The
University
o Of

= -n,‘-_“ u}:_.'!?- Bhe&i{“:ld.

This is a repository copy of Fast Forward Dynamics Algorithm for Robot Arms Using
Multi-Processing.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/78200/

Monograph:

Zomaya, A.Y. and Morris, A.S. (1989) Fast Forward Dynamics Algorithm for Robot Arms
Using Multi-Processing. Research Report. Acse Report 367 . Dept of Automatic Control
and System Engineering. University of Sheffield

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

>< Pam @ 624.%(S)

Fast Forward Dynamics Algorithm
for Robot Arms Using Multi-Processing

by
A. Y. ZOMAYA
A. S. MORRIS

Department of Control Engineering
University of Sheffield
Mappin Street
Sheffield S1 3JD
UK.

Research Report No. 367

June 1989

i

Abstract

The computation of the direct dynamics problem (forward dynamics) plays a
major role in the real-time computer modelling and simulation of robot manipulators.
The efficient and computationally inexpensive solution of this problem facilitates the
design of real-time robot simulators. In addition, it allows for a better understanding of
the key elements affecting robot operations.

This work proposes to solve this problem by employing parallel and distributed
processing techniques. First, a parallel implementation of a simplified Lagrange-Euler
formulation is used to solve for the dynamics. Second, a resulting system of linear
equations is solved using Gaussian-Elimination with simple row interchange. Both
algorithms are distributed over a multiple-instruction multiple-data stream (MIMD)
computer architecture. The system is constructed from (VLSI) building blocks called
the (TRANSPUTER). Quantification of the speed and utilisation measures are given
to demonstrate the cost-effectivness of the parallel approach. The problem is solved for
a 6 dof robot arm.

Key words: robot dynamics, forward dynamics, parallel processing, Transputer,
Occam, MIMD.

1. Introduction

A precise mathematical model of the robot arm is an indispensable part of any
dynamic computer simulation strategy (Fig.1). The accurate and meticulous formula-
tion of the dynamic model will lead to a better understanding of the different com-
ponents of the system [15, 34, 44].

The model can be used to simulate real-time motions of the robot arm. In addi-
tion, it provides a powerful tool for the study of different control techniques and for
evaluating system performance under conditions that might be dangerous and expen-
sive if examined in siru [38].

However, the dynamic equations that influence robot performance are compli-
cated, highly coupled, and non-linear. General simplifying assumptions have to be
made to reduce the computational burden. This is accomplished by ignoring part of the
forces which affect the dynamics [3]. The results obtained are valid for a limited
range of operations which will lead to an overall sub-optimal performance.

The mathematical formulation of the dynamics divides into two distinct areas; the
Direct and Inverse Dynamic formulations. Most of the research has been focused on
the latter problem. In this work the former problem is addressed which is equally

important and computationally more expensive.

The formulation of computationally efficient dynamics has been an active area of
research for the last two decades and several methods have been developed. The
Lagrange-Euler (LE) [3,37,45] has high computational complexity but is a very well
structured and systematic representation. The Recursive Lagrangian [16] gives good
computational results but destroys the structure of the equations. The Newton-Euler
(NE) [1,33,36,47] has the most efficient computational formulation but has untidy
recursive equations. Other approaches include the tabulation techniques [41], Kane’s
dynamic equations [23], and the Generalized D’Alembert [29]. The most commonly
used of these methods are the (LE) and (NE). The interaction and equivalence of these
schemes has been shown by Silver [42]. In this paper the (LE) is addressed. The
results and discussions are presented in the following order; Section (2) surveys recent
research in this area. Section (3) presents the computer architecture used to implement
this work. The dynamic model is explained and analyzed in section (4). Parallelism is
introduced to solve the problem in section (5). Conclusions and further comments are
given in section (6).

2. Previous Work

A typical robot arm consists of an open-chain of (N+1) rigid links. The links can
be arranged such that link (i) is connected to a preceeding link (—1) and a following
link (i+1). The links are connected by joints and each joint has one degree of freedom
(dof). In robot arms, two types of joints exist, translational and revolute.

As mentioned earlier, the direct dynamics problem is computationally expensive.
Nevertheless, only a few attempts have been made to solve it. Walker and Orin [47]
proposed four methods by using the (NE) approach. Swartz [43] described a method to
depict the arm by its rotational characteristics. A set of equations based on the (NE)
called the Inverse Arm and an algorithm called the Forward Arm were presented.
Featherstone [12] proposed a different technique based on the so-called articulated-
body method.

