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1 Introduction

The stability theory of general systems has been a major topic of interest for
control theorists and practitioners for many years—stability, of course, being
a fundamental requirement of all control systems and indeed most systems if
they are to serve any useful purpose. The recent resurgence of interest in self-
organizing or adaptive systems has therefore naturally led people to ask ques-
tions about the stability of artificial neural networks, which are, for the systems
theorist, simply non-linear dynamic systems.

A great variety of techniques for the study and prediction of stability have
been developed, but the most important approach to this problem remains that
introduced by A M Lyapunov [1] in 1907. The basis of this method is the
association a Lyapunov function, V, to a particular system of the form:

z=f(z) ; z€R" (1.1)
such that

Viz) > 0,z%0, V(0)=0
and

V(z) V.Vi=V.Vf(z)<0 (1.2)

1]

The famous theorem of Lyapunov then states (roughly) that the system (1.1)
is (asymptotically) stable if and only if there exists a function V with the prop-
erties specified by (1.2).

The stability of linear (time-invariant) systems has been completely charac-
terized by this method; a Lyapunov function being given by a simple, quadratic
form. Several, special types of non-linear systems have also been considered and
Lyapunov functions have been found using the specific properties of f(z) which
the system may possess. The general problem of finding a Lyapunov function
for any (non-linear) system, however, remains open and to date no algorithm
exists for the determination of a Lyapunov function for a given stable system.

It is interesting to note that Lyapunov’s name has already entered the cur-
rency of neural network theory through such workers as Cohen and Grossberg [2]
and Kosko [3] among others, who have successfully investigated the stability of
certain classes of neural networks using Lyapunov theory.

In this paper we shall show that the problem of finding a Lyapunov function,
if one exists, can be cast in a form suitable for solution by a simple neural
network—namely Rosenblatt’s single layer Perceptron [4]. Needless to say, the
complete machine implementation of an algorithm which determines Lyapunov
functions is of enormous importance in the field of systems theory and another,
long standing problem has yielded to machine mathematics.
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Figure 1: Sample distribution in pattern space

2 The Perceptron Algorithm

We shall begin by recalling the Perceptron algorithm in the form in which it
will be applied in section 3, below. The algorithm was developed as a means
of training pattern classifiers which form the basis of the decision-theoretic ap-
proach to pattern recognition. Each pattern sample is represented by a point
in n-dimensional feature (or pattern) space, R™. It is assumed that “neighbour-
ing” samples represent the same pattern class, so that in a system with two
pattern classes, we may have a set of samples as shown in figure 1. The classes
are separated by a decision boundary which may be taken to be linear (in a
sufficiently high dimensional space) given by the equation:

n
Z WiT; + Wnat1

= 0
i=l
or
w-z = 0 (2.1)
where w = (wy,...,Wn41) and r is the augmented vector z = (zy,...,zn, 1)%.

A pattern classification system is trained by presenting the samples to it in
some sequence and adjusting the weight vector w recursively, until all samples
are correctly classified. This is often implemented by means of the Perceptron
algorithm (4] which may be written in the form:

Let z!,z%, ... be the samples, in some order (if there are N samples then
each sample is present in {z?,z2,...,z"} and in {zN*+!, zN+2 . 22N} eic).



Define recursively:

w'! = w* 4+ z*F if z¥ is in class 1 and w* - z misclassifies z*
wftl = wF —z*F if z* is in class 2 and w* - 2 misclassifies z*
wftl = wt if z* is correctly classified

Thus, the hyperplane H is moved about in R" space until all samples are cor-
rectly classified. The celebrated perceptron algorithm convergence theorem [4]
states that, if a separating hyperplane exists, then the algorithm converges in a

finite number of steps.

3 Global Linearization of Lyapunov Theory

A full exposition of the following theory is given by Banks in [5].

