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Abstract

The existence of limit cycles and periodic doubling bifur-
cations in piecewise-linear and piecewise-analytic systems is
studied. Some theoretical sufficient conditions are obtained

directly in terms of the right hand sides of the system.

1 introduction

In this paper we shall consider some theoretical aspects of limit cycles and
bifurcation in piecewise-linear and piecewise-analytic systems. There is of
course a vast literature on limit cycles and bifurc_a.#;ion in the general case(see,
for instance, Guckenheimer and Holmes 1983,710055 and Joseph 1980) and
some more detailed investigation into piecewise—]jnea,r systems(Banks and
Khathur 1989; Chua, Komuro and Matsumoto 1986). However, there does
not seems to be many attempts at direct sufficient conditions for general
systems of this form. In the c;se of piecewise-linear systems our approach
will be to obtain an expression for the solution of the system by using the
Campbell-Hausdorff formula. For piecewise-analytic systems we shall use

a generalized Lie series for the system solution and obtain analytic series
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representations. The conditions will then be specified directly in terms of
the right hand sides of the equations.

We shall be concerned solely here with the theoretical approach to the
problem . In a forthcoming companion paper we shall seek efficient numerical

procedures to implement the results presented here.



2 Existence of Limit Cycles in Piecewise-

Linear Systems

In this section we shall consider the piecewise-linear system defined by the
equations
t1=Axz ze P
t=Ax z€PR
(2.1)
f=Apw 7€ FPu
where the P; are polytopes (not necessarily bounded !) of dimension n such
that
(i). Piu...UuP,=R"
(i1). P;NP; is a polytope of dimension < n, if i # ]
It will be assumed that the system (2.1) has a unique solution for each initial
condition zo € IR"™ and that each matrix A; is nonsingular (this will guarantee
a single equilibrium point). We shall also assume that no trajectories of the
system lie on a boundary P; N ?j.
Let zo € P; , 1 < i £ m and suppose that, on some time interval [0,t]
the solution trajectory of (2.1) starting at z, passes through the sequence of
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polytopes F;,, P,,,..., P;, where P;, = P,. Then the solution of (2.1) through
Zp 1s given by

2] = ™ i eiaTiz gAir T (2.2)

where 7;, is the time the trajectory remains in P; and

k-1
T=1— Z Ty
i=1

Of course, each 7;; depends on z and this valid for 7 > 0 i.e.
k-1
t 2 Z T,‘J
i=1
Now suppose that a trajectory starts on a boundary, say zo € 0P, and
passes through a number of polytopes once in some order. For simplicity (by

renumbering) we may assume that these are P, P,,..., P;.
If 2o € P, N Py, then by (2.2) we have
L k
:c(t) = eA"T"...BAlﬁﬂfo € PlﬂPk. (t = Z‘rl-) (23)
=1
For a limit cycle, we require
Akt gA1m

Ig = Tp 3

i.e. the matrix e4*™ . e/41™ has an an eigenvalue 1. Before considering

the general case it is instructive to determine conditions when the A;’s all
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commute. In this case we have
k
eAka e CAITI = ez:i=1 A"T‘
and so we can state

Proposition 2.1 Given the system (2.1), if a trajectory passes through the
polytopes Py, P,,..., Py, Py, then a limit cycle exist if the times 7,...,7; as

defined above satisfy the condition:
—217 or 2nj€o(Am+Am+...... + AxTi)
where o(A) is the spectrum of A.

Proof . This follows from the spectral mapping theorem which states that
ezp(o(A)) = o(eap(A)) - 0

Since the A;’s commute we can find a common diagonalizing transformation

matrix T so that

where );; is the j** eigenvalue of A;. Hence we have

5



Corollary 2.1 Under the condition of proposition 2.1, 7o € Py N Py lies on

a limit cycle if there exist 1 <1< n such that

k
z A,‘(T,' = :I:Q‘JT] O

=1

This result can be interpreted in the following way: for each ! we define the
map

fg i F]ﬂ?k——ic

%
filzo) =Y Aami(zo).

i=1

Then the requirement is that, for some [ ,

filzo) = 27j.
The times 7;(zo) are determined as follows. First let P; N P; lie in the
hyperplane H;; given by

L Wy, 35 & By (2.4)
for some constant c;;. Then if zo € Hy,,71(z0) is given implicitly by

< Wia, eAl'r]('-':o) Tg > = Cig (25)

Similarly, 7i(zo) is given implicitly by

gAim(zo) Aimamioi(zo)  Aimi(zo)

< W41, Ig > = CLit1- (26)



and so the 7 ’s can be determined recursively. Note, however, that we can
only write these implicit relations and so the conditions in corollary 2.1 must
be checked numerically.