In contrast, several algorithms have been developed which apply parallel process-
ing techniques to solve the Inverse Dynamics problem [2, 6,7, 24, 28, 30, 40, 46, 49, 52].
Lately, an attempt has been made by Lee and Chang [31] to incorporate parallelism to
speed up the computation. Their approach was based on that of Walker and Orin [47]
and the algorithms were distributed on a single-instruction multiple-data stream (SIMD)
computer.

The use of Distributed Computing techniques by employing several computing
units, interacting in real-time to provide the required computational speed and power,
finds an immediate application in robotics. There is a vast plethora of literature on dis-
tributed computing, and many, if not all, of the concepts described are directly applica-
ble to robotics. In this paper a trial is made to introduce these concepts to robot
dynamic simulation to emphasize the role which can be played by distributed architec-
tures in enhancing real-time operations by distributing the whole of a task over several
cooperating processors.

3. Multiple-Instruction Multiple-Data Stream Architecture (MIMD)

We are currently witnessing an enormous revolution in the mass manufacuring of
low cost advanced VLSI components. This will enable the actual implementation of
the theoretical parallel-orientated architectures and algorithms [5].

Parallelism is achieved by distributing the job over a number of Processors,
ideally in such a way that all the processors are fully utilised. As a consequence,
highly parallel structures have evolved, and many have been built to meet the increas-
ing demand for more computing power and higher processing speed [14, 17, 26, 48].

Until recently, most of the research has been dealing with solving problems from
a parallel perspective by applying (SIMD) techniques. In this approach, a single
machine instruction is able to compute over massive data structures (e.g. vector and
array processors). However, the use of (SIMD) architectures was hindered by their
technological constraints. As a result, the multiprocessing (MIMD) emerged to provide
a solution. In this case a number of processors interact and co-operate to produce
higher performance and computing power. The (MIMD) architecture is tightly coupled
if the processors are highly interactive. Otherwise, it is considered to be loosely cou-
pled.

3.1. Transputer and Occam

The T800 TRANSPUTERT (Fig.2) which is adopted in this work is a 32 bit
microcomputer with 4 Kbytes of on chip RAM for high processing speed, a
configurable memory interface, 4 bidirectional communication links, 64-bit floating
point unit, and a timer. It achieves an instruction rate of 10 MIPS (millions of instruc-
tions per second) by running at a speed of 20 MHz. The Transputer is one of the first

t TRANSPUTER and OCCAM are trademarks of the INMOS group of companies.

NS, : 4 Ty
AL T TN
il 2 6
APPLIED SCizNCE
' v
LIBRARY

designs that incorporate several hardware features to support parallel processing. This
allows for any number of Transputers to be arranged together to build a parallel pro-
cessing system, and permits massive concurrency without further complexity. To pro-
vide maximum speed with minimal wiring, the Transputer uses point to point serial
communication links for direct connection to other Transputers,

OCCAMT is a high level language developed to run on the Transputer
[19,20,25] and optimise its operation. It is simple, block structured, and supports both
sequential (SEQ) and parallel (PAR) features on one or more Transputers which can
be used to facilitate simulation, modelling and control of complicated physical systems
[13,21,22].

3.2. Processor Farms

The processor farms are based on a simple concept which might be useful in a
wide range of applications [18]. It involves a master processor which acts as a con-
troller that optimises processor utilisation and farms out tasks to a set of slave proces-
sors in the network. When a task is completed successfully by a slave processor, the
results are sent back to the master which then farms out another task to it.

In this work, a similar processor organization is used. This technique is motivated
by the amount of tasks that can be executed independently in the proposed algorithm.
The software portions running on the processors are replica of one another with minor
modifications depending upon the task and the communication protocols.

