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Abstract 16 

 17 
Assessments of the relationships between crop productivity and climate change rely upon 18 

a combination of modelling and measurement. As part of this review, we discuss this 19 

relationship in the context of crop and climate simulation. Methods for linking these two 20 

types of models are reviewed, with a primary focus on large-area crop modelling 21 

techniques. Recent progress in simulating the impacts of climate change on crops is 22 

presented, and the application of these methods to the exploration of adaptation options is 23 

discussed. Specific advances include ensemble simulations and improved understanding 24 

of biophysical processes. Finally, the challenges associated with impacts and adaptation 25 

research are discussed. It is argued that the generation of knowledge for policy and 26 

adaptation should be based not only on syntheses of published studies, but also on a more 27 

synergistic and holistic research framework that includes : (i) reliable quantification of 28 

uncertainty; (ii) techniques for combining diverse modelling approaches and observations 29 
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that focus on fundamental processes; (iii) judicious choice and calibration of models, 1 

including simulation at appropriate levels of complexity that accounts for the principal 2 

drivers of crop productivity, which may well include both biophysical and socioeconomic 3 

factors. It is argued that such a framework will lead to reliable methods for linking 4 

simulation to real-world adaptation options, thus making practical use of the huge global 5 

effort to understand and predict climate change. 6 

 7 

 8 
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1. Introduction 2 

Crops exhibit known observed responses to weather and climate that can have a large 3 

impact on crop yield (e.g. Porter and Semenov, 2005). Since atmospheric concentrations 4 

of greenhouse gases continue to rise at rates that are both unprecedented (Spahni et al. 5 

2005; Siegenthaler et al. 2005) and alarming (Anderson and Bows, 2008), efforts have 6 

been made to understand the implications for crop production. These efforts are primarily 7 

based on climate models, which use spatial grids with resolutions typically of the order of 8 

a hundred kilometres. Such simplification of the spatial heterogeneity of processes has 9 

direct implications for the assessment of the impacts of climate change. Some of these 10 

assessments are performed at the regional scale (referring here to tens to a couple of 11 

hundred kilometres – commensurate with climate model grids). In contrast, location-12 

specific methods have also been developed, to account for the variety of climatic and 13 

non-climatic stresses on crop productivity often not observable at aggregated spatial 14 

scales. It is at this smaller field scale that crop models were originally designed to operate 15 

(see e.g. Sinclair and Seligman, 1996; van Ittersum et al, 2003 for reviews), resulting in 16 

applications in decision support (e.g. Boote and Jones, 1998) and ‘discussion support’ 17 

(Hansen, 2005). 18 

 19 

This review examines the use of crop and climate models in climate change research. As 20 

with the bulk of the literature, it focuses primarily on crop yield, which has the greatest 21 

impact on food security. By their nature, regional-scale assessments lend themselves 22 

more clearly to generalisation than do local-scale assessments; hence the focus here is 23 
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primarily, though not exclusively, on larger scales. Section 2 examines the methods used 1 

to link crop and climate models, including the implications of the disparity in spatial 2 

scale between these two types of model. Section 3 reviews recent progress in modelling 3 

methods and in our resultant understanding of the impacts of climate change. Section 4 4 

asks how we can generate useful information on impacts and adaptation with the methods 5 

reviewed. Future trends and challenges are identified in section 5, resulting in concluding 6 

comments and recommendations in section 6. 7 

 8 

2. Linking crop and climate models 9 

2.1 Overview 10 

Simulation models act as a surrogate laboratory. They are a particularly important tool for 11 

understanding climate change and its impacts, since only one physical realisation of 12 

climate is possible, thus limiting the amount of observed data available for comparison 13 

with model output. (This is in contrast to the forecasting of weather, which can be tested 14 

repeatedly against observations). A number of different methods can be used to link crop 15 

and climate models. Figure 1 summarises the methods discussed in this paper (a more 16 

detailed review is presented by Hansen et al., 2006). The box labelled ‘climate model’ 17 

represents a range of models, from short-term local-scale numerical weather prediction to 18 

longer term simulations of climate change. These models are based on the same 19 

fundamental physics, and efforts are underway to carry out and present weather and 20 

climate simulation as part of ‘seamless’ continuum, such that the commonality of 21 

methods across weather and climate prediction is strengthened and made more clear to 22 
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users (see e.g. Challinor et al., 2009b). For this reason, all model-derived climate and 1 

weather information is represented in this simple fashion.  2 

 3 

Climate model output can be used with crop models either directly (e.g. Mavromatis and 4 

Jones, 1999; Challinor et al., 2005a,b,c) or via some post-processing. In the latter case, a 5 

weather generator (e.g. Semenov and Barrow, 1997) may be used, and/or the change in 6 

climate simulated using a model can be applied to observed climate (Zalud and 7 

Dubrovsky, 2002 compare the two methods; Southworth et al., 2002 use both methods). 8 

Results when using processed output are sensitive to the underlying assumptions (Mearns 9 

et al., 1997; Mavromatis and Jones, 1998). Unprocessed climate model output has the 10 

advantage of being a consistent representation of climate, thus avoiding the need for such 11 

assumptions. The corresponding disadvantage is that any errors in the climate model may 12 

have implications for the simulation of crop growth. For example, climate models tend to 13 

overestimate the number of rainy days whilst underestimating rainfall amounts (i.e. 14 

‘drizzle’), and may also fail to represent the observed month-to-month variation in 15 

rainfall; some of these biases are easier to correct than others, and this can affect crop 16 

simulation (Challinor et al., 2005a). However, model error may not be overly problematic: 17 

Challinor et al. (2005c) found predictability in crop yields using climate model output 18 

both with and without correction of bias in the simulation of mean climate. 19 

 20 

As well as dealing with climate model error, post-processing can deal with the disparity 21 

in spatial scale between climate and crop models (see e.g. Hansen and Jones, 2000; 22 

Challinor et al., 2003, 2004).  The former uses a grid that is coarse relative to the spatial 23 
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scale at which field-scale crop models (see section 1) typically operate. The disparity can 1 

either be ignored (e.g. Trnka et al., 2004) or it can be dealt with by downscaling climate 2 

model output (see Wilby and Wigley, 1997; Wilby et al., 1998; Kidson and Thompson, 3 

1998). With or without downscaling, it is clear (e.g. Moen et al., 1994; Faivre et al., 2004) 4 

that regional prediction using crop and climate models cannot rely solely on methods 5 

developed as part of the longer-standing tradition of crop simulation at the field scale. 6 

