The
University
o Of

= -n,‘-_“ u}:_.'!?- Bhe&i{“:ld.

This is a repository copy of Robot Inverse Dynamics Computation Via VLSI Distributed
Architects.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/78141/

Monograph:

Zomaya, A.Y. and Morris, A.S. (1989) Robot Inverse Dynamics Computation Via VLSI
Distributed Architects. Research Report. Acse Report 350 . Dept of Automatic Control and
System Engineering. University of Sheffield

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

5

s ™ 5ol

Robot Inverse Dynamics Computatioﬁ -
Via VLSI Distributed Architectures

by
A. Y. ZOMAYA
A. S. MORRIS

Department of Control Engineering
University of Sheffield
Mappin Street
Sheffield S1 3JD
UK.

Research Report No. 350

Feburary 1989

P

LG - 8 (\)



Abstract

The computation of the highly coupled dynamic equations has always posed a
bottleneck in real-time dynamic control of robot manipulators. Recent advances in
VLSI technology make it possible to implement new algorithms that compute these
equations and meet real-time constraints.

Parallel processing techniques can now be used to reduce the computation time
for models of a highly mathematical nature such as the dynamical modelling of robot
manipulators. In this work a semi-customized symbolic form of the Lagrange-Euler is
divided into subtasks and distributed on a parallel processing sysem. The development
system used consists of an INMOS TRANSPUTER (a VLSI single chip computer) run-
ning the OCCAM concurrent programming language. Further, this network is used to
introduce parallelism by using different task allocation stratgies which flow naturally
from the Lagrange-Euler formulation. The cost-effectivness and speed of the scheme is
demonstrated by applying it to a case study (Stanford arm). Comparisons are made
between uniprocessing (Von Neumann) and parallel implementations of the algorithm.
Several measures such as Utlization, Efficiency, and Speed up are used to evaluate the
performance of the employed networks and task-allocations.

1. Introduction

The last few years have seen remarkable achievements in the field of Robotics. The control of
most existing robot manipulators is relatively simple and well defined: it neglects system dynamics and
is based on a servo mechanism at each joint. However, sophisticated control algorithms are needed to
facilitate the design of the next generation robot arms which can interact efficiently with unstructured
and poorly defined environments. Several state of the art schemes had been proposed recently that

require heavy computations which hinder their practical implementation [8].

To achieve an accurate real-time application of the control algorithm, it must be computed within
a sampling rate of no less than 60 Hz. Furthermore, the quality of the control is greatly affected by its
ability to accommodate the dynamic behaviour of the manipulator [46]. Hence, the dynamic equations
must be evaluated repeatedly during the control loop sampling interval to avoid undesirable and serious
degrading performance of the robot arm. So, the execution time for computing the dynamics partially
enhances the feasibility of real-time implementations of the controller.

The dynamics consist of a set of differential, coupled, non-linear, and matrix oriented equations
which governs the applied forces/torques values. Many researchers have proposed several simplified

forms of the dynamics based on Lagrangian and Newtonian energetic principles [6,44].

The Lagrange-Euler (LE) [3,39,40] has high computational complexity but is a very well struc-

tured and systematic representation. The Recursive Lagrangian [11] gives good computational results

A



but destroys the structure of the equations. The Newton-Euler (NE) [31,37,48] has a very efficient com-
putational formulation but with untidy recursive equations. Other approaches include the tabulation
techniques [42] which suffers from serious difficulties owing to the enormous computer memory
requirements; Kane's dynamic equations [19], and the Generalized D’ Alembert [27]. Of the previous
methods the most commonly used are the (LE) and (NE). The interaction and equivalence of these

schemes has been shown by [43)]. In this paper the (LE) is addressed.

The problem is solved for a 6 dof Stanford arm. The results and discussions are presented in the
following order; Section (2) describes previous work by other researchers. Section (3) presents the
development system used to implement this work. Section (4) addresses the dynamic problem. Parallel-

ism is introduced in section (5) and (6). Conclusions and summary are given in section (7).