4. Manipulator Dynamic Model

The importance of the (LE) evolves from its simple, algorithmic and highly struc-
tured formulation. In general, the (LE) equations of motion can be written in a com-
pact state-space formulation:

T(t) = D(S) (t) +(C(6, 8)+h(8) (la)
or alternatively,
() = Z d; 6 + E E i i) @k *h = ek (1b)
=1 k=1

where T(f) is an n x 1 applied force/torque vector for joint actuators; ©(z), @(t) and
8(:) are n X 1 vectors representing position, velocity and acceleration respectively;
D(®) is an n x n effective and coupling inertia matrix; C(®©, @) is an n x 1 Coriolis
and Centripetal effects vector; and h(®) is an n x 1 gravitational force vector, where
(n) is the no. of degrees of freedom (dof).

a5

The very general form of eq.(1) is important in state space and modern control appli-
cations; however, it can’t be utilised unless simplified [3,4, 8, 11, 32, 35, 50].

In this work a semi-customised symbolic form is used. The formulation was first
introduced by Bejczy [3] and later by Paul [37] , then refined and further simplified by
Zomaya and Morris [50]. The conventions used are the same as those of Bejczy [3]
and Paul [37] , being based on the Denavit-Hartenberg (DH) [9] representation.

The dynamic formulation is divided into two main parts :

(I) The vectors &, and d; which describe the differential rotation, and differential
transformation of link (/) respectively. These vectors are customised and symbolically
expressed for a certain type of manipulator. The general description of ﬁf-, and df is
given in Paul [37];

-

-l ply'+ ! pih) i

.| ot P of P
d; = ; . . . ‘ 5
(—a;' piy’+ a7 pis) k. revolute join (2)

(nf?l i+ 052—1 j+ af;] k) prismatic joint

(' i+ ol j+ab k) revolute joint

I _
8 = { 0 prismatic joint (3)

(IT) This part describes a general formulation of the inertial, coriolis, centripetal and
gravitational effects.
(a) The Effective and Coupling Inertias:

n

n 3
Dij= ¥ w(AJVAT)= ¥ ¥ e (4)

I=max(ij) l=max(ij) m=1

3
where Y e,,, is given as,
m=1

]]] dix| |2
o 1B, . [Pl o o 1P L)
=/ s, |15,], T 722 o3 3 P £ T MV 0

JZ L

8j.vc -di |-5i.r- djz . (6iy djx 6jy dix
*u (s, G I R O | S g P ~dy))i

(b) The Coriolis and Centripetal Forces:

—

n n 3
Cix= X m(ANVAT)= 3 3 u, (6)
I=max(i,j.k) =max(iy k) m=1

-5.

where) u,, is given as,
m=1

8| 8; 5 5.][5;
S 5[5 AR R
[[5,][de 5| di | 8| [d]
" JIM .d [ﬂ] [_dky] LSJI] [“kz] * [ajy] i } !
e IRl o Rl - « B6T)
i D 18] 4] "V |8:)|9%] Ui
5; 5.][d 8, |[8
cnlo 5] B BT B

where ij’s are the inertial parameters.

] (7)
1

n
hi=¢3 mW¥r (8)
=

(c) The Gravitational Effects are given by:

where m; and r} are the mass and the centre of mass of link (/) respectively, and ¥, is

a vector of the following form,
i .

sa &, — ca &y,
ca d;,

5o — O, ®)

s dyy, + ca d,

where so and co are sin(o) and cos(o) respectively.
The previous dynamic equations eq.(5,7,8) will be assumed throughout this work.

The dynamic simulation problem of a robot manipulator can be tackled by solv-
ing it as a forward dynamics problem. By rearranging eq.(1):

D(®) 8 (t) = (t) - (10a)
M= C(@,@) 6(:) + h(®) (10b)
or alternatively, |
3 d;6,=tt)-M (11a)
=
M=3 3 6 cyl) ©,+h (11b)
F1 k=1

Therefore, it can be stated as follows:

(i) Given an input force/torque vector T(z), the joint position @(r) and the joint velo-
city @(r), calculate the D(®) matrix and the bias or offset vector M.

(ii) Then, the joint acceleration vector ©(r) is calculated by solving a system of linear
equations given in eq.(10a,11a).

5. Real-Time Simulation of Robot Motion

The simulation procedure consists of two main parts. First, solving eq.(1) by
dividing the dynamics into a set of subtasks (processes) which in this case consist of
the different terms of eq.(1). Second, calculating 2] (1) eq.(1a) by solving the system of
linear equations. Parallelism is introduced to both parts to enhance the speed and
efficiency of the algorithms. This is achieved by using different network configurations
and task allocations. Quantification of speed and processor utilisation with real-time
implementation results are included.

