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Abstract: A novel parametrically efficient approach to estimating the spectra of short transient
signals is proposed and evaluated, with an application to estimating material properties, including
complex refractive index and absorption coefficient, in the terahertz (THz) frequency range. This
technique includes uncertainty analysis of the obtained spectral estimates, allowing rigorous statistical
comparison between samples. In the proposed approach, a simple, few-parameter continuous-time
transfer function model explains over 99.9% of the measured signal. The problem, normally solved
using poorly numerically defined Fourier transform deconvolution methods, is reformulated and cast as
a time-domain dynamic-system estimation problem, thus providing a true time-domain spectroscopy
tool.

Index Terms: Terahertz, terahertz sensing, novel methods, modeling

1. Introduction
The terahertz (THz) frequency range is commonly defined to lie between 0.3 and 10 THz, and
corresponds to a range of fundamental material properties including: low frequency chemical
bond vibrations, crystalline phonon vibrations, hydrogen-bond stretches and torsion motions [1].
THz time-domain spectroscopy (THz-TDS) is becoming an established technique for substance
identification and for obtaining material parameters in the form of the refractive index and ab-
sorption coefficient spectra of a broad range of samples, including small molecules [2], [3], [4],
biological samples [5], [6], and semiconductors [7], [8]. THz-time domain data often takes the
form of a single pulse, less than a picosecond in duration, followed by a series of attenuated
pulses arising either from reflections at the interface of components within the TDS system, or
from etalon reflections within the sample itself. Typically, two separate measurements are taken:
one serves as a reference and consists of a free-space, or empty sample cell measurement, and
the second comprises what is normally assumed to be a convolution of the reference and the
sample itself, often referred to as the ’cross spectrum’ when considering the frequency domain
interpretation. To extract spectral estimates purporting to the sample alone, the reference signal
must, therefore, be deconvolved from the second signal.

The goal of spectral estimation, in this case, is to describe the distribution (over frequency) of
the power contained in a signal (the power spectral density, PSD), based on a finite set of data.
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In terahertz time-domain spectroscopy, the PSD of finite time-domain THz pulses are commonly
estimated using the Fast Fourier Transform (FFT) or some variation [2]. Fourier Transforms operate
on the principle that the measured signal, which has been recorded for a finite time period, is
repeated indefinitely outside that time window. Whilst the Fourier transform is therefore suited
to the frequency analysis of periodic signals, a pulsed (transient) signal is likely to end at a
discontinuity which the FFT will then include in the transform. Sharp discontinuities in the time-
domain contain a broad frequency spectrum, and will therefore cause the signal’s frequency
spectrum to be spread out (spectral leakage). Furthermore, any given frequency in the output
spectrum will contain energy both from the signal and from noise arising from the rest of the
spectrum. The raw periodogram produced by the Fourier Transform is therefore considered a
poor spectral estimate, as its variance at a given frequency does not decrease with the number of
samples used to perform the transfer function, and is indeed equal to the square of its expectation
value [9]. Variance and spectral leakage may be reduced by, respectively, smoothing of the signal
and windowing of the time-series - which effectively multiplies the finite time domain signal with
a periodic envelope. The resultant convolution is then Fourier transformed. The choice of the
smoothing and window functions introduces a trade-off between the resulting spectral resolution
(i.e. the ability to distinguish closely-spaced features), and how efficiently the spectral leakage is
reduced [10]. These choices, which rely heavily on the interpretation of the user, can therefore
affect significantly the resulting PSD resolution, bias and variance, leading to differences in the
positions and intensities of absorptions / resonances in the frequency domain, potentially even
obscuring weaker features which are in close proximity to stronger signals [11].

The method of deconvolving the data, i.e. dividing the cross-spectrum by the reference spectrum
to obtain the sample spectrum, carries with it two strong assumptions. The first is the treatment
of both objects as dynamic Linear Time Invariant (LTI) systems, namely that the system is fully
characterized by its amplitude and phase responses (Linear), and that these amplitude and phase
responses do not change in time (Time Invariant). The second assumption is that both spectral
estimates are good in terms of their bias and inherent uncertainty. Duvillaret et al. address this by
presenting a method of calculating physical sample characteristics from their spectral response,
including estimates of the associated uncertainty [12]. Separately, Dorney et al., and later Pupeza
et al. describe methods for improving the accuracy of material parameter estimation from time-
domain signals, indicating the need for regularization of the poorly defined deconvolution process
and the numerical problems encountered [13], [14].