2. Previous Work

Previously, there have been two main approaches to tackle the problem of computing the inverse
dynamics. The first of these is to reduce the complexity of the model, recognising that the robot perfor-
mance suffers as a consequence. Bejczy [3] employed this concept and neglected the coriolis and cen-
tripetal effects by assuming low speed operating conditions. Ignoring these terms will result in a notable
"vibration" of the robot arm at high speeds due to large errors in computing the forces and torques [51].
The other alternative is to use a stand alone computer system, which might lead to an increased
development cost [31]. In this work a third option of parallel processing is introduced. A semi-
customized symbolic formulation of the (LE) [51] is distributed on a number of cooperating general
purpose processors. The device being considered is the INMOS TRANSPUTER and its program-
ming langauge OCCAM.

Several parallel architectures have been proposed by researchers to solve for the inverse dynamics
problem. The pioneering work of Luh and Lin [32], based on a generalization of the branch-and-bound
algorithm, exhibits several significant limitations, Most importantly, their proposed architecture does not
fully consider the recursive structure of the (NE) and the sequential dependencies of the algorithm.
Furthermore, the system suffers from load unbalances because some of the processors are under utilized
and the interprocessor communication and synchronization of the (NE) are ignored.

Orin et. al. [38] proposed a pipeline design for the (NE) that eliminates some of the performance
degradation problems associated with interprocessor communications which appear in the computation
of the (NE) using parallel processing techniques. However, the performance of the proposed design was

not analyzed and compared with the serial (uniprocessor) implementation.

Lathrop [24] proposed two parallel algorithms using special purpose processors. First, is a linear
parallel algorithm which is related to the Luh and Lin method [32]. The second is a logarithmic-
parallel-algorithm based on the partial sum technique. Both approaches exhibit massive buffering which

degrades the performance and causes complicated intertask communication structures, and hence no

.



practical implementation had been made. Liao and Chern [29] used a cross-bus array processor (CBAP),
which utilizes a long set of bit-parallel processors. The main disadvantages of this approach are the
unfully-utilized processing elements and the vulnerability to hardware failures. Kasahara and Narita [20]
proposed a parallel processing scheme which employs two scheduling algorithms; depth-first/implicit-
heuristic-search and critical-path/most-immediate-successors-first. The algorithm was implemented on an
actual multiprocessor system to prove its effectiveness. Lee and Chang [25] introduced a method based
on the recursive doubling algorithm with a modified inverse perfect shuffle interconnection scheme
between a set of parallel processors. Their approach may not be cost efficient and fault-tolerant due to
the complexity and expensive interconnection structure among the processors. Vukobratovic et. al. [47]
recently proposed an algorithm that employs a modified branch-and-bound (BB) method combined with
the largest-processing-time-first algorithm (LPTF). An actual implementation had been made and good
results were obtained, but the issues of intercommunication and intermediate buffering were neglected
which degrades the performance in actual situations. Finally, some more work in this area can be
found in the literature [2,5,36,41,50].

Most of the previous attempts did not involve implementation on an actual parallel processing
system. Results are presented in terms of the number of multiplications/additions and their theoretical
equivalent of processor clock cycles. The results obtained in this work are the outcome of the actual
implementation of the algorithm. The different task allocations are executed by a
distributed processor development system. Hence, these results not only represent the processing-
time of multiplications/additions but also the delays caused by the communication between different

processors and some other problems that might rise from hardware and software limitations.

3. The Transputer and Parallel Processing

The discipline of computer architecture is now in a transitional stage because of the rapid
advances of VLSI technology. This advent is weighting all the arguments in favour of parallel process-
ing techniques [12,22,49].

Parallelism is achieved by distributing the job over a number of processors, ideally in such a way that
all the processors are fully utilized. To achieve that, highly parallel structures have evolved, and many
have been built to meet the increasing demand for more computing power and higher processing speed
[10].

The INMOS TRANSPUTER is a pioneering device that fills this gap, and it can be con-
sidered to be the ideal component for fifth generation computers. The T800 Transputer in (Fig.1) which
is used in this work is a 32 bit microcomputer with 4 Kbytes on chip RAM for high processing speed, a
configurable memory interface, 4 bidirectional communication links, 64-bit floating point unit, and a
timer. It achieves an instruction rate of 10 MIPS (millions of instructions per second) by running at a

speed of 20 MHz. This makes the Transputer one of the first designs that incorporate several hardware



features to support parallel processing. This allows for any number of Transputers to be arranged
together to build a parallel processing system, and permits massive concurrency without further com-
plexity. To provide maximum speed with minmial wiring, the Transputer uses point to point serial com-

munication links for direct connection to other Transputers.