5.1. Parallel Computation of the Dynamics

The Stanford arm is used as an example, and in this case there are three main
tasks (i.e. calculating D, C, and h):
Task1: divided into 17 subtasks representing the effective and coupling inertia terms.
Task2: divided into 43 subtasks representing the coriolis and centripetal effects.
Task3: divided into 4 subtasks representing the gravitational effects.

This sums up to a total of 64 subtasks to be computed. Two different scheduling stra-
tegies are used. The basic structure of the network configurations is the same, that is, a
main processor (Schedular or Controller) and a cluster of slave processors responsible
for the computation and number crunching. Several factors have to be considered in
the analysis and task distribution phase . First, the sequential dependency between the
different subtasks. Second, minimising the interaction between the different slave pro-
cessors as much as possible by enabling each processor to execute its job without the
need for data from other processors. Lastly, avoiding the case of two slave processors
communicating with each other through a third slave processor. To avoid (I/O)
bottleneck, the overall (I/O) of a processor must be reduced by increasing the size of
its memory [27]. Furthermore, redundant calculations must be avoided to minimize
the communication overhead.

5.1.1. One-Processor (Sequential) Case

Prior to the actual real-time implementation, a thorough off-line analysis is per-
formed. All the sources of overhead and communication deadlocks are located and
avoided. The whole task is computed using one processor (Transputer). The total
processing-time for computing the forces vector was found to be (25.6 msec).

5.1.2. Three-Processors Case:

For this case a tree-structured network is used (Fig.3) where (Pp) is the master
processor and the other three processors (P; P, P;) are slave processors. The master
processor is connected to a personal computer (PC) which works as a link between the
user and the network of processors. The total processing-time was found to be (8.96
msec). Note that the value of the total processing time (T,) includes both the computa-
tion time of the task and the time needed to send and receive any data items from the
processor, i.e.

T,

p (total processing time) = 3] (computation time) +1n (communication time)

The subtasks are distributed as shown in (table 1)

PROCESSOR
Py | P, | Ps
C3 | C, | D
Cy | €3, | Cs
Cy | G | Cha

h | ¢ | ¢,
- - | s

Table 1. Three—Processors Task Allocation

5.1.3. Six-Processors Case:

The same procedure is followed here with a different network configuration
(Fig.4). This architecture gives more independence to each processor and increases the
computing power to achieve better processing time.

In this configuration, the first level of the network is a simple tree structure, but
each slave processor in (level 1) is a master for another slave processor in (level 2).
Hence, (level 1) slave processors communicate directly with the controller (Py) but
slave processors in (level 2) "talk" to (Py) through their master Processor.

nr

The total processing time is (4.7 msec). The scheduling strategies are shown in
(table 2). While increasing the number of processors in a network, care must be taken
that the additional processors do not lower the processing time and lead to under-
utilised resources.

PROCESSOR

Table 2. Six—Processors Task Allocation

S5.1.4. Nine-Processors Case:

A nine-processors network enhances the performance and gives higher processing
power while maintaining the desirable cost-effectiveness and fault-tolerance (Fig.5). A
total processing-time of (2.95 msec) is obtained. The task scheduling is shown in (table
3}

PROCESSOR

hy | Dy | Cs | Cls | - | Ch | - | €& | C&
- | D3y | Coa | - - | Qe | - | C% | Dss
- | D3ss | Das | - - | G | - - -
- | Dy | - - - | G | - - =
- | Des | - : = hs - - -

Table 3. Nine—Processors Task Allocation

5.1.5. Comparison of Performance:

The different values of (Tp) are reported in (table 4) and (Fig.6).

PROCESSING TIME
(TP) (msec)

No. of Described
Processors Scheme
1 25.6
3 8.96
6 4.46
9 2.95

Table 4. Total Processing Time (Tp)

The Unlisation is given by the ratio of the total processing time of each Processor to
the total processing time of the network, i.e.

U= Tp (one processor) / Tp (network)

- 10 -

The (U) rate shows the percentage contribution of each processor in the execution of
the whole job (table 5).

