
promoting access to White Rose research papers

White Rose Research Online
eprints@whiterose.ac.uk

Universities of Leeds, Sheffield and York
http://eprints.whiterose.ac.uk/

This is the Author's Accepted version of an article published in Applied Physics
Letters

White Rose Research Online URL for this paper:

http://eprints.whiterose.ac.uk/id/eprint/78156

Published article:

Wirths, S, Ikonic, Z, Tiedemann, AT, Holländer, B, Stoica, T, Mussler, G, Breuer,
U, Hartmann, JM, Benedetti, A, Chiussi, S, Grützmacher, D, Mantl, S and Buca,
D (2013) Tensely strained GeSn alloys as optical gain media. Applied Physics
Letters, 103 (19). 192110. ISSN 0003-6951

http://dx.doi.org/10.1063/1.4829360



 
 

S. Wirths et al - APL draft  

 1

Tensely strained GeSn alloys as optical gain media  

S. Wirths1*, Z. Ikonic2, A. T. Tiedemann1, B. Holländer1, T. Stoica1, G. Mussler1, U. Breuer3, 

J.M. Hartmann4, A. Benedetti5, S. Chiussi5, D. Grützmacher1, S. Mantl1, and D. Buca1 

 

1Peter Grünberg Institute 9 (PGI 9) and JARA-Fundamentals of Future Information 

Technologies, Forschungszentrum Juelich, 52425 Juelich, Germany 

2Institute of Microwaves and Photonics, School of Electronic and Electrical Engineering, 

University of Leeds, Leeds LS2 9JT, United Kingdom 

3Central Institute for Engineering, Electronics and Analytics (ZEA-3) Forschungszentrum 

Juelich, 52425, Germany 

4CEA- LETI, Minatec Campus, 17 rue des Martyrs, 38054 Grenoble, France 

5Dpto. Física Aplicada, Univ. de Vigo, Rua Maxwell s/n, Campus Universitario, 36310 Vigo, 

Spain 

Abstract 

This letter presents the epitaxial growth and characterization of a heterostructure for an 

electrically injected laser, based on a strained GeSn active well. The elastic strain within the 

GeSn well can be tuned from compressive to tensile by high quality large Sn content (Si)GeSn 

buffers. The optimum combination of tensile strain and Sn alloying soften the requirements upon 

indirect to direct bandgap transition. We theoretically discuss the strain-doping relation for 

maximum net gain in the GeSn active layer. Employing tensile strain of 0.5% enables reasonable 

high optical gain values for Ge0.94Sn0.06 and even without any n-type doping for Ge0.92Sn0.08. 
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Silicon and Germanium group IV semiconductors have been implemented into photonic devices, 

but so far mainly as passive optoelectronic components.1–3 The indirect bandgap of these 

semiconductors makes the realization of active components as Light Emitting Diodes or lasers, 

challenging.4 A silicon-based optically pumped laser was reported in 2005, with a nano-patterned 

silicon film, where the light emission originated from defects in the etched side walls of the 

film.5 A Si Raman laser was demonstrated by Boyraz et al.6 and, very recently, Camacho et al.7 

made use of heavily n-doped Ge under 0.2% tensile strain to demonstrate an electrically pumped 

laser. The threshold current density, however, is prohibitively large for practical applications. 

Therefore, considerable effort has to be directed towards increasing the light emission efficiency 

of group IV semiconductors. For this purpose either alloying Ge with Sn or introducing 

sufficient tensile strain has been proposed, since both Sn and strain are expected to reduce the 

direct bandgap of Ge faster than its indirect band-gap.8,9 Both approaches are supported by the 

recent achievements in synthetizing high quality GeSn alloys10 and the demonstration of 

uniaxially tensile strained Ge NW to a record value of 3%.11   

This letter presents the growth of GeSn layers with strain varied from compressive to tensile, 

which will serve as active layer in an electrically pumped laser. This is realized using high 

quality (Si)GeSn buffers which may be used later as cladding layers for a quantum well layer 

structure. Second, with emphasis on the experimentally realized structures, we discuss, based on 

net gain calculations, the optimum conditions regarding strain, Sn content and n-doping in order 

to maximize laser gain. The role of the tensile strain on the evolution of gain is also highlighted.  