Whilst the results of field scale models can be compared directly to regional scale yields 7 

(e.g. Yun, 2003; Nain et al., 2004; Xiong et al., 2007), it can be argued that this requires 8 

design or selection of crop models that have a low input data requirement (e.g. Priya and 9 

Shibasaki, 2001; de Wit et al., 2005). An alternative is to take a field-scale crop model 10 

and make it applicable to the regional scale through one or more procedures, such as 11 

calibration (e.g. Chipanshi et al., 1999; Jagtap and Jones, 2002), aggregation of inputs 12 

(Haskett et al. 1995), and aggregation of outputs from multiple sub-grid simulations. This 13 

latter method can either use simulations sampled by varying model inputs such as 14 

planting date and crop variety (Jagtap and Jones, 2002; Irmak et al., 2005) or else 15 

simulations explicitly carried out at the sub-grid scale (Thornton et al., 1996).  16 

 17 

Estimates of yields at the regional scale can also be made by designing a crop model that 18 

operates on that scale. Such a model may be empirical, with weather variables used 19 

within a statistical regression of output from a field-scale crop model (Iglesias et al., 2000) 20 

or of observed yield data (e.g. Lobell et al., 2008). The use of regressions of field-scale 21 

crop models can introduce significant errors through the linearization of the equations for 22 

crop yield and/or an inability to account for subseasonal climate variability (Challinor et 23 
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al., 2006). More generally, the validity of empirical methods under climate change is 1 

limited by the necessity of using data outside the range for which the models were fitted. 2 

Also, statistical models have no explanatory power to enable understanding as to why 3 

certain changes have occurred. This is one reason why process-based regional-scale (or 4 

large area) methods have been developed. 5 

 6 

2.2 Large area crop modelling 7 

Large area crop modelling resulted mainly from the need to simulate the impacts of 8 

climate variability and change on crops in a process-based fashion using directly (i.e. 9 

without any downscaling) the output from climate models. The rationale for such 10 

techniques (Challinor et al., 2004) lies in the combination of the benefits of empirical 11 

approaches (low input data requirement; validity over large spatial scales, thus avoiding 12 

site-specificity) with those of field-scale process-based models (validity under a range of 13 

environments, including climate change). The development of meta-models, based on 14 

existing simulation models, takes a similar approach, but for simulation at the field scale 15 

(e.g. Brooks et al. 2001). We focus here on larger scales, at which the modelling 16 

methodology is based upon a number of principles: 17 

 18 

1. A basis in observed relationships. Where a response to climate variability exists in 19 

observations, the possibility of simulating that response also exists. Challinor et al. (2003) 20 

examined observed relationships between yield and climate in India at a number of 21 

spatial scales, and concluded that large-area modelling (i.e. using the same grid as climate 22 

models) of that response was possible. Such empirical studies are prone to the risk of 23 
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confounding causality (Bakker et al., 2005); this is the reason that subsequent modelling 1 

should be both based on physiological processes and at an appropriate level of 2 

complexity. The limited length of historical records means that studies of observed 3 

relationships have focussed principally on year-to-year variability (e.g. Challinor et al., 4 

2003; Kumar et al., 2004). However, climate change implies longer-term relationships, 5 

and these are beginning to be explored (see Lobell and Field, 2007).  6 

 7 

2. Appropriate complexity. The crop modelling community has long been aware of the 8 

dangers associated with modelling at a level of complexity unwarranted by the degree of 9 

uncertainty and potential error associated with the parameterisations used (e.g. Monteith, 10 

1996). The greater the number of processes simulated, the greater the number of potential 11 

interactions between them and the number of parameters that require calibration, thereby 12 

increasing the potential for error. Sinclair and Seligman, (2000) discuss this issue using 13 

the concept of hierarchical levels of biological organisation, from molecules to 14 

ecosystems. They argue that it is rarely justified for a crop model to simulate processes 15 

more than one hierarchical level below the level of immediate interest, because of the 16 

‘burgeoning complexity inherent in increasing the number of lower hierarchical levels.’ 17 

Therefore, if yield is the variable of interest, then only the mechanisms near to the yield-18 

determining processes should be simulated. This approach reduces the risk of over-tuning 19 

a model to one environment (i.e. confounding causality), which can result in a lack of 20 

applicability in other environments. The spatial scale and complexity of a model are 21 

related, as discussed by Challinor and Wheeler (2008b) and Tubiello and Ewert (2002).  22 

 23 
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3. High fraction of observable parameters. In order to avoid over-tuning, parameters 1 

should where possible be based on observations. This means that the parameterisations 2 

used are directly testable. Empirically-determined parameters can be based entirely on 3 

processes (Challinor et al., 2004), or else a semi-empirical approach can be used, e.g. 4 

with a process-based plant water stress index being empirically related to yield (Potgeiter 5 

2005). Care should be taken not to use parameters observed for the current climate in 6 

situations where their value may have changed, as occurs for some processes under 7 

climate change. For current climates, discrepancies between the yield simulated by 8 

process-based models and observed regional yields can be minimised through a process-9 

based yield gap parameter (Challinor et al., 2004) or an explicit error metric (Casellas et 10 

al., 2009). The choice of calibration method and the level of model complexity have 11 

implications for the reliability of model simulations (see section 4.1). 12 

 13 

The principles above result in large-area crop models differing substantially from field-14 

scale crop models. Large-area models tend to be less complex and have fewer parameter, 15 

and fewer non-observable parameters in particular. For example, the model of Challinor 16 

et al. (2004) simulates leaf area growth by using a parameter specifying the maximum 17 

rate of change of leaf area index, rather than simulating the appearance of individual 18 

leaves. The model uses transpiration efficiency, another observable parameter, to 19 

simulate the accumulation of biomass, rather than employing leaf-level assimilation 20 

equations, as most field-scale models do. Such an approach is appropriate in water-21 

limited environments; a parallel approach in the UK might employ radiation use 22 

efficiency. 23 
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 1 

As with any model, large area crop models should be used judiciously. By design, they 2 

have the advantage of being both process-based and applicable over large areas. However, 3 

their focus on the influence of weather and climate, and their basis in observed 4 

relationships, means that large-area crop models do not currently simulate the non-5 

climatic determinants of crop yield. These non-climatic stresses contribute to the yield 6 

gap, which is the difference between the potential yield for a current crop variety (i.e. 7 

under the given climate and for optimal agronomic practices) and the corresponding 8 

observed farm yields (see e.g. Herdt and Mandac, 1981; van Ittersum et al., 2003). These 9 

observed (farm and regional) yields include the effects of weeds, pests and diseases, and 10 

air pollutants such as tropospheric ozone. Where variability in yield is driven by these 11 

factors, rather than climate, or where there is high sub-grid spatial variability in weather 12 