PROCESSOR UTILISATION (%)
No. of P P, Py Py Ps Py P, Py Py

Processors

100 - - - - - - . -
100 | 100 | 96.8 - - - - -
100 | 98.7 | 98.7 | 962 | 97.5 95 - - -

100 | 100 100 | 95.7 | 95.7 | 95.7 | 95.7 | 95.7 | 100

o N W=

Table 5. Processor Utilisation for
Different Network Configurations

5.2. Parallel Solution of System of Equations

In this section the Gaussian Elimination (GE) algorithm [39] is used to solve the
linear system of equations representing the dynamics developed in the last section
(5.1). The (GE) algorithm is distributed on the network shown in (Fig.7). The
configuration used evolves from the basic structure of the algorithm of (GE) with sim-
ple row interchange [51]

LEVEL 1;

The processor (T) prepares the matrix (D) by augmenting it with the (é)). A check
is performed to avoid a zero pivoting element, and a row interchange is per-
formed as necessary to avoid this situation. Then, normalisation is performed by
dividing the whole row by the first entry in that row (i.e. d;). The remaining rows
are sent to the array of processing elements in (level 2). If the number of rows
exceeds the number of processing elements in (level 2), (T) will schedule the
operation by sending only (M) rows to the (M) processors and the rest will be
stored in the local memory (LM) from where they can be restored and sent to any
free processor.

LEVEL 2:
This array of processors is-operating in parallel. Each processor is loaded with a
row of the system matrix from (7) in (level 1). The role of these processors is to
make the first element in each loaded row equal to zero. This is accomplished by
employing the following formula:

- 11 -

Je=Te =My *J;

where My; = Jy; 1 J;;, Jy is the processed row, J; is the first row which is used in
common with the array of processors. The processed rows are sent to (level 3)
and the array is ready now to receive some more rows (if there are any).

LEVEL- 3:
This processor (T) will receive the processed rows from (level 2) and store them
in its (LM) and checks if all the rows are received. Then all the rows will be
recovered and a new matrix constructed and sent back to processor (T) in (level
1) to repeat the whole procedure again. Also (T) will check whether the operation
is completed successfully. If not, the fault is located and corrected as fast as
quickly as possible.

LEVEL 4.
Back substitution is performed on the resulting matrix and then the values of the
joint accelerations (é) are sent to the output unit. Thereafter, (é)) can be
integrated using numerical integration techniques (e.g. Runge Kutta methods) to
compute (©,0).

The whole procedure will be repeated again if a new (D) is received. The size of the

(D) matrix for the case of the Stanford arm is (6x6). The number of processors used

for (level 2) of the network is varied to find an optimum solution. The total processing
time is given in (table 6).

PROCESSING TIME
(TP) (msec)

No. of (GE)
Processors(m) || Algorithm

1.22
0.72
0.55
0.46
0.36

b b W N =

Table 6. Total Processing Time (Tp)

Sufficiently-fast real-time results are obtained (table 6) (Fig.8). In order to minimise
the cost and complexity of the solution, the number of processors should be limited. In
this work (m = 3) seems to be a reasonable trade off between speed and efficiency

= 1%

[10].

6. ION AND SUMMARY

In this paper the problem of the real-time dynamic simulation of a robot manipu-
lator has been addressed. The procedure was divided into two main parts. First, solving
for the dynamics which was based on a simplified form of the Lagrangian formulation.
Second, solving the system of linear equations resulting from the first stage by
employing a parallel implementation of the Gaussian Elimination with row inter-
change.

The whole of the algorithm was distributed over a parallel processing system con-
sisting of the INMOS TRANSPUTER. The programs were written in OCCAM. Real-
time results have been produced to demonstrate how the recent advances in VLSI tech-
nology can be used together with parallel processing techniques to significantly speed
up the dynamic simulation and modelling of robot manipulators.

References

[1]. ARMSTRONG, W. M., (1979). ‘“‘Recursive Solution to the Equations of Motion of
an N-Link Manipulator,”” in Proc. 5th World Congress on Theory of Machines
and Mechanisms, vol. 2, pp. 1343-1346.

[2]. BARHEN, J., (1987). ‘‘Hypercube Ensembles: An Architecure for Intelligent
Robots,”” in Computer Architectures for Robotics and Automation, ed. J. H. Gra-
ham, pp. 195-236, Gordon and Breach Science Pub, NewYork.

[3]. BEICZY, A. K., (1974). “‘Robot Arm Dynamics and Control,”” NASA-JPL Techn-
ical Memorandum, 33-669.