In this paper, we suggest that a more accurate and robust approach would be to avoid de-
convolution in the frequency domain - and its associated uncertainties - altogether, and instead,
at the estimation stage, to deal only with the time-domain data (thus remaining true to the term
‘Time Domain Spectroscopy’). We demonstrate that, by treating the spectral response in the
time domain as a dynamic system’s impulse response with transient components, it is possible
to reliably and easily obtain accurate frequency domain characteristics, directly comparable to
those published in the literature, without the need - and therefore without the associated error -
for windowing or padding of the recorded data. Additional information, in the form of uncertainty
bounds, provides objective measures of quality of spectrum and thus has the potential to improve
substance identification, for example, in THz spectroscopy.

2. Methods
2.1. Experiment

The time-domain data was collected using the broadband THz-TDS system at the Institute of
Microwaves and Photonics, University of Leeds, described in detail elsewhere [2]. Pressed-pellet
samples of two materials well-characterised in the THz-frequency range were chosen for study:
α-lactose monohydrate (12.5% in a PTFE matrix) and glucose (100%). These samples were
selected as both, particularly lactose, are commonly used as test substances, as reported in the
literature [15], [16], [17], [18], [19], [20], [21], [22], [23], [24]. For each measurement, averages
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of five time-domain measurements taken from different points on the pellet samples were used
for analysis, to minimise error arising from imperfect mixing and sample-thickness measurements.
Both the reference THz signal, and that after transmission through the sample, were collected and
focused onto an electro-optic crystal, enabling electro-optic (EO) sampling of the THz radiation in
the time domain.

The EO crystal is only birefringent for the time that the THz field is present. This makes
it possible to reconstruct a complete time domain signal from independent measurements of
adjacent portions of a train of (ideally) identical THz pulses. In order to improve accuracy, and
to reduce the noise in the spectrum, signal averaging was used. The acquisition time for each
time domain spectrum is therefore limited by both the number of single measurements and the
minimum time limit to any sampling technique (tmin ≥ N ·δt) where N is the number of data points
required to measure the whole THz pulse, and δt is the pulse spacing in the pulse train [25].

In order for the time-domain data to be Fourier transformed into the frequency domain, it must
first be truncated before the reflection peak arising from the EO crystal (∼4.7 ps after the main
signal) to remove spurious oscillations from the frequency spectrum [2]. The peak originates from
etalon reflections within the EO crystal, and therefore its position is determined by the crystal
thickness. This truncation reduces the amount of data used in the FFT calculation, thus limiting
the number of discrete data points in the resulting frequency spectrum. A typical, truncated data
set may consist of, for example, 600 data points which, for an efficient FFT, is often truncated
or padded to the next power of 2 (i.e. 512, or 1024). The effect of zero padding is to interpolate
between actual data points in the frequency spectra and often produces a smoother response.
Additional padding (to subsequent powers of 2) may be undertaken at the user’s discretion to
increase further the number of data points in the frequency spectra though this does not overcome
the spectral resolution limitations inherent to the measurement and analysis, and may therefore
mislead a user into believing that all spectral features have been resolved. Furthermore, care must
be taken to avoid padding-artifacts by the introduction of sharp discontinuities. Following FFT, the
resultant data may then be used to extract the frequency dependent absorption coefficient and
complex refractive index, using a combination of Fresnel equations and the Beer-Lambert law,
described in detail in the supplementary information.

2.2. Proposed analysis technique

Transfer functions utilizing physics-based estimations (e.g. Equation 1) have been used previously
to estimate physical characteristics of materials probed using THz radiation. Such functions relay
directly the effect on the input THz signal, Esam(ω) of the material’s complex refractive index, n̂(ω),
extinction coefficient, κ(ω) and sample thickness, l, which result in the observed output signal,
E(ω) [24].

Esam(ω)

Erefω
=

4n̂(ω)n0

[̂(n)(ω) + n0]2
exp

{
−κ(ω)

ωl

x

}
exp

{
−j[n(ω)− n0]

ωl

c

}
(1)

However, such physical transfer functions remain difficult to solve, and often require the introduc-
tion of approximations to simplify the calculations, thereby introducing a further source of error. An
alternative approach is to use a data-based rational polynomial spectral estimation. The technique
of obtaining frequency domain spectra from temporal waveforms using parametric spectral estima-
tion is well established (see e.g. [26] and [9]). Some methods include: univariate auto-regressive
(AR)-based [27], [28] and auto-regressive moving average (ARMA)-based spectral estimates, and
related cross-spectral estimates based on Laplace transfer functions [9]. A univariate approach
is logical where there is no knowledge of the character or timing of the input signal. In this case,
however, we are interested in cross-spectrum estimation, as we wish to deconvolve the spectral
response of the sample from the sample and free space cross-spectrum and a transfer function
estimation is therefore more appropriate.