OCCAM is a high level language developed by INMOS to run on the Transputer
[13,14,15,16,21] and optimise its operation. It is simple, block structured, and supports both sequential
(SEQ) and parallel (PAR) features on one or more Transputer which can be used to facilitate simula-
tion, modelling and control of complicated physical systems [9,17,18].

4. Manipulator Dynamics

The importance of the (LE) evolves from its simple, algorithmic and highly structured formula-
tion. In general, the (LE) equations of motion can be written in a compact form which is the final out-

come of solving the dynamics :

(t) = D(8) O (t) +C(8,8)+h(8) 1)

where T(r) is an n X 1 applied force/torque vector for joint actuators; @(t), G)(t), and @(r) aren X 1
Vectors representing position, velocity and acceleration respectively; D(8) is an n X n effective and
coupling inertia matrix; C(e,é) is an n X 1 Corioilis and Centripetal effects vector; and h(@®) is an n
X 1 gravitational force vector, where (n) is the degree of freedom (dof).

The very general form of eq.(1) is important in state space and modemn control applications [26,34,45],
however, it can’t be utilized unless simplified [3,4,28,30,33,35,51].

In this work a semi-customized symbolic form is used. The formulation was first introduced by
Bejczy [3] and later by Paul [40], then refined and further simplified by Zomaya and Morris [51]. The
conventions used are the same as those of Bejczy [3] and Paul [40], being based on the Denavit-
Hartenberg (DH) [7] representation.

The dynamic formulation is divided into two main parts :

(I) The vectors &;, and d; which describe the differential rotation, and differential transformation of link
(1) respectively. These vectors are customized and symbolically expressed for a certain type of manipu-

lator. The general description of 8‘:-, and df is given in Paul [40];

)
I S G P
(-nix piy + n; pic )i
1 -1 =1 i1y s
<(—0Lc Py + 0% Pi)J

dl = i-1 =1 —1 -1 (2)
' (—ai; piy+ai pi) k  revolute joint

(ni' i+ o' j+a' k) prismatic Joint

-4 -



(n§;1 i+ o}'z'} Jj+ af;] k)  revolure joint
bl =
i

0 prismatic joint )

(II) This part describes a general formulation of the inertial, coriolis, centripetal and gravitational
effects. However, it can be further customized if a specific manipulator is used.

As given by Paul [40] :

Dij= Y w(ATAl) @)
f=m.ax(£j)

More simplifications can be achieved by expanding eq.(4) to remove the multiplication by zero opera-

tions. In the following discussion the Stanford manipulator is considered. Assume a matrix (E) such

that:
e 0
E= 00 (5)

where (€) is a 3 X 3 matrix. Using the trace operator,
n 3
Dij= ¥ X emm (6)

I=max(ij) m=1

3
where 3 e, is given as,

m=1
] d. | |d;
_ 8,'}, 8_}}; J.I 51.: 5” ; 6[1 Sjk Jl e Jx
=1 5,1, 5}{}“‘ 25,115, Fol 8,18, T 44 diy| |djy

&[] [8][d: Syl [dx]  [8,]] da
+7u | s, ;| ¥ 8] |5 o 55 |-, * [8:]|-a,| |, %

In a similar approach to describe the coriolis and centripetal effects ;

n
Dy= Y s (AATAT) ®)
t=max(i,)



assuming a matrix (U) such that :

where (u) is a 3 X 3 matrix. Using the trace operator will yield,

Cl_',fk =

3

3

where Y u,,, is given as,

m=1

where

=J{ll 5_51 [

1z

J;

XX

tl=max(ijk) m=1

% | & Jhe 8. B
B, -]y * /22 32
1 [ 8] de 8] [ die | 8e| [diy |
+J44Ldix 5'7, '_dk-y +diy Lajx "dkz_ + dl'z 5” I_db; ;

X .6-,,}, dkz BD’

d

S d
Iy kz
i Jé“{ % [sz] [-dkj * O

and the gravitational effects are given by,

n
h;=g 3% m,‘l-’frf

dy, 8| [die (8,0 [Bic

+ & - d;
—ljy 7 \O | |di Y195 8k Ji
O | |dix [
Sk iy

1124 =Yy

+

>

<t
| TR N |
N R

|

£,

&~ F
| R .