We shall consider next the case where the A; matrices do not commute.
For this we shall require the Campbell-Hausdorff formula given by the fol-

lowing result(Varadarajan 1974):

Lemma 2.1 If A, B € R", then we have

exp A ezp B = exp C(A:B) ,

where
CiA: B)=Y e.(AB) ,
n=1
and c,, is given recursively by
co(A:B) = 0

c(A:B) = AE8

(m+1)em(A: B) = %[A—B,cm(A:B)]

+ >, Ky S

p21,2pSm kpeeak2p>0
ki1+-..+kap=m

[ew(A: B), ... et (A= B), A+ B|..]]@")
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Here the coefficients K5, are defined by the power series expansion

3 1 .
l_e—z 292°7 14 Kopz™ =

p=1

It will be convenient to write c,(A : B) in a different form as follows. Note
that c,(A : B) is a linear combination of n'* order Lie monomials where the
multiplication is Lie bracket multiplication A.B = [A, B]. (This multiplica-

tion is neither associative nor commutative.) We can therefore write

Cn(A = .B) = Z pn.i,j(AaB) y n 2 2 (28)

i+j=n

where p,; ;(A, B) is a homogeneous Lie polynomial of order n which has: A

factors and j B factors. Of course,
Pn.n,O(A1B) = Pn.D,n(AaB) =0.
Thus, by lemma 2.1 we have, for example,
c2(A: B) = pazo(A,B)+ p211(A, B) + p2o2(A, B)
1
1
= 5[‘4’3] 3
and
e(4:B) = —=[A,[A,B]l - (B, [A, B
3 . - 12 3 3 12 ] )

= ps21(A, B) + ps12(A, B).
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In general, we have

Lemma 2.2 If A),..., A,, € R™, then we have

m

;= (exp A;) = exp C(A, : Ay:..i AL)

where
C(Al Az Am) = ch(Al ..... Am)
n=1
and
C’I(Al 5wz Vi o Am) = Z pn,i;,...,im(Aly Lm0 Am) D
‘-1+---+£m=n
Here p,;, . (Aq,... sApr) 18 a homogeneous Lie polynomial of order p.

In the general non-commutative case, therefore, the solution(2.3) of our

piecewise-linear system becomes

z(t) = M | ehim Zg

exp (C (tp Ay ;... m141)) 2o
and we have the following generalization of proposition 2.1

Theorem 2.1 A4 limit cycle will ezist in system (2.1) in the sequence of
polytopes P,, P,, . .. » P, Py if the times T1y-.., Tk and the matrices Agyees, Ag

satisfies the condition

=27j or 215 € o (C(reAy: ... : n4;)). O



Note that

C(riAx:...:mAl) = nA +...+ A

2 .
+ 2 X TP iAo Ak

n=2 t1+4..+ix=n

since Py, ,...ix 15 @ homogeneous Lie polynomial.

Corollary 2.2 Let L = L(A4,...,A;) denote the Lie algebra generated by
Ai,...,Ax. If L is nilpotent with class of nilpotency N then a limit cycle

exists if

N .
—27j or 2] €0 (71A1+...—|-TkAk+Z Z T4t s Th Dot i (A gnn

n=2114+...+ix=n
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3 Bifurcation conditions

Consider next the system

T = A(p)z ; TE L
(3.1)

= Anlg)r , TEDP,
which is similar to that given by (2.1) except that A;,..., A, now depend on
a parameter y. We shall consider the problem of bifurcation from a periodic
orbit. Again we shall begin by assuming that the matrices A;(¢), 1 <71 <m
all commute in order to see clearly the nature of the bifurcation conditions.

