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Abstract:

Knowledge of the exact dynamic characteristics of robot manipulators is one of the
most significant factors in designing motion control systems, since the control perfor-
mance is directly dependent upon the accuracy of the dynamic model.

Dynamic models normally have complicated behaviour including varying inertia
depending upon the arm configuration, uncertain load effects, non-linear effects such as
the Coriolis and Centripetal forces, and interactions among joints. Unless these charac-
teristics are included in the manipulator dynamics exactly, the performance of the con-
troller is not expected to meet the given requirements. This necessitates the develop-
ment of an efficient method to identify the dynamic parameters of robot arms.

This paper will describe the on-line estimation of the link inertial parameters
using a semi-customised symbolic representation of the dynamic equations based on
the Lagrangian formulation. The identification is carried out using Recursive Least
Squares techniques. The whole of the algorithm is distributed over a network of paral-
lel processors (INMOS TRANSPUTERS) with its associated programming language
OCCAM. An example is given for the case of the first three links of the Stanford Arm
and good real-time results are demonstrated.

1. Introduction

Present day robot manipulators are controlled by a conventional servomechanism
at each joint. This approach neglects system dynamics which might lead to an overall
degrading performance.37 Several schemes had been proposed that incorporate the full
dynamic model of the arm in the controller design.2% 22 17,16

The mathematical formulation of the equations of motion of a robot manipualtor
is divided into two distinct areas:

a. the inverse dynamics, which are concerned with finding the forces required to
drive the arm through some specified trajectory.

b. the forward dynamics, which deal with the calculation of the position, velocity
and acceleration of each link for a given set of applied forces/torques.

The dynamics consist of a set of differential, coupled and highly non-linear equations
which determine the arm’s dynamic behaviour. Many researchers have reported
simplified forms of the dynamics based on the Lagrangian and Newtonian mechanics
principles.231,21,30 Tpe Lagrangian posesses a highly structured and systematic for-
mulation which allows for the application of a wide range of modern control tech-
niques.23:36 The recursive Newton-Euler(NE) is simpler computationally but with the
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loss of compact structure. Both approaches have great potential for modelling and
simulation of robot manipulators. The equivalence and interaction of the (NE) and
(LE) has been addressed by Silver.33 Other methods have been proposed to solve for
the dynamics but the (LE) and (NE) remain the most popular.1%:32 In this paper a sim-
plifed form of the (LE) is used.

2. Statement of the Problem

Model-based control algorithms rely on the arm dynamics being accurately
known. However, this assumption is barely practical in actual situations due to the
nonuniform mass distribution of the different links of the arm. Therefore, a good
model is an important component of any accurate and robust robot control scheme.

The dynamic model of a robot arm is defined using two kinds of parameters. The
first is the Kinemaric (Denavit-Hartenberg) parameters, which define homogeneous
transformations between successive links. These are rather easy formulated.35:¢ The
second kind is the Dynamic parameters consisting of the mass, centre of mass and the
inertia parameters of each link. Measurement of the mass properties of the links is a
time consuming operation. Hence, several techniques for the identification and estima-
tion of these properties have been introduced.1> 23,24, 3,28,29,14,15,26,11,13

The problems to be resolved prior to the actual implementation of these techniques are
as follows:

1. Greater computing power is needed to enable the real-time solution of model-
based problems. The use of both the (NE) and customisation techniquesz7
managed to reduce the execution time of dynamic models. However, these tech-
niques suffer from computational deficiency arising from the large amount of
multiplications, additions and trignometric evaluations which hamper their real-
time applicability.

2. The model must be simplified in a way that makes the extraction and regrouping

of dynamic parameters easy and straightforward. On the other hand this should
not lead to loss of generality.

3. The robot model must be linear in the dynamic parameters so that it can be util-
ised by using linear identification techniques.!® The (LE) is linear in the dynamic
parameters and the (NE) with some modification can be linearised.l?