(see Baron et al. 2005), the rationale for large-area modelling may be undermined. 13 

However, the significance of the climate signal tends to be greatest at regional scales 14 

(Bakker et al., 2005; Challinor et al., 2003). Thus, the proven ability to simulate current 15 

yields (e.g. Challinor et al., 2004), together with assessment of skill under likely climate 16 

change conditions (Challinor et al., 2005d), has built confidence in the use of large area 17 

models as part of efforts to simulate the response of crops to climate change.  18 

 19 

3. Progress in modelling and understanding the impact of climate change on crops 20 

3.1 Ensemble modelling 21 

Under climate change, inherent uncertainties in the predictability of climate limit the 22 

precision with which impacts can be assessed. Furthermore, the response of crops to 23 
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elevated carbon dioxide is not known with precision at field and larger scales (Ewert et 1 

al., 2002, Tubiello and Ewert, 2002). Quantification of uncertainty is therefore an 2 

important endeavour in climate impacts research (see e.g. Challinor et al, 2009b). 3 

Estimates of ranges of yield impacts vary across studies (see e.g. the review of Luo and 4 

Lin, 1999). The simulated responses of maize in Africa to a doubling of carbon dioxide, 5 

for example, can be as broad -98 to +16%, or as narrow as -14 to -12%. These ranges 6 

have been determined using different methods and are therefore not directly comparable 7 

(Challinor et al., 2007). Ensemble modelling is a technique that enables more objective 8 

quantification of uncertainty. It is commonly used in climate change prediction, which is 9 

based on estimates of future emissions of greenhouse gases, and on the simulation of the 10 

resultant influence on climate. Multiple climate simulations, known as ensembles, are 11 

used to sample the inherent uncertainties in this process. Uncertainty in model structure 12 

can be assessed by using more than one model (e.g. Randall et al. 2007) or by varying 13 

model parameters (e.g. Murphy et al. 2004; Stainforth et al. 2005). These ensembles of 14 

climate simulations can be used with crop models, and sometimes weather generators, to 15 

produce an ensemble of crop yields that captures uncertainty due to climate simulation 16 

(e.g. Trnka et al., 2004).  17 

 18 

The response of crops to any projected climate also contains uncertainties (see e.g. 19 

Mearns et al., 2003). Inputs to crop models, such as the choice of variety and planting 20 

date, can be varied in order to produce an ensemble of crop simulations (e.g. Jagtap and 21 

Jones, 2002; Irmak et al., 2005). Large area modelling studies have been carried out 22 

where both crop and climate parameters have been varied, thus permitting a better 23 
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estimate of total uncertainty and of the relative contributions to that uncertainty 1 

(Challinor et al., 2005b, 2009a). Large-area crop modelling is well-suited to this approach, 2 

since it operates with direct climate model output. Studies using this technique have 3 

contributed to our understanding of the key processes that are likely to reduce crop yield, 4 

and the quantification of associated uncertainty. 5 

 6 

3.2 Understanding biophysical processes under climate change 7 

Direct impact of atmospheric composition 8 

Elevated levels of carbon dioxide and ozone will have direct impacts on crops: C3 crops 9 

are likely to accumulate more biomass, and both C3 and C4 crops are likely to use less 10 

water as atmospheric carbon dioxide concentrations increase. These processes have 11 

received much attention by both experimentalists and modellers in recent decades. 12 

Significant increases in plant growth and yield due to CO2 elevation have been reported 13 

from controlled, semi-controlled and open-field experiments for a range of crops, and to a 14 

lesser extent for crops grown in the field (e.g. Kimball et al., 1983, 2002). Many recent 15 

studies modelling the impact of climate change on crops have simulated the effects of 16 

elevated CO2; however, the number of free air carbon dioxide experiments (FACE) 17 

available to validate these models under field conditions is still limited (Tubiello and 18 

Ewert, 2002).  19 

 20 

It has been argued (Long et al., 2006) that crop models overestimate the effect of CO2 on 21 

plant growth and yield, as a result of the CO2-related model parameters being mainly 22 

derived from controlled and semi-controlled experiments, which typically show a higher 23 
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CO2 response than observed under field conditions. However, there is growing evidence 1 

that crop models are able to reproduce the observed crop responses in the FACE 2 

experiments (Ewert et al., 2002, Asseng et al. 2004, Tubiello et al., 2007a). This evidence 3 

is contributing to an ongoing dialogue (see Ainsworth et al., 2008a). Progress in 4 

modelling CO2 effects crops at the field scale will mainly depend on the ability to 5 

improve simulations of leaf area dynamics as compared to photosynthesis or radiation use 6 

efficiency (Ewert, 2004). For modelling CO2 effects at larger areas the relative 7 

importance of other factors such as diversity in climate, soil and crop management 8 

including land use change for explaining yield variability (and possible interactions with 9 

the effects of elevated CO2) need to be better understood (Ewert et al., 2007).  10 

 11 

Crops are subject to multiple stresses, so that analysis of climate change alone provides 12 

only a partial view of likely future crop yields. In order to produce robust results of 13 

climate change impacts, a range of drivers need to be assessed. Such assessment is 14 

beyond the scope of this paper. However, we consider here one further environmental 15 

variable that affects crop yield. We choose ozone since it is a second atmospheric gas that 16 

can have serious implications for yield. Atmospheric ozone is formed in the Earth’s lower 17 

atmosphere through sunlight-driven chemical reactions involving volatile organic 18 

compounds and nitrogen oxides (NOx). It is a strong oxidant that is harmful to plants and 19 

crops. Exposure of plants to elevated ozone concentrations can result in acute visible 20 

injury, which may have economic implications for food producers, as the damaged crop 21 

commands a reduced market price or cannot be sold at all (e.g. Velissariou 1999). Plants 22 

chronically exposed to enhanced ozone take up an increased flux of ozone through their 23 
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leaves, resulting in reduced capacity for photosynthesis and accelerated leaf senescence 1 