Consider a stable polynomial system of the form:

z=p(z) ; zER"

where
mi Ma
- r 1 in
pr(z) = E E Qi) ipg T +-- T
iy=0  in=0

Define the functions: . .
45,“_“,'_. — :'11 - 2:“‘

and assume that a Lyapunov function, V' exists in the form:

k)

kn
= i i
Vo= E Vi iy Ty’ e

i1=0 in=0
ky ka

= E _S_ Viyin Biyin
=0 in=0

From (3.1), (3.2) and (3.3) we have:
B k‘ k‘ .
V= E E Viy.in Py in
i1=0  i.=0
where q-ﬁ,-l___,-_ is given by:

n Mp

my
; - i=1 i
Dy, = E VE SR VIR L Z E afl__

=1 j1=0 in=0

Jn

(3.1)

(3.3)

(3.4)
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£=1 jy=0 Ja=0

n my

Ma
E Z e Z: ita;:---j.¢"l+f1.---.i'¢+j¢—1,...,j. (35)

£=1j,=0 jn=0

Note that (3.3) and (3.4) are linear forms in (k1 + 1) X (k2 +1) x ... X (ko + 1)-
dimensional ¢-space.
In order to simplify the notation we shall write

i = (iyeddn)
E = [Biyeadky)
Ui = Vi,
¢ = biii,
In this notation (3.3) and (3.4) become:
k
V = Zviqﬁi (3.6)
=0
g k .
Vo= ) (3.7)
i=0

respectively, where
k ky kn
=0 1, =0 in=0
It should now be recalled that the coefficients v; are unknown and so will cor-
respond to the weight vector w in (2.1). In order to interpret the problem of
finding suitable coefficients v; using the perceptron, we must provide the algo-
rithm with samples of ¢; and @;. This can be done by choosing N “well-spaced”

points, z(k); (1 < k < N) in Q € RV, where Q is contained in the domain of
attraction of 0 € R"”. Then we define:

%(k) = bi(z(®) =2k ...z (k) (3.8)
&) = i(z(k) (3.9)

for 1 < k < N, where the right hand side of (3.9) is given by (3.5). Let H, be
the hyperplane in RE, defined by:

k
H,={yeR":) vy =0}

i=0



where L = I, (k; + 1). Also, let

i=1
E
H}={yeRt: Zv,-y.- >0}
i=0
E
H; ={yeRl: Zu.-y; < 0}
=0

Then we wish to find v so that the samples {y(1),...,%(N)} lie in H} while
the samples {£(1),...,£(N)} lie in H; , where

¥(j) = (wi(5)) € RE

£(7) = (&())) € R

This leads to the following Perceptron algorithm for determining Lyapunov
functions:

vEHl = 4 7t if nf = v(¢) € Hy
v = b if pf =¢(m) € HY
¥ = ok i (ff = 9(@) € HF) or (nf =€(m) € HY)

(for some £ and m ).

Here, n* is the k*® training sample and is either a member of class 1, ie ¥(£) for
some £ or a member of class 2, ie £(m) for some m. By the general Perceptron
convergence theorem, this algorithm will converge in finite time if the original
system is stable, since by Lyapunov’s main stability theorem citelyapunov, a
Lyapunov function must exist and hence a hyperplane H, also exists, which
separates the samples. The value

v= lim "
k—co

is the required parameter vector which will completely specify V as in (3.3).

4 Examples

In this section we shall give three simple examples of well-known systems and
compare the results with known Lyapunov functions. We shall assume in all
cases that V can be written in the form:

4 2
V= EZU.‘jtiI‘é
i=0 j=0

with vgp = 0. In general, of course, we must use higher order terms in order to
obtain a Lyapunov function.



Lid | vij | Lid | vij | 47 | vij |
0,1 -1.182x10"* |[0,1| —2.700 x 10~* 0,1 ] —4.547 x 10~12
0,2 | +9.200 x 10-* || 0,2 | +9.154x 10~ || 0,2 | +7.600 x 10!
1,0 | —1.000 x 10~* || 1,0 | —=1.819 x 1022 | | 1,0 | +2.074 x 102
1,1 | 4+4.700 x 10~ || 1,1 | +1.945x 101 || 1,1 | +7.792 x 10~2
1,2 | =1.010x10"! || 1,2 | —2.834x 102 || 1,2 | +4.207 x 10~3
2,0 | +8.600x 107 || 2,0 | +4.300x 10~! || 2,0 | +8.594 x 10~?
2,1 | +1.940x 10" || 2,1 | —1.244x 10" || 2,1 | -1.019x 107!
2,2 | +1.226x10"! || 2,2 | +1.010x10"! || 2,2 | +8.419x 10~
3,0 | —1.790 x 10! || 3,0 | —1.020x 10- || 3,0 | —3.526 x 10!
3,1 | +8.370x10"2 || 3,1 | +5.329x10"2 || 3,1 | +4.806 x 10~2
3,2 | —4.407x10"2 || 3,2 | -2277x10-2 || 3,2 | —1.740 x 10~2
4,0 | +2.020x 10" || 4,0 | +6.850x 10-2 || 4,0 | +2.689 x 10!
4,1 | —3.140x10"2 || 4,1 | —=3.114x 1072 || 4,1 | —3.305 x 102
4,2 | +3.110x 1072 || 4,2 | +1.883x 102 || 4,2 | +1.655 x 10~