Transfer functions describe the effect that changes to a system input have on the output in
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the Laplace domain and are direct, complex rational approximations of cross-spectra [9]. When a
good model fit is obtained (i.e. one which explains over 99% of the output data variance) using a
transfer function with a given number of parameters, it means that any further detail obtained by
increasing the number of parameters is quite likely to consist primarily of noise and artifacts. It is
worth noting at this point that for the data we analyzed, simple 12th order and 18th order transfer
function models with only 24 and 36 parameters, respectively, explained 99.98% of the output
variance of the measured samples. This implies that even a smoothed Fourier spectrum would
be “over-parameterised”, estimating, for example, an equivalent of 1024 values from the same
sample of 600 points. A further advantage of using this technique is that the 20+ parameters
in the transfer function, can be used directly to numerically estimate vibrational and relaxational
processes within the sample (seen as dynamic modes observable in the time domain data) in
response to the THz pulse, effectively enabling the reverse-engineering of the dominant dynamic
modes of the sample [29].

Most of the methods in the references cited are based on discrete-time transfer functions. The
main disadvantage of discrete-time models is that they only work well for a narrow spectral range:
limited by Popov’s Theorem at the high end of the spectrum, and by the numerical problems of esti-
mating oversampled, discrete systems at the low end. The low frequencies are compressed owing
to mapping between the left, complex half-plane of the continuous system’s poles (eigenvalues)
and the unit circle of the discrete system’s poles. This causes problems with effective estimation of
systems with broad spectra. The alternative continuous-time form of transfer functions has gained
popularity in recent years owing to the development of modern estimation methods for continuous
time systems [30], [31], [32], [33]. Continuous-time models, as used in this work, can be used for
systems with a broad spectral range, and allow precise spectral estimation at the low-frequency
end of the useful spectrum.

The transfer function, which is a data-based analogue of Equation 1, is estimated directly in the
following form, using the continuous Laplace operator s of order m,n (where m is the order of the
numerator and n the denominator), with a time delay τ between the reference and transmitted
time-domain signals:

Y (s) =
P (s)

Q(s)
=

β0s
m + β1s

m−1 + · · ·+ βm

sn + α1sn−1 + · · ·+ αn

e−sτU(s) (2)

where U(s) = L{u(t)} and Y (s) = L{y(t)} are, assuming zero initial conditions, the Laplace
transforms of the system’s respective input (in this case, the reference THz signal) and output
(the THz pulse transmitted through the material under test).The spectrum is then calculated by
substituting s = j2πν, where ν is the normalized frequency.

The problem remains of effective estimation of transfer function models which will not produce
spurious spectral peaks (caused for instance by estimating dynamic modes not sufficiently rep-
resented in the data), but which, at the same time, will explain the data sufficiently well. This
is addressed by identifying parametrically efficient structures from a range of transfer function
models fitted to the input-output data set (i.e. data-based mechanistic methodology [34], [29]).

The method proposed in this work involves the use of efficiently parameterised, continuous-
time transfer functions to describe the dynamic relationship between the temporal responses of
the reference and sample. The result is a cross-spectrum between the pair of signals, effectively
deconvolving the reference dynamics from the overall spectrum. When using a Fourier transform,
material parameters, such as the absorption coefficient and refractive index, are calculated by
non-linear transformations of the amplitude and phase estimates. The uncertainty of these FFT
spectrum estimates is usually high as a result of sample truncation and FFT over-parameterisation
effect. By using considerably fewer parameters in a transfer function, we limit the uncertainty of the
spectral estimates and therefore of the subsequently extracted material parameters. Furthermore,
because the transfer function estimate includes the uncertainty of its parameters, we are able to
apply a simple Monte Carlo approach to estimate how the parametric uncertainty propagates into
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uncertainty in the calculated material parameters. This provides a vital tool when comparing the
characteristics of different substances or samples, by allowing rigorous statistical comparisons
between different measurements.

For each signal series, the proposed procedure consists of:

1) Forming a pair of input-output signals by selecting a meaningful temporal range of the
measured reference spectrum and cross-spectrum time-domain signals (i.e. truncating the
data before the first reflection peak, as described in the supplementary information).