(McKee et al., 1997). Protection mechanisms allow the plant to repair ozone damage and 2 

detoxify leaf tissue, meaning that plant function can remain unaffected up to a threshold 3 

value of ozone uptake. The reduced photosynthetic productivity and allocation of plant 4 

resources to these mechanisms leads to reduced carbon assimilation for plant growth, and 5 

a reduction in biomass and crop yield (Mauzerall & Wang 2001; Emberson et al. 2003). 6 

At higher ozone exposures, plant protection mechanisms may be overwhelmed 7 

completely, and ozone entering the plant can result in direct damage to plant tissue. There 8 

is also evidence that exposure to enhanced ozone reduces the nutritional value of crops. 9 

European wheat crops have demonstrated an ozone-induced reduction in protein yield per 10 

area grown (Piikki et al. 2007).  11 

 12 

Ozone is likely to play an increasingly important role in determining crop yields as 13 

anthropogenic sources of its precursors continue to increase in developing economies, 14 

leading to increasing background concentrations, especially in the northern hemisphere. 15 

Studies suggest large enhancements in surface ozone over SE Asia, central Africa and 16 

tropical South America over the next 50 years under projected emissions and climate 17 

changes (Royal Society, 2008). Many of these regions are those where food security is 18 

already at risk from rising populations, loss of cultivated land and climate change. 19 

Reductions of 5% in current yields due to ozone enhancement have been estimated in 20 

China, and projected to rise to 30% by 2050 (Long et al., 2005). A wide range of 21 

sensitivity to ozone damage is exhibited between crop species and between strains within 22 

a species (e.g. wheat) (Ainsworth et al. 2008b). This may make it possible to reduce 23 
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ozone impacts on crop yield and food security through the targeted planting of more 1 

ozone-resistant crop strains. 2 

 3 

Progress to date in modelling ozone and its impacts includes global-scale estimates of 4 

future ozone impacts on crop-yield over the next 30 years, based on modelled surface 5 

ozone concentrations (on a one degree square spatial grid) and an exposure-based ozone 6 

damage relationship (Van Dingenen et al., 2008). Yield losses for wheat and rice in India 7 

and wheat in sub-Saharan Africa were found to be particularly significant. These results 8 

are subject to large uncertainties, due to application of ozone exposure-damage 9 

relationships over large scales, uncertainties in modeled ozone and choice of exposure 10 

index. Some local experimental data indicate that ozone-induced crop losses exceed those 11 

predicted by the large scale model predictions, which rely on US-based exposure-12 

response relationships. Additional uncertainty stems from the reliability of modelled 13 

surface ozone fields. These rely on estimates of ozone precursor emissions, which are 14 

particularly poorly constrained in developing regions of the world such as Asia and 15 

Africa. The sensitivity of future ozone concentrations to climate change is also poorly 16 

understood, and depends on future land-use change, and how natural emissions from the 17 

biosphere, and the stratospheric flux of ozone to the lower atmosphere, will respond to 18 

future climate. These impacts are not well understood and are currently only 19 

rudimentarily considered by current generation atmospheric chemistry-climate models.  20 

 21 

Indirect impact of atmospheric composition 22 
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As greenhouse gas emissions continue to rise, and climate changes, crops in the majority 1 

of regions will increasingly be grown in a warmer environment. These increases in mean 2 

temperature are already resulting in longer growing seasons (Rosenzweig et al., 2007), 3 

although there is no indication that this is having a positive effect on yield, at least up to 4 

2002 (Lobell and Field, 2007). Projections of the future impacts of warming seem to 5 

indicate a negative response of crop growth and yield to 1-2
o
C warming at low latitudes 6 

and small beneficial response at higher latitudes; yet large uncertainties remain 7 

(Easterling et al., 2007). 8 

 9 

Mean temperature, together with photoperiod (e.g. Nigam et al., 1994), determines plant 10 

development rate. The fundamental thermal time response functions that determine the 11 

rate of crop development (e.g. Challinor et al., 2004) suggest that warming will decrease 12 

both duration and yield, at least up to the optimum temperature for development. 13 

However, since a given response function of development rate to temperature may not fit 14 

observations (e.g. Zhang et al., 2008), care should be exercised in their use. Challinor and 15 

Wheeler (2008b) showed that differences in the form of these response functions, 16 

particularly at temperatures beyond the optimum temperature for development, means 17 

that different models can respond very differently to increases in mean temperature. 18 

 19 

In addition to large-scale changes in mean temperature, regional changes in climate will 20 

likely affect crops. These regional changes, particularly where they involve rainfall 21 

and/or variability in weather (as opposed to changes in mean quantities, such as season-22 

mean temperature), are particularly difficult for a climate model to predict. Examples of 23 
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potentially important regional changes include atmospheric humidity, which affects 1 

assimilation and alters transpiration efficiency (e.g. Kemanian et al., 2005). This process 2 

may be very important in determining future yields in India (Challinor and Wheeler 3 

2008b) and other regions. There is also evidence that anthropogenic aerosol and other air 4 

pollutants have changed the optical properties of clouds, with resultant implications for 5 

solar radiation and hence agricultural productivity (Stanhill and Cohen, 2001). 6 

 7 

The short-term events that are most likely to affect crops are extremes of temperature 8 

(Wheeler et al., 2000) and drought, particularly during anthesis. Challinor et al. (2005d) 9 

reported reductions of up to 20% in both observed and simulated crop yield when a six-10 

day heat stress event was imposed on groundnut. The importance of sub-seasonal 11 

variability in rainfall is illustrated in figures 2 and 3. Figure 2 shows that whilst rainfall 12 

during the development of the crop has a clear influence on observed yield (44% of the 13 

variance explained), the crop model simulations (55% of observed variance explained) 14 

suggest the importance of other processes. One such process is likely to be the sub-15 

seasonal variability of rainfall. This can be illustrated by noting that two years with 16 

different yields (44% lower in 1981 than in 1975), but with very similar total rainfall (see 17 

figure 2), have different sub-seasonal rainfall distributions (figure 3): the timing of 18 

rainfall in the 1975 season is such that water availability during pod filling (from 19 

approximately 50 days after planting) is likely to be higher than that of 1981. This 20 

indicates the beneficial value of considering important processes in large-area models. 21 