|

K

N
¢
&
o o
g &
!, A" |

f§4=21m1

Ju= (=T +1n+ 152
Toa= (I} = Iy + I3 )/ 2
Jaa= (I +1Ip—1I5) 2

Jﬁ,,,:m;

©)

(10)

(11)

(12)



where m; and rf are the mass and the centre of mass of link (/) respectively, and ‘¥, is a vector of the

following form,

|' s 851 - cQ 6"),
col 8,1
SO — 5,_,_— (13)

so diy + co. dj, J

1

where so. and co. are sin(0) and cos(o) respectively.

The previous dynamic equations eq.(7,11,12) will be assumed throughout this work.

5. Parallel Computation of the Dynamics

This section describes the procedure used to compute the inverse dynamics on a distributed pro-
cessor system. The task (algorithm) is decomposed into a set of subtasks (processes). In this case the
subtasks represent the different terms of eq.(1). The objective of this work is to find a cost-effective
architecture, by distributing the task over several network configurations with different number of pro-
cessors (the name processor and transputer are used interchangably), to reach an optimum configuration
that computes the input joint forces and torques. The main difference between the configurations used
is in respect of how the task is divided, that is, the amount of work carried out by each processor and
the overhead caused by the communication between the different processors in the network. The net-
works are evaluated according to the total processing time and processor utilization measures.
Quantification of speed up, utilization, and efficiency with real-time implementation results are

included.

5.1 The Analysis

The analysis is divided into two sub levels :
Off-Line Level :

A specific manipulator has been chosen (the Stanford arm). The customized part of the algorithm is

prepared and the zero-value subtasks are located and excluded from the on-line implementation. These
simplifications are carried out using different assumptions [3,28] such as symmetry and reflexive cou-
pling (Cyjy = —Cy;; i, k 2 j). Then the whole algorithm is executed using one processor to identify the
processing-time of each subtask, so that all the sources of overhead and communication bottleneck are

avoided in the real-time situation.

In the case of the Stanford arm there are three main tasks :
task 1 : divided into 17 subtasks representing the effective and coupling inertia terms.

task 2 : divided into 43 subtasks representing the coriolis and centripetal effects.

= =



task 3 : divided into 4 subtasks.

which sums up to a total of 64 subtasks to be computed. A close examination of the dynamics shows a
certain amount of parallelism with a large amount of sequentialism in the natural flow of the computa-
tions. The analysis shows that a main source of bottleneck is in computing the coupling inertia matrix
(D) and matrix (1) and (2) of the coriolis and centripetal effects (C Ve Czjk), approximately 24%, 28%
and 21% respectively, of the total processing time.

On—Line Level :

This level deals with the actual implementation of the algorithm, and is discussed in the next section.

6. Scheduling Strategies

The networks used in this paper have the same basic structure, that is, a main processor
(Scheduler or Controller) and a cluster of slave processors responsible for the computations and the
number crunching. Two main points are kept in mind while doing the analysis and the task distribution;
first, the proportion of subtasks that must be computed sequentially; second, allowing enough time for
the communication of data between slave processors and trying to minimize this time as much as possi-
ble by enabling each processor to execute its job without the need for data from other processors. To
avoid (VO) bottleneck, the overall (/O) of a processor must be reduced by increasing the size of its
memory [23]. Hence, no redundant calculations are performed and the (DH) parameters, the link

masses, inertias, and centre of mass reside on each transputer in the network to minimize the communi-

cation overhead,

The main processor (Pg) will supervise the network and send the required data to the slave processors
(P; i>0), that is, sending ©, é, and 8, and receiving f; which constitutes a partial sum of the

force/torque vector T () .

6.1 One-Processor Case (Von Neumann):

This is a trivial case because the whole task is computed using one processor (Transputer). The total

processing-time for computing the forces vector was found to be (25.6 msec).



6.2 Three-Processors Case :

For this case a tree-structured network is used (Fig.2.) where (Pg) is the master processor and the other
three processors (P P Ps) are slave processors. The master processor is connected to a personal com-
puter (PC) which works as a link between the user and the network of processors. The subtasks are dis-
tributed as shown in (table 1). The total processing-time was found to be (8.96 msec). It's very impor-
tant to note that the value of the total processing time (Tp) includes both the computation time of the

task and the time needed to send and receive any data items from the processor, i.e.

