network
model with n=n,=9 and n,=5 (ny=55) was fitted to the first 221 observations. The
unforced response of this neural network model is illustrated in Fig.8 (b) where it is seen
that this time series model also produces a sustained oscillation with an approximate 11-year

period.

Example 3. The data was generated from a heat exchanger and contains 996 points. A
detailed description of this process and the experiment design can be found in work by
Billings and Fadzil (1985). The first 500 points of the data, depicted in Fig.9, were used as

the identification set and the rest of the data as the test set.

A neural network model with n,=n,=5 and n,=3 (n,=36) was fitted to the
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identification data set. Fig.s 10 and 11 show the correlation tests using the identification
and test sets respectively. The test set and model response for this set are given in Fig.12.

Further increasing the size of network only slightly improved the quality of fit.

Previous identification results (Billings and Chen 1989) indicate that this non-linear
process can be described better by using a model with the form of eqn.(1). The results
obtained here are satisfactory considering that no noise model was fitted as part of the

model estimation.

7. Discussion for further research

As mentioned in Section 2, eqn.(3) is only a special case of the general system
eqn.(1). The approach developed in the present study can be easily extended to the general

system eqn.(1) by augmenting x (1) to

x(1)=[y(t=1)y (@ —n,)u(t=1)-u(t-n,)e(t—1,0) e(t —n, O (51)

The extended network model becomes
71.0) | 1f(x(1):0) "
Y(,09) 1§(¥(-1,0),....¥(t—n,,0),x(1);0) (52)

The application of the parameter estimation algorithms of Section 4 to this model is
straightforward. The analysis of a non-linear model involving e(r—i,0) within its
arguments is however considerably more difficult. In particular D4 generally is no longer
the whole ng-dimensional space and is dependent on system input-output statistics. In some
extreme cases, D, may not even exist. In other words the issue of invertibility (see Chen
and Billings 1989c) or whether it is possible to compute €(z,©) using the model and given
system inputs and outputs becomes critical. Unlike the polynomial model which may be
explosive, the network model with the activation function eqn.(9) can be non-explosive.
The neural network approach may therefore be more suitable for modelling non-linear time
series whose underlying processes are stable and non-explosive. There is scope for further

investigation of this aspect.

A comprehensive study is required to compare the neural network model with other
non-linear models. For the polynomial model, efficient procedures for selecting subset
models have been developed (Chen et al 1989, Leontaritis and Billings 1987). A
parsimonious model has advantages in controller design, prediction and other practical
applications. Selection of subset neural network models is worth investigating. One possible

approach is to develop some AIC-type criterion (Leontaritis and Billings 1987) for
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removing insignificant connection weights.

It is a common belief that neural networks with multi hidden layers can approximate a
function more efficiently (with less nodes) for a given accuracy requirement than networks
with a single hidden layer. More theoretical research is required to derive some
quantitative results. There are other adavantages of using highly layered networks such as
increasing integrity. The identification procedure for the network model with multi hidden
layers ﬁbwéver will not be as simple as that given at the end of Section 5 because more than

one hidden layer will need to be specified.

For non-linear systems which exhibit a significant constant level that is independent of
system input and noise, a threshold can be introduced to each output node. The activation
function is not restricted to eqn.(9). A study of different activation functions to compare
their performance is of practical interest. If a polynomial model is used to model the system
eqn.(3), the loss function eqn.(39) has a single global minimum for a fixed dimension n,. It
is well-known that eqn.(39) contains many local minimums if the neural network model is
employed. Further investigation is required to analyze the effect of this on the outcome of

the identification.

8. Conclusions

An identification procedure has been developed for discrete-time non-linear systems
based on a neural network approach. Both batch and recursive prediction error estimation
algorithms have been derived for a neural network model with a single hidden layer and
model validation methods have been discussed. Application to some simulated and real
systems has been demonstrated. The results obtained suggest that modelling non-linear
systems by neural networks is an effective approach and further research in this field is

worth pursuing.
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Fig.1. Multi-layer neural network
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Fig.2. System and model response (Example 1)
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Fig.2. System and model response (Example 1)
(d) €(r,0); (e) €4 (:,0); () Ju(1,0).
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Fig.3. Correlation tests (Example 1)
(a) @u(k); (b) DPyuy(k); () Py (k); (d) @,z (k); (6) @2a(k). Dashed line: 95%

confidence interval.
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Fig.4. Chi-square tests (Example 1)
(a) w(r)=€(r=1,0); (b) w(t)=y (1 —1); (c) w(t)=exp (u(t —1)); (d) w(1)=1anh (e(r -1,0));
(e) w(1)=y*(r-1)e¥( -2,0); (f) w(t)=exp(—u*(t—2))exp (—y*(t —2)). Hashed line: 95%

confidence limit.
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Initial condition: y (—1)=0.01, y(0)=0.1.
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Fig.6. Control model unforced response (Example 1)

Initial condition: y (—1)=0.01, y(0)=0.1.
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Initial condition: y(—1)=0.01, y (0)=0.1.
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Fig.7. Time series model unforced response (Example 1)
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Fig.8. Observations and model unforced response (Example 2)
(a) observations; (b) neural network model; (c) subset polynomial model. First 9

observations used as initial condition in unforced response.
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Fig.9. Identification data set (Example 3)
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Fig.10. Correlation tests using identification set (Example 3)
(a) D (k); (b) Puyk); (c) Pu.(k); (d) P2 (k); (e) P,22(k). Dashed line: 95%

confidence interval.
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Fig.12. Test set and model response (Example 3)
(a) u(1); (b) ¥ (1); (c) $(2,0);
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Fig.12. Test set and model response (Example 3)
(d) E(f :é)): (e) €g (t J(:)): (f) y.d (: ,(:))
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