 22 
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The predictability of the above indirect influences of increased atmospheric greenhouse 1 

gases varies across environmental variable and across space. Temperature is generally 2 

more predictable than rainfall, for example, and consensus across climate models in 3 

tropical seasonal total rainfall tends to be weaker than consensus at mid- and high- 4 

latitudes. The lead time of a forecast also affects the predictability: any prediction of 5 

weather beyond a few days contains inherent uncertainties, which can amplify as the 6 

predictions are made further into the future. At multi-decadal timescales, it is 7 

uncertainties in the concentrations of greenhouse gases that limit predictability. Further 8 

discussion on this topic can be found in Challinor et al. (2009b). 9 

 10 

Interactions between biophysical processes 11 

Crop yield is the result of many non-linear interactions between a range of processes, 12 

including those outlined above. Experimental field studies and crop models are two 13 

complementary tools that can be used to examine these interactions. The importance 14 

under field conditions of interactions between elevated CO2 and other factors such as 15 

ozone exposure and temperature, water and nitrogen stress is not fully understood. 16 

Evidence from field experiments is limited and also points in different directions. 17 

 18 

Consider as an example the interaction between water stress and CO2. From a 19 

physiological perspective, water-stressed crops are expected to show greater CO2 20 

stimulation than well-watered crops. This expectation has been cited in literature as a 21 

reason for believing that rainfed cropping systems will benefit more from elevated CO2 22 

than irrigated systems (IPCC, 2001; Easterling et al., 2007). Tubiello and Ewert (2002) 23 
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showed that for a range of models and observations, water-stressed crops did indeed 1 

show a greater percentage increase in yield under elevated CO2. However, when 2 

Challinor and Wheeler (2008a) reviewed Free-Air CO2 Enrichment (FACE) meta-3 

analyses and presented results from a range of crop models, this response was not seen 4 

consistently in either the models or the observations.  Detailed analysis led to the 5 

preliminary conclusion that the relationship between water stress and assimilation may 6 

vary with spatial scale. The associated level of model complexity was also shown to be a 7 

factor. Despite the lack of a consistency across studies, model comparison studies with 8 

the few experiments available have shown that, at the field scale, crop responses to 9 

elevated CO2 can be satisfactorily reproduced for a range of models under a range of 10 

conditions of water availability (Ewert et al., 2002; Asseng et al., 2004), nitrogen supply 11 

(Jamieson et al., 2000) and ozone exposure (Ewert et al., 1999; van Oijen and Ewert, 12 

1999). 13 

 14 

Ozone also interacts with the environment in a way that alters its effect on plants. Since 15 

these interactions are non-linear, assessing the response of crops to future ozone 16 

concentrations requires consideration of future changes in atmospheric CO2 and other 17 

environmental variables affecting plant function and stomatal conductance (Fuhrer, 2003; 18 

Ashmore, 2005; Harmens et al., 2007). The interaction between ozone and CO2 is 19 

mediated by stomata, which, in addition to admitting ozone, allow CO2, water vapour and 20 

oxygen to pass in and out of the plant during photosynthesis and respiration. Increased 21 

atmospheric CO2 reduces stomatal conductance, and the flux of ozone into the plant, and 22 
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can provide additional carbon for repair and detoxification against ozone damage (Royal 1 

Society, 2008).  2 

 3 

The interactions between ozone and carbon dioxide have implications for the way in 4 

which ozone damage is modelled. Dose-response relationships based on ozone flux are 5 

preferable to atmospheric ozone exposure (e.g. Accumulated dose Over a Threshold of 40 6 

parts per billion, AOT40; see Fuhrer et al. 1997), since they are able to account for the 7 

varying influences of temperature, water vapour, radiation, soil water, phenology and 8 

atmospheric ozone on ozone uptake. With exposure-related indices, different 9 

meteorological and environmental conditions may result in a given atmospheric ozone 10 

exposure producing different crop impacts. In addition, several studies have shown that 11 

plant response is more closely related to stomatal ozone flux than to a time-integrated 12 

atmospheric ozone exposure (e.g. Pleijel et al, 2000). This puts a high priority on the 13 

development of coupled process-based models that explicitly calculate the stomatal flux 14 

of ozone into the crop, and its dependence on a range of environmental drivers. Limited 15 

efforts have so far been made to model ozone effects at the explanatory process level, 16 

accounting for interactions with other factors such as CO2 and climate (Ewert et al., 1999, 17 

van Oijen and Ewert, 1999, Ewert and Porter, 2000; van Oijen et al., 2004). The validity 18 

of these approaches for large scale applications awaits further testing against reliable 19 

experimental data. Such data are still scarce (van Oijen and Ewert, 1999, see also Long et 20 

al., 2006) and are urgently required for a range of important crop species under a range of 21 

climatic conditions. 22 

 23 



 21 

Abiotic stresses are also likely to interact with biotic stresses. For example, the effects of 1 

ozone on plant function (allocation of resources to ozone resistance) and structure (e.g. 2 

leaf damage) may leave plants more susceptible to damage from pests, disease and 3 

extreme weather, which are themselves likely to be affected by global climate change. 4 

Detailed discussion on biotic stresses is beyond the scope of this review. 5 

 6 

 7 

4. Generating useful information 8 

4.1 Ensuring reliability 9 

How can the progress highlighted above be used to generate useful information? At least 10 

two conditions apply (see Patt and Gwata, 2002): useful information should be both 11 

reliable and relevant to the user of the information. The existence of complex interactions 12 

such as those described above presents a challenge to the reliability of process-based crop 13 

models. As shown in section 2, mechanistic modelling necessarily involves a reduction of 14 

real-world processes to a set of fallible rules. A model that is too simple will fail to 15 

represent some of the interactions that strongly influence output variables. A model that 16 

is too complex will have more parameters than can be constrained by observations, 17 

increasing the risk of reproducing observations without correctly representing the 18 

processes involved. Some parameters are not directly observable, and must be inferred as 19 

part of the calibration procedure. The risk of over-tuning – where the right answer is 20 

obtained for the wrong reason, due to an excess of tuneable parameters that cannot be 21 

related directly to observations – is compounded by the existence of non-linear 22 

interactions in biological systems. A range of observations under a range of conditions is 23 
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therefore needed to ensure that each of these interactions is correctly represented. When 1 

an over-tuned model is run in a new environment (such as under climate change), the 2 

errors may be large. This implies that, despite the progress highlighted in section 3, we 3 

should be wary of being over-confident in our assessments of the impacts of climate 4 

change, especially where it is based on the ‘validation’ of a model followed by 5 

subsequent ‘black box’ use of that model (see Monteith, 1996). Judicious model choice 6 

and calibration are therefore crucial, as is the evaluation of historical performance (e.g. 7 

Easterling et al., 1996), if our simulations are to be consistently accurate (i.e. reliable). 8 