The growth of (Si)GeSn was reported earlier by Bauer et al. in an ultra-high vacuum – 

chemical vapour deposition tool.12 However, high quality GeSn layers were only recently 

achieved in production tools.10,13,14 Our growth studies were performed in an industry- 

compatible Reduced Pressure Chemical Vapor Deposition (RP-CVD) AIXTRON TRICENT® 
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reactor with a showerhead which provides a highly uniform gas precursor distribution over 

200 mm wafers.15–17 (Si)GeSn layers were grown on Ge virtual substrates (VS)18 on p-type (< 

1x1015 cm-3) 200 mm Si(100) wafers using Si2H6, Ge2H6 gas (10% diluted in H2) and SnCl4.14 

Structural data associated with compressively-strained and partially relaxed GeSn layers (degree 

of relaxation R = 58 %) with Sn contents up to 13.5% grown on Ge VS are provided in Fig 1. X-

ray diffraction (XRD) θ-2θ scans around the (004) reflection (Fig. 1a) indicate pseudomorphic 

GeSn layers. The presence of well-defined Pendellösung fringes around the GeSn peaks 

evidences the high crystalline quality of the layers with smooth surfaces and abrupt interfaces. 

Moreover, the GeSn peak shifts towards lower angles for higher Sn concentrations indicating 

larger out-of-plane lattice constants and hence larger compressive in-plane strain.  

Layers grown above the critical thickness for strain relaxation will plastically relax to a larger 

in-plane lattice constant. They are appropriate as buffers (later also claddings) to compressively 

or tensely strain thin GeSn layers with higher or lower Sn content, respectively, grown on top 

(active layers). We show for instance in Fig. 1b Reciprocal Space Maps (RSM) around the (224) 

asymmetric order for partially relaxed 250 nm thick Ge0.865Sn0.135 (R = 58 %) and 300 nm thick 

Si0.04Ge0.82Sn0.14 (R = 60 %) layers grown on Ge VS.  The RSM allows the determination of the 

lattice constants of the tetragonal structures which are in both cases approximately apar = 5.73Å 

and aper= 5.8Å for the in-plane and out-of-plane lattice constant, respectively. The formation of a 

misfit dislocation (MD) network at the (Si)GeSn/Ge VS interface, as seen in the cross section 

transmission electron microscope (XTEM) micrograph in Fig. 1c for 60% relaxed 300 nm 

Si0.04Ge0.82Sn0.14, evidences lattice relaxation. Similar to the growth of low temperature Ge 

buffers,19 but different from relaxed SiGe buffers, no threading dislocations crossing the relaxed 

GeSn layer were observed for all investigated structures. The above results demonstrate the 

possibility of tuning the lattice constants and, hence, the elastic strain, especially tensile strain as 
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will be shown below, in Ge(Sn) layers grown on top of these high Sn content (Si)GeSn buffers. 

The use of partially relaxed GeSn buffers to strain epitaxial Ge up to 1.3% has been recently 

achieved.14 We point out the use of SiGeSn as buffer layers while SiGeSn are also more suitable 

as laser claddings due to the indirect gap and the lower absorption compared to GeSn layers.20 

The bandgaps and band offsets of strained and relaxed binary GeSn alloys, as well as of the 

ternary SiGeSn layers, have been calculated from the supercell empirical pseudopotential 

method,8,14 together with linear interpolation of deformation potentials21 and band offsets22 of 

elemental Si, Ge and Sn. The calculated conduction and valence bands, indicate that all GeSnx 

layers with x < 10%, including pure Ge (x=0), grown directly on a fully relaxed (cubic) or on 

partially relaxed (tetragonal) Ge1-ySny (x < y ≥ 12) are direct bandgap semiconductors. For laser 

structure we propose to use indirect gap (Si)GeSn buffer and claddings and a strained GeSn 

active well. The growth of such heterostructures requires i) a certain thickness of the buffer to 

induce sufficient strain relaxation, and  ii) a total structure thickness to prevent epitaxial 

breakdown  due to Sn precipitation. The coherent growth of a B doped 40 nm Si0.12Ge0.84Sn0.04 

layer (later hole injection layer) followed by a 35 nm Ge0.93Sn0.07 (later active layer) is shown in 

Fig 2a. The pseudomorphic nature of interfaces without Sn segregation and the high quality of 

the heterostructure are demonstrated by the XTEM and High resolution (HR) TEM micrographs. 

