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Abstract

An on-line trajectory generator has been implemented for the control of robot manipula-
tors. The computational complexities associated with such a task have been reduced
significantly through distributing it on a multiprocessor system, where the minimum-time
motion of the robot is planned in real-time. In particular, the distributed structure employing
the transputer machines emphasise the practicality and efficiency of the proposed system.
Simulation results of a case study are presented for a PUMA 560 robot manipulator.

1. Introduction

The recent literature in robotics and automation research shows a great interest in
the problem of Automated Trajectory Planning, which is applicable to a wide range of
applications including robot manipulators and mobile vehicles [3]. The great challange
encountered is in the planning of such a trajectory for real time applications [7]. This
task has recently been made possible by the rapid availability of very fast and inexpen-
sive computers, forming the integrated environment needed to construct the planner.

One important characteristic of the new generation of robots is the presence of
intelligent capabilities. This has recently being supported by the rapid development of
both computer systems and sensory equipment. The latter could be considered as the
information interface of the robot with the outside world, while the former stands for
its working brain. The aspect of artificial intelligence should be high on the scientific
research priorities if the robot is to be seen as a standalone machine. The availability
of such an intelligent machine for the market would have a great impact on the
automated assembly-line technology [9], which would have the capabilities of perform-
ing small-scale batch jobs and equipment repair in addition to large-scale applications.
Due to recent developments in robotic applications, precise and high speed motion is
required to accomplish a specific task. The Trajectory Control problem (TC) of robot
manipulators is concerned with the movement of an object from one point in space to
another. However, once the concept of Intelligent Robots is introduced, the TC prob-
lem must be addressed on-line, since the robot path is to be selected by means of intel-
ligent sensory equipment. Nevertheless, such a procedure cannot be easily undertaken
due to the inherent dynamical complexities associated with its implementation. Thus,
in addition to the trajectory planning related complexities [4], the presenc of the highly
nonlinear dynamic equations of motion creates a very computationally cxpensive prob-
lem [17]. Although several algorithmic simplifications had been presented [18], the
robot dynamic equations of motion are still a vast complicated task when combined
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with the requirements of minimum-time motion [14].

Two previous attempts have been made for the on-line planning of robot trajec-
tories [5,6]. However, in both contributions a single feasible trajectory was con-
structed while ignoring certain physical limitations of the manipulator. In addition,
both were short of a practical implementation.

In this work, the principles of concurrent processing are being considered as a
promising solution [11,2,12]. A minimum-time trajectory generator is to be distri-
buted on a multiprocessor system, thus creating the possibility of on-line implementa-
tion. The relatively recent availability of fast and reliable general purpose processing
elements such as the INMOS transputer, has enabled the practical construction of the
proposed system. The presentation of this real-time system is the main contribution
offered by this work.

2. Problem Statement

For the robot end-effector to track a minimum-time trajectory using the informa-
tion provided by its on-board sensory equipment, the proposed motion should be con-
structed on-line with a progressive segments method. Hence, while the manipulator
hand is traversing one present segment, another next segment is being computed by the
controller, based on the sensor’s advice. The border point between these two present
and next segments of the trajectory is defined as the look—ahead point, which defines
the position and orientation of the robot hand at that specific moment. Each of these
points would be selected by the sensors as the best suitable whenever needed, yielding
large flexibility in the planning procedure. The planning process will consider all real-
istic constraints which may limit the manipulator performance, namely angular posi-
tions, velocities, accelerations, jerks and the actuators’ torques (or forces).

3. The Distributed Trajectory Generator (DTG)

3.1. General Formulation

Planning of robot motion in made in the configuration space, where the joint-
trajectories would be composed of successive polynomial segments between every two
look-ahead points. The time-minimization problem addressed depends on fitting a
combined spline of both cubic and quadratic polynomials for each segment of the tra-
jectory, and further varying the trajectory produced in an attempt to optimise the trav-
elling time. Initial continuity conditions are guaranteed via cubic splines. However,
once a time-optimal segment has been detected, it is linked with the previously
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planned segment by an approximated quadratic polynomial. Detailed formulation of
the proposed method had been reported elsewhere [20,21,22,19], while the main
intention given here is to its practical implementation on an actual multiprocessor sys-
tem. For the planning procedure to be sufficiently accurate, planning of a segment i
must be completed before the minipulator completes traversing the previous segment,
i—1. Hence, the condition

éxec = I.qc}vel (1)
should be maintained to guarantee continuity of motion, where,

£l = the travelling time between points i—1 and i, and,

Loe = planning time of a movement berween points i and i+1 ,

3.2. The Distributed Algorithm
The minimum-time planning method is composed of the following processes:

Pl : Transformation of a single point from the cartesian space to the
configuration space of the robot, via the inverse kinematics algorithm [16].