 9 

Calibration parameters may be process based, acting on, for example, leaf area index 10 

(Challinor et al., 2004) or soil fertility (Boote and Jones, 1998). Calibration may also be 11 

applied to model output as a yield correction factor (Jagtap and Jones, 2002; Casellas et 12 

al., 2009). A range of more detailed approaches have also been tried and compared 13 

(Irmak et al., 2005). The potential for over-tuning means that calibration should be 14 

performed by using observations of as many growth variables as possible. For example, 15 

leaf area index can be used in addition to yield (e.g. Guerif and Duke, 2000; Jones and 16 

Barnes, 2001). Internal consistency checks are also very important in spotting unrealistic 17 

simulations. Possible checks include radiation use efficiency and specific leaf area (where 18 

these are not input parameters; see e.g. Challinor et al., 2004). Checks such as these can 19 

be combined with the methods outlined in section 3.1: observations can be used to 20 

constrain ensembles of crop simulations (Challinor and Wheeler, 2008a). This approach 21 

can result in a reduction in the associated uncertainty from the estimates with 22 

unconstrained ensembles, as shown by Challinor et al. (2008a). That study, which 23 
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accounted for both crop and climate uncertainty, also showed that, for the region and crop 1 

studied, doubled-CO2 without adaptation was highly likely to result in a reduction in 2 

yield. Thus quantifying uncertainty does not preclude relatively certain statements. 3 

Ensemble methods can ensure that we avoid unwarranted precision in our simulations, 4 

and observations can ensure that we avoid unnecessarily large uncertainty ranges.  5 

 6 

4.2 Informing adaptation 7 

Once we are confident that our estimates of climate change impacts are reliable, they can 8 

be used to create information relevant to the adaptation actions taken by stakeholders. 9 

Challinor (2009) discusses this topic at length, and assesses the potential for adaptation to 10 

climate for a crop in India. In that study, a number of existing model results were used to 11 

assess the extent to which genotypic variation might be used to adapt to climate change. 12 

The requisite crop genetic properties determined from the simulations were compared to 13 

those of existing germplasm. Interestingly, a separate study showed that under doubled-14 

CO2 in India, the uncertainty in the simulation of adapted crops may be greater than that 15 

of non-adapted crops (Challinor et al., 2008a). 16 

 17 

When considering adaptation, it is important to consider how weather and crop yield 18 

forecasts will be used, and what spatial and temporal scales will be the most appropriate 19 

for the users. Useful weather/climate forecasts can range from a few days ahead for some 20 

crop management decisions, to decades in the future for infrastructure and strategic 21 

planning. For example, ensemble climate modelling can be used with crop models in 22 

order to predict crop yield a season ahead of the harvest (Challinor et al., 2005c). 23 



 24 

Information should also be provided in relevant formats (Stone and Meinke, 2005). 1 

Whether the information best-suited to users is based on computer-intensive systems, or 2 

on less high-tech systems such as observational networks and capacity building, depends 3 

to a large extent on the particular users considered (see e.g. Patt et al., 2005). In Africa, 4 

for example, a prudent way to address the threat of climate change may be to focus on 5 

strategies for coping with climate variability, rather than longer-term climate change 6 

(Washington et al., 2006). This may mean a greater focus on in situ and remotely sensed 7 

observations as well as consideration of the multiple stresses that act on food security 8 

(Verdin et al., 2005; Haile, 2005; Gregory et al., 2005).  9 

 10 

In the seasonally arid regions of the developing world, people are particularly vulnerable 11 

to interannual and intraseasonal rainfall variability, through dependence on rainfed 12 

agriculture. The skill of forecasts is also often higher in these mid-latitude regions than it 13 

is further north (e.g. DTI, 2001). Hence the potential benefits of climate forecasting may 14 

be particularly high in tropical regions, where there may be strong relationships between 15 

climate and impacts variables such as crop yield (see also WCRP, 2007). 16 

 17 

 18 

5. Future trends and challenges: Holistic impacts and adaptation research 19 

Having reviewed progress in modelling the impact of climate change on crops, and 20 

examined how reliable and useful information may come from this endeavour, what can 21 

be said of the progress needed in the near future? Part of generating relevant and reliable 22 

information is synthesising knowledge effectively and applying it appropriately. One of 23 

the tools that enables this endeavour is the hardware on which models are run. Ongoing 24 
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increases in computer power create the potential for increasingly sophisticated modelling 1 

techniques. For climate and impacts modellers, this presents a choice (see Challinor et al, 2 

2009b): increase the complexity of the model, increase the number of simulations, or 3 

increase the spatial resolution. Increases in complexity are subject to the constraints 4 

identified in section 4.1. Increases in the number of simulations create larger ensembles 5 

and hence more objective quantification of uncertainty (see section 3.1). Increases in 6 

spatial resolution will permit analyses across a broader range of spatial scales. This in 7 

turn may create one of the ingredients in a synergistic modelling approach that aims to 8 

increase the accuracy and reliability with which yield is simulated. 9 

 10 

5.1 Synergistic approaches to yield prediction 11 

Efforts to synthesise knowledge on the response of crops to climate change have 12 

increased in recent years (see Easterling et al., 2007; Tubiello et al., 2007b). These 13 

studies, which review existing modelling efforts and try to form a consensus, are an 14 

important part of the process of increasing our understanding. They are faced with a 15 

difficult task, since each of the individual studies tend to use only one method for one 16 

region, and for a limited number of crops (see section 3.1 and Challinor et al., 2007). In 17 

order to address this, some crop model inter-comparison studies have been performed 18 

(e.g. Jamieson, 1998; van Oijen and Ewert, 1999; Jamieson et al., 2000; Ewert et al., 19 

2002). These have shown that simulations differ across models, due to significant 20 

differences in the structure of the models. For example, some models are based on the 21 

concept of radiation use efficiency whilst others are based on water- or nitrogen use 22 

efficiency; some models emphasise sink development, whilst others focus mainly on 23 
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sources. Clearly, the structure of a model and the processes considered, including their 1 

relative importance, are determined by the aims for which the models are developed. 2 

These aims are in part determined by the region for which the model was developed, 3 

since there are considerable regional differences in the factors determining crop 4 

responses (Reidsma et al, 2009).  5 

 6 

As a result of this spatial heterogeneity in the determinants of yield, several studies show 7 

that crop models have difficulties in reproducing yields at multiple sites (Ewert et al., 8 