The steep slope of the Sn, Si and B signals in the superimposed Secondary Ions Mass 

Spectrometry (SIMS) depth profiles are characteristics of abrupt interfaces. The Ge0.93Sn0.07 layer 

grown on top of the Si0.12Ge0.84Sn0.04 buffer with a Ge VS lattice constant is compressively 

strained. For the laser active wells intended here, buffers able to induce tensile biaxial strain are 

aimed. Therefore, a stack consisting of 25 nm Ge0.92Sn0.08/ 295 nm Ge0.88Sn0.12/ Ge VS has been 

grown, as presented in Fig. 2b. Note, that in order to separate the Sn signals originating from the 

two GeSn layers a 10 nm Ge spacer is used. Thus, the crystalline quality and the strain status of 
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the topmost GeSn layer can be investigated in detail. The high quality of the stack is shown by 

the very low RBS channeling minimum yield of 6% in the Sn signal of the top Ge0.92Sn0.08 layer. 

This is a direct experimental proof of a low defect density in the thick, partially relaxed GeSn 

buffer layer.  

 Quantitative determination of strain in thin strained Ge1-xSnx/Ge1-ySny (x<y) heterostructures 

is a challenging task. Ion channeling angular yield scans provide absolute angles between various 

crystal directions and allow the deduction of the full strain tensor.23 We performed ion 

channeling angular scans of the Sn backscattering signal through the [001] sample normal and 

the [011] direction in the (100) plane. The position of the scan minimum represents the absolute 

angle θ[011] between the [001] sample normal and the inclined [011] direction, amounting to 45° 

for cubic lattices. Compressive/tensile tetragonal strain in GeSn leads to a smaller/larger angle 

(45°- Δθ[011]), respectively. For symmetric (isotropic) biaxial strain, the amount of tetragonal 

strain is related to the angular shift as εT ൌ െ2 · ∆θሾ଴ଵଵሿ.  
The ion channeling angular yield measurements for three different heterostructures with a top 

GeSn layer under either compressive strain, strain-relaxed and tensile strain conditions are 

presented in Fig. 3. Based on Vegard’s Law, the angular displacement associated to a 

pseudomorphic GeSn layer with 4.5 at.% Sn on cubic Ge should be Δθሾ଴ଵଵሿGୣS୬,୲୦ ൌ 0.30°. Taking 

into account the Δθሾ଴ଵଵሿGୣ ൌ 0.11° of the slightly compressively strained Ge buffer used for that 

specific case, the angular deviation of Δθሾ଴ଵଵሿGୣS୬ ൌ 0.41° from the cubic crystal lattice confirms the 

pseudomorphic growth of Ge0.955Sn0.045 on the Ge thin buffer. The corresponding compressive 

tetragonal strain is then -1.43%.   

In agreement with theory, a fully strain relaxed (cubic) Ge0.92Sn0.08 layer was obtained by 

epitaxial growth on a 73% strain relaxed Ge0.88Sn0.12 buffer (no deviation from 45° in Fig 3a). 

This cubic structure alloy has been shown to be a direct gap semiconductor.24,25 Finally, the 
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angular channeling scan for a tensely strained 30 nm Ge0.94Sn0.06 grown on partially relaxed (R = 

69%) 265 nm Ge0.89Sn0.11 buffer is shown. The angular deviation of ΔθGeSn = - 0.137° translates 

into a tetragonal strain of 0.45%. The results of channeling experiments are confirmed by RSM 

presented in Fig. 3b. Besides the Si substrate and the Ge VS peaks, two well-defined GeSn peaks 

on both sides of the cubic lattice line are resolved, which originate from the slightly 

compressively strained Ge0.89Sn0.11 buffer and the tensile strained Ge0.94Sn0.06 layer. The identical 

in-plane lattice constant of these GeSn layers evidences pseudomorphic growth.   