T,

p (total processing time) = 3| (computation time) +n (communication time)

Theoretically, in this case, the lower bound time (T};) or the ideal processing time that can be achieved

by using more than one processor is given as
T!b = Tp(one processor case) /'m

where (m) is the number of processors. However, in actual hardware implementations there is an offset

time (Tc,f) which is the difference between the actual (Tp) and the ideal (T};)
Tof = TP -~ Tib

This deviation is due to (f;) and hardware limitations.

PROCESSOR
Py | P, | P3
C | C, | D
C, | Cis | Cs
Cs | Cis | Cis
h | C3s | Co

8 - | Cis

Table 1. Three—Processors Task Allocation
6.3 Six and Seven-Processors Casc :
The same procedure is followed here with different network configurations (Fig.3 and Fig.4). These

architectures give more independance to each processor and increase the computing power to achieve

better processing time.

In these configurations the first level of the network is a simple tree structure, but each slave processor

in (level 1) is a master for another slave processor in (level 2)., Hence, (level 1) slave processors



communicate directly with the controller (Pg) but slave processors in (level 2) "talk" to (Pg) through

their master processor.

The total processing times are (4.46 msec) and (3.82 msec) for the six-processors and seven-processors

networks respectively. The scheduling strategies are shown in (table 2 and table 3).

PROCESSOR

Table 2. Six—Processors Task Allocation

- 10-



PROCESSOR

P, | P, | Py | P | B | P | P
Cla | Dy | Cis | Ch | Dy | C4 | Cld
Cls | D1z | C3 | Cls | Pys | Cs | Cls
Cn |Dis| - | Ch | D | h | Cl
Cis | D | - | Chs | Dy | Cis | Cls
Cle | Doz | - | Cha| Dys | Ch | Cl
- | Dy | - | Chs | Dy | - | Cis
- | Gl | - - | Dss | - | Css
- | Cis | - - | Daa | - | Cis
T A
. . . « | Dy | w

; ) : - | Dg | -

. . - . s .

Table 3. Seven—Processors Task Allocation

Some points about the values of (7,) quoted above should be noted. Firstly, the goal of enhancing the
performance of the network is attained by making sure that information can flow to and from the pro-
cesssing elements with sufficient speed, rather than by maximizing the computational bandwidth of the
processing elements (the number of operations per second that the processor can deliver). This is
accomplished by organizing the processors which need to communicate with one another in such a way
as to make the transfer of data smooth and cost effective. Hence, the situation of two processors com-

municating with each other through a third processor is avoided.

Secondly, the value of (Tp) is always higher than the lower bound (7};) because of the communi-
cation between the different processors. Fig.(5) shows the relation between the (Taf) and the number of

processors (m).

Thirdly, the different subtasks must be divided so that the processors spend most of the time on
useful computations whilst at the same time minimizing the communication between the different pro-

cessors as much as possible.
6.4 Eight-Processors Case :

Satisfactory results were obtained by using the previous networks. Furthermore, an eight-processors net-
work is employed to enhance the performance and to give higher processing power while maintaining

desirable cost-effectivness and fault-tolerance (Fig.6). A total processing-time of (3.34 msec) is

- 11 -



obtained. The task scheduling is shown in (table 4). The flow of the algorithm in this case is given in a

block diagram representation (Fig.7).

PROCESSOR

Dy | Dy3 | - | Cis | - | Ch | Chs | Cls
Dys | hy | - |Cs | - |Ch| - s
Dy | - < = ~ | €8 | - -
Dy | - - - - | B5 | - -
Dss | - - - 5 2 : ;
Des | - |- | -|-1]-1]-]-*

Table 4. Eight—Processors Task Allocation

Ideally, a better (7},) can be achieved if the number of processors is 64 under the assumption of assign-
ing a processor per task (for the case of Stanford arm). However, a 64-processors network will degrade
the performance because of the low cost-effectivness and fault-tolerance. Undoubtedlly, this will lead to
lower processing time, and under-utilized processors in the network. The different values of (T) are

reported in (table 5).