In this paper we propose to solve these problems as following:

a. To reduce the processing-time by distributing the algorithm over a parallel pro-
cessing system. The system consists of a number of processors, in particular, the
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INMOS TRANSPUTER with its programming language OCCAM. This implies
the division of the whole task into smaller sub-tasks each running on a processor.

b. To reduce the computational cost of the dynamic model by using a semi-
customised symbolic form of the dynamics based on the (LE). It is easier to
employ this method instead of the full customisation of the dynamics which is
very complicated. In addition, it is very difficult to derive these models manually
for more than 2 dof (degree of freedom). The method used is linear in the
dynamic parameters.

3. Robot Dynamical Model

The importance of the (LE) evolves from its simple, algorithmic and highly struc-
tured formulation. In general, the (LE) equations of motion can be written in a com-
pact form which is the final outcome of solving the dynamics :

(t) = D(8) 8 (1) +C(8,0)+h(8) (1)

where (f) is an n x 1 applied force/torque vector for joint actuators; @(z), ®(z), and
©(r) are n x 1 vectors representing position, velocity and acceleration respectively;
D(®) is an n x n effective and coupling inertia matrix; C(@),G) is an n x 1 Corioilis and
Centripetal effects vector; and h(®) is an n x 1 gravitational force vector, where (n) is
the degree of freedom (dof).

The very general form of eq.(1) is important in state space and modern control appli-
cations. However, it can’t be utilised unless simplified. 18:38

In this work a semi-customised symbolic form is used. The formulation was first
introduced by Bejczy? and later by Paul 3! | then refined and further simplified by
Zomaya and Morris.38 The conventions used are the same as those of Bejczy? and
Paul3! , being based on the Denavit-Hartenberg (DH) representation.?

The dynamic formulation is divided into two main parts :
(@) The vectors §, and d; which describe the differential rotation and differential
transformation of link (I) respectively. These vectors are customised and symbolically

expressed for a certain type of manipulator. The general description of &), and d! is
given in Paul3! ;



(1 i1y i1 il s
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(I) This part describes a general formulation of the inertial, coriolis, centripetal and
gravitational effects. However, it can be further customised if a specific manipulator is
used.

As given by Paul3!

Dy= ¥ ar(AlJAT) 4)
l=max(i,))

More simplifications can be achieved by expanding eq.(4) to remove the multiplication
by zero/one and redundant operations. Assume a matrix (E) such that :

e 0
E={O 0} 5)

where (e) is a 3 x 3 matrix. Using the trace operator,

" 3
Dg'r' = X X B (6)

E=max(i) m=1

3
where ¥, e, is given as,
m=1
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Zomaya and Morris 38 used a similar approach to describe the coriolis and centripetal
effects ;

Cix= Y tr(AATAT) (®)
I=max(i,j,k)

assuming a matrix (U) such that :

u 0
U=, ©)

where (u) is a 3 x 3 matrix. Using the trace operator will yield,

n 3
Cio= 3 3 thn (10)
I=max(ij k) m=1

3
where ¥ u,, is given as,

m=1
) Sz 8 1 8 5;
=11 8s [[Sj {—Suﬂ: + I 8, [1*2] [‘@J s [[Bj [‘azyﬂr
!



sz dky 5}1: dky 8‘.1 —dix 8_;1 Bb;
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8| | 4 B | [ 8] [ de 5] [5
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where

-1{14 =xpmy
1{24 =ym
1134 =zZrmy

= (=l + B+ 1) 2
Jop=(ly =L+ 1) 2

Jaa= (1 + 1y —Ty )2

J{44=m1

and the gravitational effects are given by,

hi=g3 m¥r] (12)
=

where m; and rj are the mass and the centre of mass of link (/) respectively, and ¥, is

a vector of the following form,



[ s 8, — cou By,
ct 5,,,

s — 8y (13)

SO d,'y + ca d,

where so and ca are sin(o) and cos(o) respectively.
The previous dynamic equations eq.(7,11,12) will be assumed throughout this work.
Note the ease of extracting the inertial parameters from the previous equations.