We next investigate the potential of these strained layers for optoelectronic applications 

by calculating optical gain. Previously, calculations have been presented for a GeSn/SiGeSn 

multiple quantum wells laser,21,26–28 but only relaxed or compressively strained layers were 

considered. The impact of tensile strain on the optical gain in pure Ge was only very recently 

investigated.29 Here we calculate the optical gain including also the intra-valence band 

absorption, not included to date for Ge(Sn) based system.   

The gain calculation was performed using the 8x8k.p model, with strain effects included.30,31 

Since the layers of interest are relatively thick, tens of nm, size-quantization effects will not be 

prominent, and thus bulk properties were considered. The material parameters were taken as 

listed in Ref.21, except for the Luttinger- Kane parameters. Their calculation in alloys, using the 

empirical pseudopotential method32 showed non-linear dependence on Sn content, very different 

from the linear interpolation used in Ref.21 We have, therefore, employed quadratic interpolation 

of the data set in Ref.32 The carrier distribution within each band is considered to be in 

equilibrium at 300K. By including transitions between all bands within the 8x8 k.p model, the 

calculated gain accounts for: (i) the interband  (IB) valence-conduction band transitions, which 

may provide gain or absorption, and (ii) intra-valence band (IVB) transitions33,34 between 

HH/LH and SO bands, which bring in additional absorption. Free-carrier (scattering induced) 
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absorption is not included in these calculations, thus the presented data correspond to the upper 

limit of the gain achievable in these systems.  

The carrier density contour lines with a practically significant peak net gain of 500 cm-1 for the 

Ge0.94Sn0.06 and Ge0.92Sn0.08 layers under relaxed and 0.5% tensile strain conditions, discussed 

above, are shown in Fig. 4. Clearly, the electron density has to be larger than, or equal to, the 

hole density (the difference of the two is the effective n-type doping density, and the hole density 

is the injected carrier density).  The full contour plot with the 500, 3000 and 5000 cm-1 contour 

lines is shown in the inset for 0.4% tensile strained Ge0.94Sn0.06.   

From Fig.4 one can see that for the (indirect band gap) Ge0.94Sn0.06 alloy a significant n-doping 

in its relaxed state is required in order to achieve any meaningful gain, but quite a decent gain is 

expected for a small tensile strain, i.e. 0.4% (at injected carrier density in excess of 5x1018 cm-3). 

In this alloy a large gain of 3x103 cm-1 occurs at photon energy ~648 (586) meV in relaxed (or 

0.4% tensile strain) state, and the IVB absorption is not a major problem even for the largest hole 

densities considered (in the sense that gain only increases with hole density). This situation is 

similar for a relaxed Ge0.92Sn0.08 alloy (just direct according to Ref.25). In its unstrained state a 

moderately high n-doping of 3x1019 cm-3 is required to achieve gain. Similarly, for a small 

tensile strain of 0.5% a gain of >103 cm-1 (peaking at ~488 meV) without any doping becomes 

possible. However, this is observed at quite large injected carrier densities of ~1.7x1019 cm-3. 

Similar behavior is observed for Ge0.94Sn0.06 alloy under 1% tensile strain (Fig. 5).   

An increase of the degree of relaxation of the buffer, as presented here, allows higher tensile 

strains, a route to obtain gain without doping.  However, a significant IVB absorption then sets 

in, visible from the gain decreasing for too large hole densities, a feature which was almost 

absent in the unstrained case. As displayed in Fig 5, higher tensile strain applied to lower Sn 

content alloys offers a larger gain then available in direct gap GeSn layers with larger Sn content 
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at a lower strain (including fully strain relaxed).  For Ge0.92Sn0.08 strained by 1%, the IVB 

induced bowing down of gain would require slightly larger hole densities for lasing than were 

considered here.  