1999; van Oijen and Ewert, 1999), farms (Ewert et al., 2002) and regions (Reidsma et al., 9 

in review). Unsatisfactory model performance at the regional scale can be due to the 10 

inappropriate consideration of factors and processes determining yield variability 11 

(Reidsma et al. in review) and/or the aggregation of input data which may inconsistently 12 

reproduce the spatial variability of growing conditions (e.g. climate and soils) within a 13 

region (e.g. Hansen and Jones, 2000). Also, factors explaining spatial yield variability 14 

across regions can be different from those explaining temporal variability within regions 15 

(Reidsma et al., 2007, 2009).Thus, there is no single modelling approach that performs 16 

evenly well across regions. 17 

 18 

Similar reasoning can be applied to simulation across a range of spatial scales, since this 19 

is another determinant of the structure of a model. For some scales and regions, climate 20 

may be the dominant determinant of crop yield. Where biotic stresses (see e.g. Tubiello et 21 

al., 2007b) or other non-climatic processes dominate, there may be no observed 22 

relationship between climate and crops; here, more detailed site-specific modelling may 23 
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succeed in demonstrating predictability (e.g. Carbone et al., 2003; Gadgil et al., 2002), by 1 

explicitly including determinants of yield variability other than climate. Bakker et al 2 

(2005) showed that the significance of the climate signal increases with spatial scale, 3 

suggesting that non-climatic factors such as management or soils may become more 4 

important at smaller scales. 5 

 6 

Given the importance of scale and geography in determining crop productivity, perhaps 7 

the greatest challenge for future syntheses of knowledge on the response of crops to 8 

climate change is the balance between generality and specificity in region and scale. 9 

Reducing complexity to the most important yield-determining factors and processes may 10 

result in different region- and/or scale- specific models. This in itself may reduce the 11 

generality of the results. Efforts to improve synergy between crop modelling approaches 12 

must therefore choose whether to emphasise generality or specificity. Increasing 13 

generality has been proposed by Yin and van Laar (2005), who developed improvements 14 

to the underlying physiological relationships in the GECROS model, resulting in wider 15 

applicability across a range of conditions. Adam et al., (in review) propose a generic 16 

modelling framework that assembles regional-scale models depending on the regions and 17 

the relative importance of the determinants of yield in those regions.  18 

 19 

The ensemble techniques reviewed in section 3.1 are an attempt to avoid unwarranted 20 

precision (i.e. specificity). The techniques have been used to examine the form of the 21 

response of crop yield to mean temperature (Challinor et al., 2008a). The results showed 22 

that the response derived from an ensemble systematically varying both climate and crop 23 
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responses to elevated CO2 can have a different form to that derived  from a study 1 

synthesising a range of disparate results (that of Easterling et al., 2007). The results also 2 

showed variation in response of crop development and yield to mean temperature across 3 

a range of crop models. Similar techniques were used by Challinor and Wheeler 4 

(2008a,b), who used a crop simulation ensembles combined with sensitivity analyses on 5 

two other crop models. Coupled with observational studies, approaches such as these can 6 

be used to understand the fundamental biophysical processes determining crop yield 7 

across scales and across regions. 8 

 9 

5.2 Combining bio-physical and socio-economic drivers 10 

Biophysical processes are not the only determinants of crop yield and productivity. The 11 

role of socio-economic drivers is increasingly being realised by the climate and impacts 12 

modelling community. Efforts to increase the reliability, and also relevance, of 13 

predictions are therefore beginning to draw on a parallel body of work that has explored 14 

the influence of human action (e.g. adaptation) on crop productivity. Unsurprisingly, 15 

these studies show that productivity relies on capital and labour inputs and a range of 16 

other factors (Mendelsohn, 2007). Such factors may trigger a range of inseparable 17 

responses in yield, including step-changes (e.g policy, infrastructure, pest), smooth trends 18 

(e.g. technical innovation) or cyclical changes (e.g crop rotation, rainfall). Drawing on 19 

development studies, and household/village scale livelihoods work in poorer parts of the 20 

world (see e.g. Adger, 1999), a range of more qualitative data suggest that the way 21 

farmers adapt to climatic problems results from the complex and unpredictable 22 

interactions between society and the environment (O'Brien and Leichenko, 2000).  23 
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 1 

Much of this work has involved asking key informants about how weather related 2 

problems were overcome in the past. As such, these studies tend to use participatory 3 

methods (Dougill et al., 1999) and find their intellectual foundations in the work of 4 

Amartya Sen who studied the causes of 20th century famines and presented his “food 5 

entitlement theory”.  Sen concluded that those socio-economic factors that constrain an 6 

individual’s ability to switch entitlements are more important in creating a famine than 7 

simple meteorological anomalies (Sen, 1981). Food Entitlement Theory has been 8 

expanded on by researchers doing field work where key interviews, focus groups, and 9 

questionnaires are used to conduct studies on how households and villages adapt to 10 

overcome weather-related problems (Bebbington, 1999).  Researchers have explored how 11 

household members switch between different livelihood strategies (Scoones, 1995), and 12 

found that by diversifying their income sources householders can become less vulnerable 13 

to climate variability (Hageback et al., 2005) . Thus far, however, it has proven difficult 14 

to “up-scale” results from these field studies and current attempts have only generated 15 

quite general and qualitative conceptual frameworks (Turner et al., 2003, Ericksen, 2008).  16 

 17 

Recent studies have analysed relationships between farm characteristics and yield 18 

variability (Reidsma et al., 2007, 2009) across regions in Europe. As evident from these 19 

studies farm intensity, farm size and land use have been identified as important 20 

characteristics for explaining a significant part of the spatial and temporal yield 21 

variability. It was also shown that farm diversity in a region can strongly affect (and 22 

cancel out) the climate signal (Reidsma and Ewert, 2008). Considering these farm 23 
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characteristics in a model evaluation study revealed that some of the deviation of the 1 

simulated regional yields from observations could be explained by these characteristics. 2 

Yet, the integration of this information into biophysical models remains difficult (Vincent, 3 

2008).   4 

 5 

In order to bring socio-economic and biophysical approaches together and develop 6 

formal mathematical models of climate impacts on food security, those socio-economic 7 

factors that limit or enhance production and adaptation can be identified and quantified 8 

using the same spatial scale as climate models and large-area crop models. Work 9 

supporting this has been undertaken by characterizing those socio-economic factors that, 10 

in the past, seem to have buffered harvest from drought (e.g. Fraser et al., 2008) and the 11 

development of indicators of socio-climatic exposure (Diffenbaugh et al., 2007). 12 