Let the solution of (3.1) with initial value zo be written
z(t) = ¢u(zo, 1)
Then a periodic point zy satisfies
To = ¢¢(To, 1) (3.2)

A bifurcation can occur at a value p where the equation (3.2) has multiple

solutions. Thus, a bifurcation can occur if

det [I - %qﬁt(zo,u)] = . (3.3)
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If the matrices A;(¢), 1 <1 < m and the initial point z satisfy the conditions
of corollary 2.1 then zo will lie on a periodic orbit. Condition (3.3) for a

bifurcation becomes

st~ L[S ] ] =

Io

Now,

L[S0 = o A0

=1

8 ‘T.;

+ ZCCCP [ZAI(}U Tl] (1)zo o

i=1

Hence we have the following result:

Lemma 3.1 If 2o is a periodic point for the system (8.1) (with a given pa-
rameter y ), then it is also a bifurcation point for the existence of new periodic

orbits if, for the same parameter yu, we have

or;

k k k :
Deo (I — exp [Z A,-(,u)r,] — Z:emp [; Ag(ﬂ)'f'}] A;(p)mgame) 0O (3.4)

If z, is a periodic point and we consider the map which follows the periodic

trajectory for two orbits then we obtain the solution

women (235 Al

=1
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(assuming again that the A;’s commute). In order for this ‘trivial’ doubly
periodic orbit to bifurcate into other periodic doubling maps we require, as

in lemma 3.1, the condition

k k k -
0O€o (I — exp [QZA,-(#)n] - QZ:e:cp [2 Z:A;(p)n] A,-(p):rog—m;) (3.5)

=1
This is the condition for a periodic doubling bifurcation. Higher order bifur-

cation can be determined similarly.

For the noncommutative case we require the well-known formula(Miller

1972)
%”P(A(f)) = ezp(A(t)) f (Ad A(t)) (A1) (3.6)
where
O A P A
and

(Ad A)B = [A, B

In section 2 it was shown that the solution of system (2.3) is given by

k
.'D(t) = emp(C(TkAk Sl T].A])) To , = Z'rl-

=1
Put
9(Thy-ooyT1) = C(meAx 1 ... 1 1 A).

13



Then

z(t) = exp(g) zo ,

where we shall omit explicit reference to 7¢,..., 7. Thus,
Jz(t) k. dg dm
EEN d -
Bz0, = (exp(g)); + exp(g) {f (Ad g ; 9r1 Do,

by (3.6) where (B); denotes the j** column of the matrix B. Generalizing

(3.4) and (3.5) we therefore have

Theorem 3.1 If zo is a periodic point for the system (3.1) for the parameter

i, then it is also a bifurcation point for that p if

O€o ( — exp(g) — Zewp { )g%g—;} 330) (3.7)

Similarly, p is a periodic doubling bifurcation point if

0€e (I — ezp(g2) Zea:p (g2) { (Ad 92)%{? gn } ) : (3.8)
where
ga(taks ooy tiatythye o ntt) = CllapAi ...t tiprdr s tedi 1. 11 A))
and g, is evaluated at (faky. .. tkt1sthy-enrt1) = (Thoeoos T1yThye ey T1) IR
(3.8). O
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Recall that

g(Tk)"'1Tl) — T1A1+"'+TkAk+Z z T{l '--T}ikpn,i;,...,ik(Al}-'-1Ak)

n=2114+..4ix=n

and so

6 = . g - 1
-%:A;-I-Z E 217‘11...1',: 1...Tkkpn,,'l‘,__,.;k(Al,...,Ak).

or n=2i14..+iz+n
The derivatives 87;/9z¢ can be found in the following way.
Consider first 7, and suppose that 9P, NJ P, lies in the hyperplane H; defined
by the equation

Wiz T = Ci2

for some row vector w;; and a constant ¢;3. Then

wy €M7 g = cpp
by definition of 7; and so
37’1
w4, et g0+ (wu eAm), =0
Ozo; )
Hence,
67—1
= - (‘w12 EAITI)_/wle]_ eAlTl To
Ozo; L
Note that

wigA; e 2o = wyy 2(1)
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and () is not parallel to Hy, so that wy A1z # 0.
Similarly, we have