[4]. BEICZY, A. K. AND PAUL, R. P, (1981). *‘Simplifed Robot Arm Dynamics For
Control,” in Proc. 20the IEEE Conf. Decision and Control, San Diego, pp. 261-
262.

[5]. BERTSEKAS, B. P. AND TSITSIKLIS, J. N., (1989). Parallel and Distributed Com-
putation: Numerical Methods, Prentice-Hall, Englewood cliffs, N.J.

[6]. BINDER, E. E. AND HERZOG, J. H., (1986). ‘‘Distributed Computer Architecture
and Fast Parallel Algorithms in Real-Time Robot Contol,”’ IEEE Trans. on Sys-
tems, Man, and Cybernetics, vol. 16, no. 4, pp. 543-549.

= T8

[7]. CHEN, C. L., LEE, C. S. G., AND Hou, E. S. H., (1988). ‘‘Efficient Scheduling
Algorithms for Robot Inverse Dynamics Computation on a Multiprocessor Sys-
tem,”’ JEEE Trans Systems, Man, and Cybernetics, vol. 18, no. 5, pp. 729-743.

[8]. CHENG, P., WENG, C., AND CHEN, C., (1988). *‘Symbolic Derivation of
Dynamic Equations of Motion for Robot Manipulators Using Piogram Symbolic
Method,”” IEEE J. Robotics and Automation, vol. 4, no. 6, pp. 599-609.

[9]. DENAVIT, H. AND HARTENBERG, R., (1955). “‘A Kinematic Notation for Lower
Pair Mechansims Based on Matrices,”’ J. Applied Mechanics, no. 22, pp. 215-221.

[10]. EAGER, D. L., ZAHORJAN, J., AND LAZOWSKA, E. D., (1989). “‘Speed up Versus
Efficiency in Parallel Systems,”” IEEE Trans. on Computers, vol. 38, no. 3, Pp.
pp. 408-423.

[11]. FAESSLER, H., (1986). ““Computer-Assisted Generation of Dynarmical Equations
for Multibody Systems,”’ Int. J. Robotics Research, vol. 5, no. 3, pp. 129-141.

[12]. FEATHERSTONE, R., (1987). Robot Dynamics Algorithms, Kluwer Academic Pub-
lishers, Cambridge, Mass.

[13]. HAMBLEN, J. O., (1987). *‘‘Parallel Continuous System Simulation Using the
Transputer,”” Simulation, vol. 49, no. 6, pp. 249-253.

[14]. HAYNES, L. S., LAU, R. L., SIEWIOREK, D. P., AND MIZELL, D. W., (1982). ‘A
Survey of Highly Parallel Computing,”” JEEE Computer, pp. 9-24.

[15]. HEMAMI, H., JASWA, V. C., AND MCGHEE, R. B, (1975). ‘‘Some Alternative
Formulations of Manipulator Dynamics for Computer Simulation Studies,” in

Proc. 13th Allerton Conf. Circuit and System Theory, University of Illinois, pp.
124-140.

[16]. HOLLERBACH, J. M., (1980). ‘‘A Reccursive Lagrangian Formulation of Manipu-
lator Dynamics and a Comparative Study of Dynamics Formulation Complexity,”
IEEE Trans. on Systems, Man, and Cyberntics, vol. sme-10, no. 11, pp. 730-736.

[17]. HWANG, K. AND BRIGGS, F. A., (1985). Computer Architecture and Parallel
Processing, McGraw-Hill, New York.

[18].IEE,, (1986). Colloquium on the Transputer Applications and Case Studies, Pro-
fessional Group C2.

[19]. INMOs,, (1984). OCCAM Programming Manual, Prentice-Hall, Englewood
Cliffs, N.J.

- 14 -

[20]. INMOS,, (1988). OCCAM-2 Reference Manual, Prentice-Hall, Englewood Cliffs,
N.J.

[21]. JONES, D. I, (1985). ‘“OCCAM Structures in Control Applications,”” Trans. Inst.
of Measurements and Control, vol. 7, no. 5, pp. 222-227.

[22]. JONES, D. I. AND ENTWISTLE, P. M., (1988). ‘‘Parallel Computation of An Algo-
rithm in Robotic Control,”” in Int. Conf. on Control 88, Oxford, UK, pp. 438-443.