3.1 The Inertial Parameters

The set of identifiable parameters for each link will be denoted by the vector;

0= [mz xp v oz Jy Ty T Jis -7123] (14)

Common assumptions are usually made to simplify the model. In this work the mass
and the kinematic parameters are assumed to be known accurately. On the whole, esti-
mation of all the link masses, dynamic parameters, and the kinematic (Denavit-
Hartenberg) parameters is a problem of non-linear estimation. As a consequence, the
kinematic parameters are assumed to be known and the problem is one of estimating
the dynamic parameters only. In addition, the pseudo-inertia matrices of the different
links are set to be diagonal. Hence, the maximum number to be identifed for each link
will be 6 parameters, i.e.

6= [xt iz Jiy Jo -’:!53} (15)

4. Dynamic Identification

Our approach is similar to that of (Khosla et. al., An et. al.)!4 1 but the dynamic
model is based on the (LE) formulaion which utilises the pseudo-inertia matrices and
has been shown to be linear in the dynamic parameters. This work presents an algo-
rithm to identify the dynamic parameters by applying a paralle]l processing approach.



4.1 The Transputer

The INMOS TRANSPUTER is a pioneering device which is considered to be the
ideal component for fifth generation computers. The T800 Transputer in (Fig. 1,2)
which is used in this work is a 32 bit microcomputer with 4 Kbytes on chip RAM for
high processing speed, a configurable memory interface, 4 bidirectional communication
links, 64-bit floating point unit, and a timer. It achieves an instruction rate of 10 MIPS
(millions of instructions per second) by running at a speed of 20 MHz. This makes the
Transputer one of the first designs that incorporate several hardware features to support
parallel processing. This allows for any number of Transputers to be arranged together
to build a parallel processing system, and permits massive concurrency without further
complexity. To provide maximum speed with minmial wiring, the Transputer uses
point to point serial communication links for direct connection to other Transputers.

OCCAM is a high level language developed by INMOS to run on the Tran-
sputer’+812 and optimise its operation. It is simple, block structured, and supports both
sequential (SEQ) and parallel (PAR) features on one or more Transputers which can be
used to facilitate simulation, modelling and control of complicated physical systems.>:?

4.2 Identification Procedure

In this paper a closed-loop type of identifier will be used. It is based on using a
model subject to the same input as the system. Then the parameters of the model are
adjusted so that the error between the output of the system and that of the model is
minimised according to a certain criterion (Fig.3). In this regard a few problems have
to be considered:

a. The parameter adaptation algorithm.
b. Initial condition setting.
¢.  Ermror criterion or performance index used.

For simulation purposes (Fig.4) will be employed instead of (Fig.3).

4.3 Parameter Adjustment Algorithm

Since (8) in eq.(15) is an unknown parameter vector, it is replaced by an adju-
stable vector (8) identified in the parameter adaptation mechanism (Fig.4). The
identification procedure is described as follows.

Let the output of the predictor in (Fig.4) be

Fik) = 67(k) o(k) (16)



Based on the identification error
e(k) = fik) — fik) (17)
the equation for the recursive least-squares identification algorithm will be34

0(k) = 6(k—1) + L(k) e(k)

(18)
P(-1) 6(k)
LK) = 19
*) A+ ¢7(k) P(k-1) (k) A
P(k) = % [T- Lk ¢7(k) ] Pk=1) (20)

0 < A £ 1 (forgetting factor)

P(0) > O (positive definite)

4.4 Case Study

The first 3-dof of the Stanford arm (Table 1.) are used to demonstrate the pro-
posed scheme.3!

LINK PARAMETERS

Link | © [a | d o

1 |e |o| o | -9

o

dy | 0| ds

Table 1. Link Parameters for the
First 3 dof of a Stanford-Like arm

The vectors (8) and (¢) of the estimated dynamic parameters and the kinematic param-

eters and output measurements respectively. These vectors are derived from the
force/torque model of the first 3 dof of the Stanford arm:
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0] = [xs ¥ 23} (21.1)

o] = :—m3( G2+ $20047)  —mysygy —my( $3GT + G5) ] (21.2)
0] = :xz 23 (Joe+ T3z ) (.I;lz+.f3z,)] (21.3)
;= tmzd'zszéil —madacady (G2 + 526247 ) (2= 52624} ) ] (21.4)
o] = [(11,2+Jm+12w+13”) yz] (21.5)
¢ = [é] 2dymyq, } (21.6)

From the previous equations it can be said that not all of the six dynamic parameters
of each link have to be identified at the same time, but only that part of them which
affects the force/torque of each link. In addition, some of the parameters appear in
linear combination of each other such as (V12 gt 2y H3y,) in (€q.21.5). In this case
only 9 parameters have to identified from the 18 parameters for the first 3 links of the
stanford arm. This simplification occurs due to arm architecture.