2) Identifying the structure of a continuous-time transfer function. This is achieved by assessing
the suitability of a wide range of models, each of which has the form:

Ŷ (s) =
P̂ (s)

Q̂(s)
U(s) =

β̂0s
m + β̂1s

m−1 + · · ·+ β̂m

sn + α̂1sn−1 + · · ·+ α̂n

e−sτU(s) (3)

with different orders m and n, and time delays, τ . This transfer function is a rational, complex
data-based analogue of Equation 1, and allows estimation of the effect of the material
on the THz signal. The final model selection uses an Information-based Criterion (IC),
similar to Akaike’s (AIC) [28], [29], which allows the selection of a parametrically efficient
representation of the time-domain signal, by varying m, n, and τ , whilst maintaining a good
fit based on a high R2

t value:

R2

t = 1−
σ2

e

σ2
y

(4)

σ2

e is the variance of model residuals e(t) = y(t) − Ŷ (t), and σ2

y is the variance of the
observed output variable y.

3) Estimating the coefficients of the selected transfer function, and calculating the associated
spectrum. The transfer function is estimated using the continuous-time Simplified Refined In-
strumental Variable (SRIV) method [30]. The SRIV method is related to linear, least squares
algorithms, but is designed specifically for continuous-time dynamic systems, and is im-
plemented in the CAPTAIN Toolbox for Matlab [33]. This yields the estimated coefficients
β̂0 . . . β̂m, α̂1 . . . α̂n in Equation 3. The complex-conjugate pairs of roots of the transfer func-
tion denominator determine the frequencies and damping of the dominant oscillatory modes
of the material. The complex spectrum estimate is then calculated simply by substituting
s = j2πν into the expression for Ĝ(s) in Equation. 3. The material characteristics (refractive
index and absorption coefficient) as functions of frequency ν, are then calculated from the
obtained complex spectrum estimate, using the same method as for FFT-based calculations
(see Supplementary Information).

4) Obtaining a measure of the uncertainty in the estimated material parameters. As this is a
data-based estimation (as are FFTs), the uncertainty in the material characteristics due to
sources of error in the measurement (e.g. sample thickness, reflections etc.) as discussed
in detail in [24] are still embedded within the signal. However, unlike FFTs, the proposed
technique allows calculation of the uncertainty associated with the spectral estimation proce-
dure and therefore provides some confidence in the relative peak intensities of the resultant
spectrum. It is important to have a measure of this type of uncertainty, as this allows inter-
sample comparisons with a level of scientific rigour. The proposed method provides an
uncertainty estimate for the transfer function parameters in the form of their covariance
matrix. These uncertainty estimates can subsequently be used in a simple Monte Carlo
calculation of randomised transfer function parameters, and hence of randomised spectra. In
this approach, a large number (1000 in this example) of possible transfer function realisations
are generated from a multivariable Normal distribution, where the mean arises from the
SRIV transfer function estimates of α and β, obtained in step (3) above, and the covariance
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matrix of these parameters as obtained from the same SRIV procedure. Each of these
parametric realisations is then used to calculate a realisation of the physical characteristics
of the sample, thus providing distributions of these characteristics at each frequency.

It should be noted that the transfer function estimate used to calculate the spectrum is obtained
directly from the pair of time-domain signals (sample and reference), with no additional data (e.g.
in the form of padding), or assumptions (e.g. windowing), other than the choice of truncation time
(Step (1), above). Steps (2) - (4) are easily automated in a Matlab

TM
script, an example of which

can be obtained from the authors. Steps (3) and (4) take a few seconds to complete. However,
initial identification of a suitable model order for each sample measured (Step (2)) is likely to take
longer owing to the need to evaluate high numbers of potential models of different orders. The
technique will be continually refined in future work, and the prospect of real-time data analysis in
later iterations is therefore not precluded.

The technique presented here provides a reliable and well defined estimate of sample spectrum
along with its uncertainty, as well as a secondary estimate of the refractive index and absorption
coefficient, assuming a known sample thickness. In the case of an unknown sample thickness, a
procedure for extraction of material parameters can be applied, where the thickness and refractive
index are obtained using Fabry-Pérot oscillations from the frequency domain (which originate from
etalon reflections within the sample) analogous to the Quasi-space [35] or Total Variation methods
[14]. Unlike these techniques however, because of the lower uncertainty of the spectral estimate
itself, the frequency domain material characteristics extracted using the method proposed here,
will have significantly lower numerical uncertainty resulting in more accurate estimates.