[23]. KANE, T. AND LEVINSON, D., (1983). ‘““The Use of Kane'’s Dynamical Equations
in Robotics,”” Int J. Robotics Res., vol. 2, no. 3, pp. 3-21.

[24]. KASAHARA, H. AND NARITA, S., (1985). “‘Parallel Processing of Robot-Arm
Control Computation on a Multi-microprocessor System,”’ IEEE J. Robotics and
Automation, vol. 1, no. 2, pp. 104-113.

[25]. KERRIDGE, J., (1987). OCCAM Programming: A Practical Approach, Blackwell.
[26]. KUNG, H. T., (1982). ‘“Why Systolic Architectures,”” IEEE Computer, pp. 37-46.

[27].KUNG, H. T., (1985). ““Memory Requirements for Balanced Computer Architec-
tures,”’ J. of Complexity, vol. 1, no. 1, pp. 147-157.

[28]. LATHROP, R. H., (1985). ‘‘Parallelism in Manipulator Dynamics,”” Inz. J. Robot-
ics Res., vol. 4, no. 2, pp. 80-102.

[29].LEE, C. S. G, LEE, B. H,, AND NIGAM, R., (1983). ‘““Development of the Gen-
eralized D’ Alembert Equations of Motion for Mechanical Manipulators,’” in Proc.
22nd Conf. Decision and Control, San Antonio, Tex., pp. 1205-1210.

[30].LEE, C. S. G. AND CHANG, P. R., (1986). “‘Efficient Parallel Algorithm for
Robot Inverse Dynamics Computation,”” IEEE Trans. on Systems, Man, and
Cybernetics, vol. 16, no. 4, pp. 532-542.

[31].LEE, C. S. G. AND CHANG, P. R., (1988). “‘Efficient Parallel Algorithm for
Robot Forward Dynamics Computation,”” IEEE Trans. on Systems, Man, and
Cybernetics, vol. 18, no. 2, pp. 238-251.

[32]. LEwIs, R. A., (1974). ‘‘Autonomous Manipulation on a Robot: Summary of
Manipulator Software Functions,”” Tech. Memo. 33-679, Jet Propulsion Labora-
tory, Pasadena, California.

[33].LUH, J. Y. S., WALKER, M. W, AND PAUL, R. P., (1980). ‘‘On-Line Computa-
tional Scheme for Mechanical Manipulators,”” Trans. ASME J. Dynamic Systems,

- 15 -

Measurements, and Control, vol. 102, pp. 69-76.

[34]. NEUMAN, C. P. AND TOURASSIS, V. D., (1983). “‘Robot Control: Issues and
Insight,”” in Proc. 3rd Yale Workshop on Applications of Adaptive Systems
Theory, pp. 179-189.

[35]. NEUMAN, C. P. AND MURRAY, J. J., (1985). ‘‘Computational Robot Dynamics:
Foundations and Applications,’” J. Robotic Systems, vol. 2, no. 4, pp. 425-452.

[36]. ORIN, D. E., MCGHEE, R. B., VUKOBRATOVIC, M., AND HARTOCH, G., (1979).
“Kinematic and Kinetic Analysis of Open-Chain Linkages Utilizing Newton-
Euler Methods,”” Math. Biosci., vol. 43, pp. 107-130.

[37].PAUL, R. P., (1981). Robot Manipulators: Mathematics, Programming, and Con-
trol, MIT Press, Cambridge, Mass.

[38]. PFEIFER, M. S. AND NEUMAN, C. P., (Nov. 1984). ‘“‘An Adaptable Simulator for
Robot Arm Dynamics,”” Computers in Mechanical Engineering, pp. 57-64.

[39]. PRESS, W. H., FLANNERY, B. P., TEUKOLSKY, S. A., AND VETTERLING, W. T.,

(1986). Numerical Recipes: The Art of Scientific Computing, Cambridge Univer-
sity Press.

[40]. RAHMAN, M. AND MEYER, D., (1987). “‘A Cost-Efficient High Performance
Bit-Serial Architecture for Robot Inverse Dynamics Computation,”” IEEE Trans.
on Systems, Man, and Cybernetics, vol. 17, no. 6, pp. 1050-1058.

[41]. RAIBERT, M. H. AND HORN, B. K., (1978). ‘‘Manipulator Control Using the
Configuration Space Method,”’ Indusrial Robot, vol. 5, no. 2, pp.- 69-73.