P2 : Spline-fit and optimisation procedures, performed on alternative segments of
motion, until an optimal one is detected.

P3 : Quadratic approximation spline, joining the present optimal segment with the
previous one.

P4 : Checking for the actuators’ input violation via the inverse dynamics algo-
rithm [10].

The process P1 is disregarded in the implementation, since it has a minor impact
on the total execution time as compared to other processes involved, specially when
the transformation is computed only once for each look-ahead segment.

3.2.1. Levels of Concurrency

The proposed distributed algorithm is illustrated in figure (1), for which con-
currency in the formulation is exploited at two distinct levels:
A. Global level: treating each joint of the manipulator independently, by applying

processes P2 and P3 simultaneously for each.

B. Local level: where the optimisation of possible joint-segments is performed by
concurrently running modules.
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To accommodate for the above levels of concurrency, three types of processing
units are constructed, as follows:

The Supervisor Unit (SPU): which controls the whole network of processors for
all N joints.

The Intelligent Control Unit (ICU): which controls the optimisation process of
each joint.

The Optimisation Unit (OPU): which constructs a single minimum-time segment.

The Quadratic Approximation Unit (QAU): which preserves the continuity of
motion between all successive segments of each joint.

Employing the processing units described above, the DTG system can be con-
structed as shown in figure (2), where N denotes the number of degrees of freedom of
a given manipulator, while M represents the number of optimisation modules available
for each joint.

While the global level of concurrency is readily presented by the illustration of
figure (2), the local level of concurrency is controlled exclusively by each ICU.
Hence, the M optimisation units available for each joint are activated in whole or in
part, once or more, depending on the execution time allowed for planning the segment
I, (i.e. the value zf:alve, of egn.(1)). Thus, the total execution time allowed would be

oxe = (0-1) Vopy + Vouy (2)
where,
r = number of concurrent OPUs (M or less),
p = number of successive r-member optimisations,
Vopy = execution time of a single OPU, and
Voau = execution time for a QAU.

Hence, the total number of optimisation phases to be conducted by the ICU is

rlé::ce - VQAU

Nphase =pr= (3)

Voru
Thus, the function of the ICU is to determine the maximum allowable executions of

each of the OPUs, which leads in tumn to the best possible minimisation of time.

Although the available planning time would allow for a Nphase number of optimi-
sation processes to be performed, a tolerance for the minimum time sought is to be
setup by the user, thus terminating the /CU action once the required optimality is
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obtained. This would prevent any unnecessary executions to occur, leading to a better
reservation of the available utilities.

One individual case of great importance is that of having

(Texe = Vgau ) < Vopy (4)

yielding N,,<1, which would prevent the simplest task of construction of one single

segment. In such a situation, the JICU is instructed to adjust the value of £, (and
accordingly that of £ ) to accommodate for the case of N phase=1.

The function of each of the processing units is illustrated by figures (3) through
(6).

4. Practical VLSI Implementation

A practical multiprocessor system has been constructed utilizing the INMOS T800
transputer [13] as its basic processing element. The source code for each of the pro-
cessing units designed in the previous section has been written in the parallel C pro-
gramming language [1].

4.1. Mapping the DTG on the Transputer Network

The real-time trajectory tracker is to be implemented for the Unimation PUMA
560 robot manipulator, with six degrees-of-freedom (i.e. N=6). Hence, considering the
distributed formulation of figure (2), a number of 6 processors would be reserved for
each joint of the robot to perform the optimisation (i.e. M=6). This would put the total
number of processors required at a total of 45 transputers. It should be noted, how-
ever, that the QAU function follows the termination of that of the /CU. Therefore,
only one transputer would be adequate to accommodate for both units for each joint.
Nevertheless, due to the limited number of transputers available for the Paralle] Pro-
cessing Laboratory at the department, the DTG system has been mapped for a single
joint, as shown in figure (7). Planning of all other 5 joint-trajectories would be per-
formed successively through the SPU.

In order to enable the /CUs to decide on the computational complexity of plan-
ning each joint-segment (i.e. N, of egn(4)), the execution times of both the OPU
and QAU are found to be V,py=9.1 msec and Voay=2.7 msec, respectively.
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4.2. The Communications Prospective

The parallel C language employed as the programming environment does not sup-
port the (PAR) structure, as used in the OCCAM definition for the concurrent execu-
tion of several modules [15]. Such a structure is of great importance when a single
processor is to communicate with several others simultaneously, as is the case between
each ICU and its corresponding OPUs.