4.5 Simulation Results

The dynamics of the manipulator and the identification algorithm are distributed
over the network shown in (Fig.5). The different elements of (eq.1) are divided using
the following task-allocation strategy:
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PROCESSOR

Table 2. Three-Processors Task Allocation
for the First 3-dof of the Stanford Arm

By using this optimum task-allocation, the total processing-time for the dynamics was
found to be (1.056 msec). In this case the dynamics of the model and the system are
computed at the same time instant because of the parallel nature of the algorithm. The
utilisation (the ratio of the total processing time of each processor to the total process-
ing time of the network) of the three processors Py, P,, and P is 100%, 97%, and 94%
respectively. A deeper treatment of the application of parallel-processing and distri-
buted computing to robot dynamics can be found in Zomaya and Morris3?

The identification procedure is performed recursively, that is starting form link (3) and
going backwardly to link (1). The estimation algorithm is executed by processor (P).
The numerical values of the dynamic parameters are those reported by Paul3! The
identification results and processing-time values are shown in (Table 3,4,5) and (Table
6) respectively.

LINK 3

Parameter | Initial | Estimated Actual
Value Value Value

x3 (m) 0.2 0.0000 0.0
¥3 (m) 0.2 | 0.0000 0.0
z3 (m) 0.0 -0.6447 —0.6447

Table 3. Parameter Estimates of Link (3)

« 11 =



LINK 2

Parameter Initial | Estimated | Actual
Value Value Value

Xy (m) 0.2 0.0002 0.0

z; (m) 0.2 0.0000 0.0
(o + J3myy (Kg.m?) 0.0 0.0079 0.008
2z + J3zy (Kg.m?) 0.0 2.525 2.526

Table 4. Parameter Estimates of Link (2)

LINK 1

Parameter Initial | Estimated Actual
Value Value Value

y2 (m) 0.0 -0.1054 | -0.1054
Ui + J1z2 + Joyy + T3y (Kg.m?) 0.0 0.3525 0.353

Table 5. Parameter Estimates of Link (1)

Processing-Time (sec)

Link 1 | Link 2 | Link 3

0.125 0.226 0.047

Table 6. Processing-Time for the 3 Links
Graphical illustrations of the identification error of the three links are given in (Fig.
6,7,8). In real-time situations the most important parameters to estimates are those of

the third link (Fig. 9,10,11).

5. Conclusion and Summary

In this paper the problem of identifying the dynamic parameters of a robot mani-
pulator have been addressed. The identification procedure was based on a simplified
form of the Lagrangian dynamics. This formulation has three important properties.
First, being based on the Lagrangian representation, the equations are linear in the
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dynamic parameters which enables the application of linear identification techniques.
Second, the dynamic parameters are easily recognised, extracted and grouped. Third,
and most importantly, the equations are amenable to the implementation of parallel
processing schemes. For the identification a Recursive Least Squares algorithm was
used.

The whole of the algorithm was distributed over a parallel processing system con-
sisting of the INMOS TRANSPUTER. The programs were written in OCCAM. Real-
time results have been produced to demonstrate how the recent advances in VLSI tech-
nology can be used together with parallel processing techniques to significantly speed
up the dynamic modelling of robot manipulators.
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Figure 6. Identification Error of Link (1).
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Figure 7. Identification Error of Link (2).
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Figure 8. Identification Error of Link (3).




Figure 9. Identified x-component of
the centre of mass of Link (3).
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Figure 10. Identified y-component of
the centre of mass of Link (3).
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Figure 11. Identified z-component of
the centre of mass of Link (3).