[42]. SILVER, W. M., (1982). ‘‘On the Equivalence of Langrangian and Newton-Euler
Dynamics for Manipulators,’” Inz. J. Robotics Res., vol. 1, no. 2, pp. 60-70.

[43]. SWARTZ, N. M., (1984). ‘‘Arm Dynamics Simulation,”’ Journal of Robotic Sys-
tems, vol. 1, no. 1, pp. 83-100.

[44]. TOURASSIS, V. D. AND NEUMAN, C. P.,, (1985). ‘‘Properties and Structure of
Dynamic Robot Models for Control Engineering Applications,”” Mechansim and
Machine Theory, vol. 20, no. 1, pp. 27-40.

[45]. UIKER, J. J., (1965). ‘‘On the Dynamic Analysis of Spatial Linkages Using 4x4
Matrices,”” Ph.D. Thesis, Dept. of Mechanical Engineering and Astronautical Sci-
ences, Northwestern Universiry.

- 18 =

[46]. VUKOBRATOVIC, M., KIRCANSKI, N, AND LI, S. G., (1988). ‘‘An Approach to
Parallel Processing of Dynamic Robot Models,’’ Int. J. Robotics Res., vol. 7, no.
2v pp- 64'71.

[47]. WALKER, M. W. AND ORIN, D. E., (1982). ‘‘Efficient Dynamic Computer Simu-
lation of Robotic Mechanisms,”” Trans. ASME J. Dynamic Systems, Measure-
ments, and Control, vol. 104, pp. 205-211.

[48]. ZAKHAROV, V., (1984). ‘‘Parallelism and Array Processing,”” IEEE Trans. Com-
puters, vol. 33, no. 1, pp. 45-78.

[49]. ZHENG, Y. AND HEMAMI, H., (1986). ““Computation of Multibody System
Dynamics by a Multiprocessor Scheme,”” IEEE Trans. on Systems, Man, and
Cybernetics, vol. 16, no. 1, pp. 102-110.

[50]. ZOMAYA, A. Y. AND MORRIS, A. S., (1988). *‘The Dynamic Performance of
Robot Manipulators Under Different Operating Conditions,”” Research Report No.
345, Dept. of Control Engineering, University of Sheffield, Sheffield S1 3JD, UK.

[51]. ZOMAYA, A. Y. AND MORRIS, A. S., (1988). ‘‘Distributed VLSI Architectures
for Fast Jacobian and Inverse Jacobian Formulations,”> Research Report No. 346,
Depr. of Control Engineering, University of Sheffield, Sheffield S1 3JD, UK.

[52]. ZOMAYA, A. Y. AND MORRIS, A. S., (1989). “‘Robot Inverse Dynamics Compu-
tation Via VLSI Distributed Architectures,”” Research Report No. 350, Dept. of
Control Engineering, University of Sheffield, Sheffield S1 3JD, UK.

< 17 -

Task
Description

Desired

Trajectory (q)

q)

’

)

Acceleration
(6]

Actual
Trajectory (q

Figure 1. A Dynamic-Based Simulation Strategy.

EXTERNAL
MEMORY BUS

Figure 2. The well known INMOS T800 Transputer.

INPUT/QUTPUT

Figure 3. Three-Processors Network.

INPUT/OUTPUT

LEVEL1

Figure 4. Six-Processors Network.

INPUT/OQUTPUT

LEVEL1

Figure 5. Nine-Processors Network.

ay ¥

LT

o T

BPorer ok o 55 E i e ur

Processing Time vs5, No. of Processors

& Dunamic Algorithm !

}T. 1 T i i ¥ I i 3
e i 2 3 &4 5 & 1 8 9 1o

Mo. of Processors (m)

Figure 6. Processing-Time of the Dynamics.

INPUT

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

| R S

I

LEVEL 4

|
|
|
|
|
|
|
|
|
|
|
|
|
J

b e e e e e s e e e A R

OUTPUT

Figure 7. A Four-Levels Network for

Solving the Gaussian-Elimination.

Wi

e

DaTe R

Proocess Lovey T i e

1 c
1.
3
7

.. Gaussian Elimination

—
—_ %,
e

-

Mo. of Processors (m)

Figure 8. Processing-Time of the (GE).

Bk sz