3. Results
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Fig. 1. Truncated THz time-domain measurements of the empty-frame-plus-free-space reference
signal (dashed line), and the resultant pulse after transmission through a pressed pellet of 12.5 %
lactose (solid line) in a PTFE matrix, showing both the time-delay and reduction in amplitude of the
transmitted THz pulse following interaction with the sample.

Fig.1 shows the time-domain signals of a free-space reference (dashed line) and a pressed
powder pellet containing 12.5% lactose monohydrate (solid line) in a PTFE matrix. Both time-
domain signals exhibit a reflection (generated within the GaP detector) 5.4 ps after the main THz
signal. To ensure that none of the reflection pulse was included in subsequent analysis, the data
was truncated prior to this point (at 4.60 ps after the main pulse) resulting in 760 data points
each separated by 6.7 fs.
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Fig. 2. (a) Lactose time-domain TF (transfer function) model fit and (b) glucose time-domain TF model
fit. 95% uncertainty bands, obtained from the transfer function estimation, are shown as gray bands
in both figures, though they are too narrow to resolve from the TF estimates.

The time-domain signals for each sample can be reconstructed using relatively low-order trans-
fer function models; 18th order for lactose (Fig.2(a)), and 12th order for glucose (Fig.2(a)). Both
models are found to explain almost 99.99% of the output variance for the data sets analyzed.
As over-parametrisation can lead to (a) spurious dynamic modes and spectral peaks, and (b)
poor definition (higher uncertainty) of the estimated parameters, the model orders are selected
using a combination of model fitting and low-order parametrisation. The fit is measured using
an R2

t criterion (Equation 4), obtained by running the input series through the transfer function
model and comparing it with the observed output. The calculated R2

t typically lay between 0.99
and 0.999 (where 1.00 represents a 100% fit), indicating that all practically useful information has
been encapsulated by the transfer function. This in turn implies that using spectral estimation
techniques with more complicated parametrization, such as FFT based methods, will not produce
a significantly better fit, and will more likely result in increased error and poorly defined results.

The material parameter uncertainty estimates, derived from the transfer function parameters
and their covariance matrices as percentile based uncertainty bounds, are shown as grey bands
in Fig.2(a) and Fig.2(b)). The absolute error values are affected by a combination of the sample
and experimental characteristics, including the subjective choice of data truncation point. It can be
seen that the uncertainty for both samples is small (indeed they are hidden immediately behind
the TF representation of the time-domain data) indicating a good model fit.

For comparison with FFT techniques, frequency-domain estimates were calculated by substi-
tution of s = j2πν into Equation 3, for both the reference and sample measurements for each
material. These were next analyzed as described in the supplementary information, using Fresnel
equations and the Beer-Lambert law. Fig.3(a) and Fig.3(b) show, respectively, the frequency-
dependent absorption coefficient and refractive index, obtained between 0.4 – 4 THz for the
lactose pellet. Equivalent results between 0.4 – 4 THz obtained from a pressed powder pellet
containing 100% glucose are shown in Fig.3(c) and Fig.3(d). In each plot, FFT data are shown
as dashed lines, and solid lines represent the Transfer Function estimates.

A clear strength of our proposed technique is in the ability to calculate the percentage error
associated with estimates of frequency-dependent material parameters, which are shown in the
figures as grey bands. These errors translate directly from the time-domain signal estimates,
and give a clear indication of the spectral variance at each frequency. For both materials, good
agreement is seen between our proposed technique and the Fourier Transforms. It should be
noted, however, that the comparison shown here is between two approximations of material
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Fig. 3. Absorption coefficient and refractive index estimates showing the TF with 95% uncertainty
band (solid line, uncertainty band shaded grey) and for the FFT-based approach (dotted line) for (a),
(b) 12.5 % lactose sample and (c), (d) the 100% glucose sample. As for the time-domain estimates, the
error band associated with the glucose sample is very narrow and lies directly beneath the calculated
sample characteristics in (c) and (d).

parameters: one obtained using a standard FFT of the time-domain data, and one from data
extracted using the proposed continuous-time transfer function. While similarities between the
extracted parameters provides some degree of confidence in the proposed technique, perfect
agreement is neither required nor expected. The frequency positions of the absorption peaks in
the lactose sample are in good agreement with those published in the literature [23], [36].