Hence, while sending two 3x1 vectors A and B of floating-point numbers con-
currently would be represented in OCCAM as follows:

PAR
Channel 1! A
Channel 2 | B

its equivalent parallel C structure would be

Jor (i=0; i<3; i++) chan_out_message (4, A[i], Channel_l);
for (i=0, i<3; i++) chan_out_message (4, B[i], Channel_2);

which, in addition to being executed sequentially, involves 1ssuing and receiving more
request and acknowledge bits to and from the concerned processor, respectively. This
would obviously lead to a greater communications overhead.

However, one compromise is offered by the use of Ssemaphores to create an exe-
cution thread for each of the communicating channels [1]. This method would provide
faster acknowledgements for all communications ports in a first-in first-served manner.
The following code illustrates the proposed concept.
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InP = in_ports;

OutP = out_ports;

int i,

extern void GetData();

sema_init (&buf free, 1);
chans = Number_Of _Inputs;

for (i=0; i<=chans; i++)
thread_create (GerData, 50%sizeof{(int), 1, i);

void GetrData(i);

int i

{
int  bytes,
for (1))

{
chan_in_word (&bytes, InP[i]);
sema_wait (&buf free);
chan_in_message (bytes, &buf{0], InP[i]);
CopyData(bytes, buf{0]),
sema_signal (&buf free);

void CopyData(bytes, buf)
int bytes;

char buf{1024];

{

/* Copy received data to its destination */
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It should be mentioned that the communication between each /CU and three of its
OPUs is made through the other OPUs in the network, due to the 4-link limitation
imposed by the transputer hardware design. This is unavoidable although such a struc-
ture doubles the communications burden. The same principle applies for the intercon-
nections between each of the /ICUs and the SPU.

4.3. Simulation of a Case Study

Choosing a 8-point trajectory for the PUMA manipulator as the proposed
sensory-detected look-ahead points, simulation results can be obtained. The outcome
of planning three look-ahead segments are included in the following tables, while the
minimum-time trajectories constructed for the first three joints of the PUMA are shown
in figures (8), (9) and (10).

Table (1) : Results of Planning the 2nd Segment
ICU Instructions Optimality Requirements
Joint #
Norase Planning time (sec) Nz Planning time (sec)

1 80 0.7343 3 0.0273
2 80 0.7343 3 0.0273
3 80 0.7343 3 0.0273
4 80 0.7343 3 0.0273
5 80 0.7343 5 0.0455
6 80 0.7343 3 0.0273

Planning Time = 0.737 seconds

Motion Time = 1.422 seconds
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Table (2) : Results of Planning the 4th Segment
ICU Instructions Optimality Requirements
Joint #
N Planning time (sec) Nphase Planning time (sec)
1 119 1.085 4 0.036
2 119 1.085 4 0.036
3 119 1.085 4 0.036
4 119 1.085 6 0.055
5 119 1.085 5 0.046
6 119 1.085 5 0.046
Planning Time = 1.088 seconds
Motion Time = 0.948 seconds
Table (3) : Results of Planning the 8th Segment
ICU Instructions Optimality Requirements
Joint #
Nppase Planning time (sec) Npase Planning time (sec)
1 19 0.174 5 0.055
2 19 0.174 4 0.036
3 19 0.174 3 0.055
4 19 0.174 3 0.027
5 19 0.174 5 0.055
6 19 0.174 4 0.036
Planning Time = 0.177 seconds
Motion Time = 2.423 seconds

4.4. The Dynamic Considerations

Although the coupling effects of the robot joints were not considered in the
design presented (i.e. process P4 of section 3.2), it could be easily accommodated for
once an efficient distributed algorithm for the inverse dynamics is formulated. One
practical implementation had been reported [23,24], where the equations of motion
could be solved in 2.46 milliseconds for a 4-transputer configuration, or alternatively at
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the much faster rate of 26 microseconds for a configuration involving a network of 26
transputers. Hence, assuming a 28 millisecond control cycle for the PUMA (8], plan-
ning the 4th look-ahead segment (Table (2)) would require 0.083 seconds and 0.880
milliseconds to accommodate for the dynamic effects considering the 4-transputer and
the 26-transputer configurations, respectively. Thus, the planning time reported would
increase from 0.055 seconds to 0.138 seconds and 0.056 seconds, respectively, which
is well below the imposed execution time of 1.088 seconds. Similar arguments could
be made for all other segments.

5. Conclusion

A fast minimum-time trajectory generator for robot manipulators has been
presented, deploying a highly parallel multiprocessor system. The practicality of such
an on-line scheme for robot control has been proved through its implementation on an
actual multiprocessing system utilizing the INMOS T800 transputer. It is the authors’
belief that the recent advances in VLSI technology would present the ultimate solution
for the computationally expensive problem of robot minimum-time trajectory planning
and control in real-time applications. This work is seen as one contribution towards
accomplishing that aim.
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Figure (2) : The DTG Algorithm
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Figure (7) : Transputer Network Configuration
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