Az 7o

Wiz € ghin Tp = C12

where 9P, N OP; lies in the hyperplane H, defined by

W23 T = Ca3

Thus,
A ary A Azrs A
ar {—’wzse 2T A e g — (wzae e m)i}
31‘0; 'LU23A2€‘42728‘4171.'E0

In general, 87;/0zo; can be obtained from the equation

AxTk A1y

Wk k+1 € € o = Ckk+1

where Hy : Wi k41 T = Ck 41 contains OpeNOpi41 (Where pry1 = p itk = wm).
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4 Limit Cycles and Bifurcation in Piecewise-

Analytic Systems

In this section we shall consider systems defined by piecewise-analytic equa-
tions of the form
& = fi(z) , T€D
(4.1)
% = i) , €Dy,

where

(i) DyU...UuD,=R"
(i7) D;N D, C some (n — 1) dimensional manifold.
The functions f;(z) and the boundaries dD; are assumed to be analytic.

Consider first the case m=1, so that we have a single equation

&= flz) , z(0) = zo (4.2)

the existence of limit cycles by a global linearization technique has been
studied by Banks (1988). Here we shall use a similar technique, based on the

Lie series (Banks 1989).
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Equation (4.2) has solution given by(see Steinberg 1984)

z(t) = exp [t i}f,'(:ro) 6‘%&] To (4.3)

In order to evaluate the solution (4.3) explicitly we must rewrite each term

of the form

k
(fl(l‘g) ¢ +...+fn($g)afon) (4.4)

6.’1!01

so that the derivations all appear on the right of the of the f’s in an expansion

of (4.4). We start with

Lemma 4.1 Let X be some set and let R be a ring of operators on X such
that X € R and R is generated by X and {by,...,b, }, where b; # X , 1 <

t < n. Suppose that for x € X and ¢ € R we have
b,‘(ﬂ:‘ C) = (b, I)C+ .’.l:'(bl C) y (45)

where (biz) € X.

Then any element r € R of the form
Ty = a‘-k b,-ka‘-k_l bik-: - 5 5 a,-zb,-za,-l bil
can be written

L ai'k[bika @iy, [bl'k—x ’ a"k-z[' . [bizaah] %k ']”bh + T;:

18



where ), consists of terms with at least two by’s on the right, and
[bk,ar] = brax — axby € X .
Proof . By induction. The result is true for k = 1. For k = [ we have

= a4 [bi,,a:‘,_, [bia-w ait-z[' i [bizv ail] g ']]]bil & T}'

= ab, +r , say,
and so, for k = [+ 1, we have

41 = af1+1 E;‘1'1+1'm
= a5t+1bil+1 (a!bil) = ai|+1bi:+1T:
! I !
= a":H-.'l (bi'H.]a ) bﬁ + a’il+1a’ b"H-} b':l + a';H-l b'..H-lTI
= a;,, [b£‘+1,a’] bﬁ + T}'+1 .
by (4.5). The result now follows. O
Let X = O(z) be the local ring of analytic functions on IR™ and let R be

the ring of operators generated by O(z) and {9/0zy,...,0/0z,} . Then we

can have

Lemma 4.2 Ifa,,...,a, € O(z), then any element of R of the form

0 0 d 0

re = a a;,_ - a;
Edrs " Om, 2oz, Oz

19



can be written in the form

a9 (o 9 (. o 2 g + 7}
Tp = Gy, amik 1k—1 6;1':,-,‘_1 Gix_y 6ng_2 e am’.z Gig | oo 3:5,-1 *

where r}, contains terms with derivation of order at least 2.

Proof . This follows directly from lemma 4.1 since

brar = [bk, ak] + arbi

and if by = 0/0zk, we have

aak

— O
B:Ek

bk, ax] =

Lemma 4.3 The solution ({.3) of the system (4.2) is given explicitly by

_ (o] tk n n . i . a afi;
x(t) = $0+kz_: 'E { z e Z flk oz. (fuq axik_l ( 4 5 53:,'2) . ) (61'1.7')} |r=ru

=1 =1 11=1 ik

1
{
where (6;,;) is the vector (0,...,0,1,...,0) O

Remark . The terms of the form

sy s 0 [, 0 ([ 0f o
sk = Z e Z f'k 31‘;,‘ (f‘k—l axik_l ( e 3&'".-2) B ) (6111) l:c=xo