Table 4.1 Table 4.2 Table 4.3

4.1 A damped linear oscillator
Consider first the simple linear system
Z+z+2=0
Written in phase-variable form this becomes
1 =12y , T3 =—T3—2I

and represents a damped harmonic oscillator. We can choose the Lyapunov
function V = z? + z2 since then

V 21‘13-!1 +22’:2i2

2r1z7 + 232(-32 —z)
—2z2

Note, however, that V < 0 away from the origin and so we must use LaSalle’s in-
variance principle [6] in connection with this Lyapunov function. The algorithm
derived in Section 3 was run for (z;, z3) in the square [—0.5,0.5] x [-0.5,0.5]
with 36 evenly spaced points (z1(k), 2(k)). The coefficients v;; were found and
are given in table 4.1. The resulting functions V and V are shown in figure 2.
Note that the Lyapunov function and its derivative are not symmetric in this
case (largely because of the order in which the samples are presented).



Figure 2: V(z) and V(z) for the linear oscillator



4.2 A non-linear oscillator

An example which has been used to illustrate the variable gradient method of
Schultz and Gibson [7] is given by:

il = , éz :—a:?-—-::z
A Lyapunov function is found by this method to be:

z? +z4
2

V= +riz2+ z.f,
Using our algorithm we obtain the coefficients v;; as in the previous example,
which are given in table 4.2. The functions V and V are shown in figure 3.

4.3 A non-polynomial system

The method will work even if f(z) does not have a polynomial form. Thus,
consider the system:

. . -y
Ty = =sinzi+I2= fi

. fa
£y = zT1—-222= fo

By Krasovskii’s theorem [8], this system has the Lyapunov function V = f7+ f2,
provided that cosz, > 1/2.

As before the algorithm determines the values shown in table 4.3, and the
functions V and V are shown in figure 4. The Lyapunov function given by our

method, vz
4 2

V=3 uziz

1=0 j=0

where the coefficients are as in table 4.3, should be compared with that given
by Krasovskii’s method, ie

Vk = (—sinz; + 22)% + (21 — 2z,)?

5 Conclusions

In this paper we have developed a machine implementable algorithm for deter-
mining Lyapunov functions, which solves a long standing problem in systems
theory. The method is based on the Perceptron algorithm and so is easily im-
plemented by a neural network.



Figure 3: V(z) and V(z) for the non-linear oscillator



Figure 4: V(z) and V(z) for the non-polynomial system

10



References

(1] A M Lyapunov, 1907, “Le probléme général de la stabilité du mouvement”
Ann Fac Sci Toulouse, vol 9, pp 203—474.

[2] M A Cohen and S Grossberg, 1983, “Absolute stability of global pattern
formation and parallel memory storage by competitive neural networks”
IEEE Trans Syst Man Cybern, vol SMC-13, pp 815-826.

[3] B Kosko, 1987, “Adaptive bi-directional associative memories” Appl Opt,
vol 26, no 23, pp 4947-4860.

[4] F Rosenblatt, 1962, “Principles of neurodynamics” Spartan Books, New
York.

[5] S P Banks, 5. S P Banks, 1988, “Mathematical theories of non-linear sys-
tems” Prentice Hall, England.

[6] J P LaSalle, 1960, “Some extensions of Lyapunov’s second method” Trans
IRE, vol CT-7, no 4, pp 520-527.

[7] D G Schultz and J E Gibson, 1962, “The variable gradient method for
generating Lyapunov functions” Trans AJEFE pt 11, vol 81, p 203.

[8] N N Krasovskii, 1954, “On the stability in the large of a solution of a system
of non-linear differential equations” Prikl Mat Mekh vol 18, pp 735-737.

11