4. Conclusions
We have demonstrated the use of continuous-time, Laplace domain transfer functions to recon-
struct time-domain THz signals with high (>99.9%) agreement and low uncertainty. By avoiding
the need for windowing or zero-padding of data, uncertainty arising from spectral variance and
leakage are thus avoided. The constituent frequency parameters of the transfer functions can
then be used to estimate the spectrum of a sample in a reliable and reproducible way, and
include uncertainty measures of the calculated characteristics as well as offering the potential
for identification of the dominant dynamic modes of a measured sample. This could potentially
provide a unified technique for analyzing time-domain data from a range of terahertz spectroscopy
systems, providing confidence bounds which are vital when comparing sample spectra, and
avoiding the high numerical sensitivity of frequency based deconvolution.
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Data and software availability
Both data and Matlab scripts used to prepare this Open Access publication can be obtained from
the corresponding author. The CAPTAIN Toolbox for Matlab can be obtained from the URL below
or by contacting the corresponding author. ( http://www.es.lancs.ac.uk/cres/captain/ )
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Supplementary Information
Current data analysis technique

The coherent detection of THz pulses in the time domain allows both the frequency-dependent
absorption coefficient and refractive index of the sample studied to be calculated from the atten-
uation of the transmitted pulse, and the time delay between the reference pulse and the pulse
transmitted through the sample, respectively.

In transmission THz-TDS, the THz frequency refractive index and absorption coefficient of a
material are determined from the differences between a reference pulse (Ereference) and a sample
pulse (Esample) [2]. The reference pulse is taken in dry air, and the sample pulse defined as the sig-
nal transmitted through a sample placed at the focal spot of the THz beam (also in dry air). These
two pulses are truncated before the first reflection pulse, as described previously, then transformed
into the frequency domain. The phase change between the two signals, φreference(ν)− φsample(ν),
where ν is frequency, is used to calculate the refractive index, n, of a sample of thickness d,
directly [2]:

n(ν) = 1 +
(φreference(ν)− φsample(ν))c

2dπν
(1)

The refractive index of the material can then be used to calculate the Fresnel reflection coefficient,
R:

R(ν) =

∣∣∣∣
nsample(ν)− nair

nsample(ν) + nair

∣∣∣∣
2

(2)

which can be re-written as the transmission coefficient, T :

T (ν) = 1−R =
4nsample(ν)nair

(nsample(ν) + nair)2
(3)

If calculating the refractive index relative to free space, nair = 1, this is simplified to:

T (ν) = 1−R =
4nsample(ν)

(nsample(ν) + 1)2
. (4)

The ratio of amplitudes of the two spectra — A(ν) (sample spectrum) and A0(ν) (reference
spectrum), can be used to find the absorption coefficient, using the Beer-Lambert law:

I(ν) = I0(ν) exp(−αd) (5)

where I(ν) is the intensity measured through the sample and I0(ν) is the transmitted intensity
measured through the reference. This can be re-arranged for α, giving:

α = −
1

d
· ln

∣∣∣∣
I(ν)

I0(ν)

∣∣∣∣ (6)

As the intensity is proportional to the squared amplitude of the THz electric field, A(ν)2, we can
write:

α = −
2

d
· ln

∣∣∣∣
A

A0

∣∣∣∣ . (7)

This calculation does not take into account any Fresnel reflections. In order to take these into
account, we need to include the transmission coefficient:

α(ν) = −
2

d
ln

{
A(ν)

A0(ν)T (ν)

}
(8)
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Substituting Equation 4 into this gives

α(ν) = −
2

d
ln

{
A(ν)

A0(ν)

[n(ν) + 1]
2

4n(ν)

}
. (9)

Owing to the shape of the generated THz pulse in the time domain, the power of the lower
frequency components of the pulse is greater than that of the higher frequencies. At higher
frequencies, the power diminishes until it reaches the noise floor of the experiment. The noise
floor can be approximated by the spectrum recorded when the THz beam path is blocked [37],
where the noise is a sum of contributions from all of the electronic components of the system.
The bandwidth is defined as the free-space or reference signal (if an aperture is used) before
the noise floor. The dynamic range (DR), D(ν), of the system can therefore be defined as the
reference spectrum normalised to this noise floor A0(ν). As a result of this, the limit of the largest
value of absorption coefficient which can be accurately measured can be derived from Equation
9([37]) to be:

αmaxd = 2 ln

[
D(ν)

4n(ν)

(n(ν) + 1)2

]
(10)
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