Simelton et al. (2008) have shown that regions may be vulnerable to drought due to land, 13 

labour or capital constraints and that, as regions develop economically, the source of 14 

vulnerability may shift from economic constraints to a lack of land or labour. However, 15 

these results are preliminary; more work is needed to fully understand how socio-16 

economic processes influence climate-crop relationships, and trends in production, at the 17 

regional scale. Once this has been done, the socio-economic and biophysical aspects of 18 

crop productivity can be examined together using state-of-the-art methods and at 19 

common spatial scales, resulting in more holistic assessments of climate change impacts 20 

and adaptation. Methodologies are therefore required that can integrate the main food 21 

system processes (e.g. Schmidhuber and Tubiello, 2007; Tubiello et al., 2007b) and 22 

suggesting adaptation options that take account of the full range of stresses on agriculture 23 
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(see Morton, 2007; Howden et al., 2007). Integrative work such as this needs to be based 1 

on an understanding of fundamental processes and their associated uncertainties (see 2 

section 4.1). 3 

 4 

5.3 Linking simulation with adaptation 5 

The challenges identified above have focused principally on increasing the reliability of 6 

simulations. How can we go about increasing the relevance of the information produced 7 

by crop and climate models? Closer links with efforts to develop adaptation options 8 

would seem to be an effective way to do this. For example, plant breeding operates on a 9 

7-10 year timescale, producing the varieties that are best adapted to the environment (e.g. 10 

Austin, 1999). This timescale is unlikely to be sufficient to prepare for the increase in 11 

extreme events expected under climate change (see Randall et al., 2007). Also, plant 12 

breeding cannot take place at all the locations where adaptation to climate change will be 13 

needed. Just as judicious use of crop models can complement field studies, there is the 14 

potential to link simulation studies more closely to plant breeding and other adaptation 15 

measures. Such methods could be used to identify the regions where newly-bred varieties 16 

may perform well, thus broadening their domain of applicability. They also provide a tool 17 

for making the simulation studies relevant to a specific adaptation endeavour. A sequence 18 

of links is likely to be needed in order to connect simulation and plant breeding; existing 19 

concepts (e.g. ideotypes: Donald, 1968; Sylvester-Bradley and Riffkin, 2008) may prove 20 

to be a useful part of this.  21 

 22 
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Efforts such as these can only be carried out with the will and ability of a range of 1 

scientists. Our understanding and modelling of climate impacts is based on fundamental 2 

physics, biology and chemistry, and the interactions between them. Our ability to predict 3 

is therefore dependent on the quality of our single- and cross- disciplinary research. 4 

Similarly, our ability to inform adaptation will depend upon the extent to which we can 5 

combine all relevant scientific analyses into holistic assessments. Just as there are many 6 

successful studies linking crop and climate science (e.g. Huntingford et al., 2005; see also 7 

Slingo et al, 2005), it should be possible to link more closely simulation studies with a 8 

range of adaptation endeavours. 9 

 10 

6. Conclusions 11 

There are many complex processes and interactions that determine crop yield under 12 

climate change (section 3.2). These include the response of crops to mean temperature, 13 

the interaction between water stress and CO2, and the interaction between ozone and a 14 

range of environmental variables. As a result of this, and of the importance of scale and 15 

geography in determining crop productivity, perhaps the greatest challenge for future 16 

syntheses of knowledge on the response of crops to climate change is the balance 17 

between generality and specificity in region and scale. It is clear that climate impacts 18 

research requires appropriate degrees of integration and specialisation (Challinor et al., 19 

2009b). To date, efforts to generate knowledge for policy and adaptation have been 20 

largely based on syntheses of published studies. Synergistic approaches are now needed 21 

that include: 22 

 23 
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(i) Reliable quantification of impacts uncertainty. This should be carried out as 1 

objectively as possible and is likely to include the use of crop simulation ensembles 2 

and/or sensitivity analyses (section 3). Since the quantification of uncertainty does not 3 

preclude a high degree of certainty regarding some statements (section 4.1), there is every 4 

reason to believe that this approach will prove to be productive.  5 

 6 

(ii) Techniques for combining diverse modelling approaches and observations. A 7 

focus on processes, employing a range of models and observations in order to increase 8 

our understanding of non-linear interactions, is likely to be an effective strategy for 9 

reducing uncertainty (sections  3.2, 4.1 and 5.1). Coupled modelling approaches are 10 

likely to form a part of this strategy, since non-linear interactions between yield-11 

determining processes may result in complex coupling between, for example, 12 

atmospheric composition and climatic drivers. Observations are also important: whilst 13 

ensemble methods can ensure that we avoid unwarranted precision in our simulations, 14 

observations can ensure that we avoid unnecessarily large uncertainty ranges. 15 

 16 

 (iii) Judicious choice and calibration of models, including simulation at appropriate 17 

levels of complexity that accounts for the principal drivers of crop productivity (section 18 

2). Even when a range of models is combined in some way, judicious choice and use of 19 

models is required. Since no one model can claim to represent reality entirely accurately 20 

(section 5.1), models should not be calibrated or run as ‘black boxes.’ Thus different 21 

models may be used for different regions, depending on the relative importance of 22 

driving variables in these regions. Also, modelling methods are needed that can account 23 
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for both the biophysical and socio-economic determinants of crop productivity (section 1 

5.2). 2 

 3 

In addition to providing a new paradigm for the generation of knowledge, such an 4 

approach will lead to reliable methods for linking simulation with adaptation (sections 5 

4.2 and 5.3). Thus we can move beyond synthesising knowledge and begin to make the 6 

best use of the huge global effort to understand and predict climate change. 7 

 8 
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Figure 1. Schematic representation of methods used to combine crop and climate models. 6 

Solid arrows show climate information, dashed arrows and lightly-shaded boxes show 7 

crop growth simulation. Solid boxes show numerical models, boxes with dotted outlines 8 

show model output. Areas where boxes overlap indicate models that operate on 9 

commensurate spatial and temporal scales.  10 

11 
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 2 
Figure 2.  Observed and simulated crop yield (lines) for a grid cell in western India taken 3 

from the study of Challinor et al. (2004). Bars indicate total rainfall during the simulated 4 

development period of the crop (planting to physiological maturity). 5 

 6 
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Figure 3. Timeseries of rainfall, starting with the simulated planting date, from two of the 2 

years shown in figure 2. Redrawn from Challinor et al. (2004). 3 

 4 

 5 

 6 