The gain calculation indicates that the required n-type doping is in the 5x1018- 5x1019 cm-3 

range for the GeSn active layer. Higher active dopant concentrations are, however, needed for 

cladding layers for electrical injection. In-situ n-doping of (Si)GeSn layers was studied  using 

PH3/B2H6 precursors. The concentration of electrically active P in GeSn versus the growth 

temperature is plotted in Fig. 6. Maximum active P concentration of 1.5x1020 cm-3 in both 

GeSn:P and SiGeSn:P,  values close to 100% activation of dopants, were determined by SIMS 

and electrochemical capacity voltage (ECV) measurements. The B concentration in the SiGeSn 

layer discussed in Fig. 2a amounts to 2x1019 cm-3. 

In conclusion, we have presented the growth of GeSn heterostructures for laser 

applications. Tensile strained Ge0.95Sn0.05 and Ge0.82Sn0.08 active layers on lattice matched 

SiGeSn claddings and the in-situ doping of these layers were investigated. The strain in the 

active layer can be adjusted via lattice engineered SiGeSn ternaries. The 8x8 k.p model was used 

to study the influence of strain on the optical gain, including the role of inter-valence band 

absorption. We show that the requirement for heavy n-type doping, used previously for strained 

Ge, can be relaxed by suitable combination of alloy composition and strain, and thus lasing 

without n-doping is possible. Moreover, while the tensile strain is largely beneficial for indirect 

GeSn layers, high strain levels may also have the drawback of inducing valence subband 

splitting which strongly increases the IVB absorption. The availability of these materials and 

theoretical considerations indicate that efficient lasing in group IV semiconductors should be 

demonstrated quite soon. 
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Figure captions: 

 

Fig. 1: (a) XRD θ-2θ scans around the (004) order associated to pseudomorphic GeSn layers 

grown on Ge VS with Sn contents from 8 to 13%. (b) RSM around the (224) asymmetric 

reflection for 250 nm Ge0.865Sn0.135 and 300 nm Si0.04Ge0.82Sn0.14 layers grown on Ge VS. The in- 

and out-of-plane lattice constants of the (Si)GeSn crystals were extracted to evaluate the degree 

of strain relaxation. (c) XTEM images of partially strain relaxed Si0.04Ge0.82Sn0.14 layers used 

later as buffers for strained GeSn layers. 

 

Fig. 2: (a) XTEM image of 8 nm Ge/35 nm Ge0.93Sn0.07/40 nm Si0.12Ge0.84Sn0.04:B/Ge VS 

heterostructure. The HR-TEM insets demonstrate the pseudomorphic interfaces while the SIMS 

spectra prove the sharp Sn and B elements interface distributions. (b) RBS random and aligned 

spectra of 25 nm Ge0.92Sn0.08/ 295 nm Ge0.88Sn0.12/ Ge VS. 

 

Fig. 3:  Angular channeling scans in the [011] direction of (full red circles) 30 nm Ge0.955Sn0.045/ 

200 nm thin compressive Ge, (green line) 25 nm Ge0.92Sn0.08/ 295 nm Ge0.88Sn0.12/ Ge VS and 

(empty blue circles) 30 nm Ge0.94Sn0.6 /265 nm Ge0.89Sn0.11/Ge VS.  The angular deviation from 

the cubic lattice and the calculated tetragonal strain are given. (b) RSM of 30 nm Ge0.94Sn0.06 

/265 nmGe0.89Sn0.11/Ge VS layer indicating pseudomorphic growth of the topmost Ge0.94Sn0.06  

layer. 
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Fig. 4: The 500 cm-1 contour line plot of the gain for Ge0.94Sn0.06 and Ge0.92Sn0.08 materials for 

the relaxed and 0.5% tensile strained cases. The carrier injection represents the hole density 

while the n-doping is given by the difference of the total electron concentration and the injected 

carrier density. The contour plot for 0.4% tensely strained Ge0.94Sn0.06 alloy is given in the inset. 

The contour lines where the peak gain amounts to 500, 3000 and 5000 cm-1 are highlighted. 

Fig. 5: Comparison of GeSn materials with direct gaps under different strain conditions: 

Ge0.95Sn0.05 under 1% tensile strain, Ge0.82Sn0.08 under 0.5% tensile strain and fully relaxed 

Ge0.9Sn0.1. 

Fig. 6: Electrically active dopant concentrations in GeSn alloys as measured by ECV for 

constant Ge2H6/SnCl4 flow ratio and PH3 partial pressure versus temperature. 
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