=1 i1=1

20



in (4.6) can be obtained recursively by

6 =3 Fiulzo)bus)

£y =1

L 7]

bepr = D Fira (o) 5—Ck |lz=20 >
ik+1=1 k41
and then
n tk
z(t)=zo+ ) ka o
k=1""
Define

n

. "8 5 af.
g}(l‘o,f) = zt_! { Z Z f{ka (f"k—1 e ( 3 6i., ) ) (61'1.'.‘)} |I=I0

k=1 """ =1 13=1 th—1

and put
Gs(zo,t) = G5 (20, 1) -
Then, by (4.6),

z(t) = 2o + Gs(z0, 1) . (4.7)

Note that if f is a polynomial function, then g}(mo) is a polynomial in zg
and t of order at most I(m — 1) + 1 where m is that maximum of the order

of fi,...,fn (in z1,....2,). From (4.7) we have
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Theorem 4.1 The equation (4.2) has a limit cycle if there exists a vector

zo and a number 7 > 0 such that
Gi(zo,7) =0 O

Corollary 4.1 The equation (4.2) has a limit cycle if there exist sequences
zo(i) € C*, 7; € R such that

zo(i) — zo€R* , 77— 7>0 and

Gy (zoli),m) =0 ,
Gs(z0,7) =0
_Proof .This follows from the analyticity of the solutions of (4.2). ]
Remark. Corollary 4.1 suggests a numerical procedure for finding limit cy-
cles. For example, if n = 2 and we set zq(1) = (z01(2),0), then we solve the

pair of polynomial equations (in the case where f is polynomial)
Gy((zo(i),0),m:) = 0

of order at most i(m — 1) + 1. Note that o + G¢((z01,0),7) is the Poincare

return map for the T, azis. o
Once a limit cycle with parameters zo and 7 has been determined, bifur-
cation from this limit cycle are determined as before. Thus we have
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Theorem 4.2 The equation (4.2) is critical for bifurcation to a double period

oscillation if it has a limit cycle with parameter o and T and

det (-(a—ax—ogf(:cg, T)) =0 0 (4.8)

Note that 52—591(3:0,7) has (i,7)*" element

gf;{z LY 3% (f,-kaik (f,-k_l axa (gi) )) (6,-1_7-))} e

ik=1 11=1 The1

Again the condition (4.7) may be replaced by the condition

) 7]
limi_o det (a—%g}”(xo,r)) =0.

Consider finally the general piecewise-analytic system (4.1). For simplic-
ity we shall suppose m = 2, i.e. there are just two regions, the general
case is dealt with similarity. We have seen that the solution of (4.1) with
zo € D1 N @D, such that the solution remains in D, for time 7, and in D,

for time 7, is given by
z(t) = 2o + G5, (20, 1) + Gy, (20 + Gy, (20, 1) 72)
Hence a limit cycle is given by the condition

gf:(IUaTl) + gfz(mﬂ + gf1($0a Tl), 7'2) =0

23



If this equation has a nontrivial solution (2o, T, 72) then the condition for a

periodic doubling bifurcation is

R4

det B2e

a

gf1 ('I:Da Tl) + 3 gf2($0 F gf1 (Iﬂa Tl)a 72) =0
Zo

1.e.

5, or
det[0,Gy, (2o, 1) + B_ngh (o, Tl)"é;l;

67’1

dzq

+0,Gy, (20 + G (zo,71), ) (I + 0,Gy, (0, 7)) + 32gj1($0-, 1) )

6‘."2

B2g) = 0

+82gf2($0 + g.ﬁ (330: Tl)’ 7'2)

where 8, 0; denote partial derivatives with respect to the first and second
variables. This derivatives in this equation can be evaluated explicitly from

the expression for Gy above.

5 Conclusions

In this paper we have developed some explicit relations for the existence of
limit cycles and periodic doubling bifurcation in piecewise-linear and piecewise-
analytic systems. The expressions have been obtained by Lie series methods

and result in complex equations which can only be applied numerically. In
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a companion paper(Banks and Khathur 1989), to appear shortly, we shall

examine some efficient computational algorithms for solving these equations.
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