- 12 -



The Utilization which is given by the ratio of the total processing time of each processor to the total

(T,) (msec)

PROCESSING TIME

No. of

Processors

Described

Scheme

[~ IS B = R .

25.6
8.96
4.46
3.82
3.34

processing time of the network, i.e.

the (U) rate shows the percentage of the processors being actively involved in the execution of the

whole job (table 6).

Table 5. Total Processing Time

U =T, (one processor) | T, (nerwork)

PROCESSOR UTILIZATION (%)
N0.0f Pl Pz P3 P4 PS Pé P7 Pg
Processors

1 100 - - - - - - -
3 100 100 96.8 - - - -
6 100 | 98.7 | 98.7 | 96.2 | 97.5 95 - -
7 100 | 94.1 | 98.5 100 97 98.5 97 -
8 100 | 96.6 | 96.6 95 96.6 100 100 | 100

The improvement in speed Speed up (table 7) can be defined as:

Sm=Tps ! Tpm

-13 -

Table 6. Processor Utilization for
Different Network Configurations




where T, is the total processing-time of the sequntial algorithm, and T, is the total processing-time

required to finish the execution of a job by an m-processors network.

SPEED UP (S,,)

No. of Described

Processors Scheme

1 1.0
3 2.86
6 5.74
7 6.7
8 7.67

Table 7. Speed Up

The Efficiency (9) of an m-processors network is displayed by the utilization rate of the available pro-

cessors (Transputers):

b=S,/m

in the ideal case lim ¢ = 1 (table 8).

Sp—m

¢

No. of Described

Processors Scheme

3 0.952
6 0.957
7 0.957
8 0.96

Table 8. Efficiency

Graphical illustrations of the results are given in (Fig.8,9,10).

= T



7. Conclusion and Summary

The dynamical description of a typical 6-dof robot arm such as the Stanford arm is complicated

and computationally expensive, which hinders the inclusion of the dynamics in real-time control appli-
cations.

This paper addressed the parallel-processing approach to solve for the inverse dynamic problem. A
simplified semi-customized form of the dynamics based on the Lagrange-Euler formulation has been
distributed over a parallel-processing system. The system was constructed by using the INMOS TRAN-
SPUTER as its basic building element running the OCCAM programming language.

Different configurations have been suggested and very good real-time results obtained. The results have
been compared with the sequential implementation of the algorithm and the superiority of using
parallel-processing techniques are emphasised by using several measures (e.g. efficiency, speed up). As
mentioned earlier, the achievement of an optimum network configuration is determined by the computa-
tion and communication structure of the task, as well as the computation and communication organiza-

tion of the system components (Transputers).

Similar scheduling strategies are equally applicable for other types of robot control problems. It has
already been shown that the application of the proposed configurations can provide an efficient solution

for the problems of Direct and Inverse Jacobian formulations [52].

The work described has demonstrated how recent advances in VLSI technology can be used together
with parallel-processing techniques to significantly speed up the dynamic modelling of robot manipula-
tors. Suitable foundations have been set for the development of a wide range of control algorithms,

unhindered by their excessive computational requirements.

Acknowledgement

The authors wish to thank Dr. G. Virk and Mr. I. Durkacz for their help in using the different facilities
of the parallel processing laboratory in the Control Engineering Dept.- University of Sheffield. Particu-
lar thanks to Dr. G. Manson form the Computer Science Dept. for his help with the use of the (T800)
Transputers and the debugging of the software.

v 15



(1]

[2r

[3]
[4];
51

[6]
[7]
8]
191
[10]

[11]

[12]

[13]:

[14]

[15].

[16]

[17]

[18]
1oy
[20]
[21]

[22]
123]

References

ARMSTRONG, W. M., (1979). *‘Recursive Solution to the Equations of Motion of an N-Link
Manipulator,”” in Proc. 5th World Congress on Theory of Machines and Mechanisms,
vol. 2, pp. 1343-1346.

BARHEN, J., (1987). ‘‘Hypercube Ensembles: An Architecure for Intelligent Robots,”’ in Com-
puter Architectures for Robotics and Automnation, ed. J. H. Graham, pp. 195-236, Gordon
and Breach Science Pub, NewYork.

BEICZY, A. K., (1974). “‘Robot Arm Dynamics and Control,”” NASA-JPL Technical
Memorandum, 33-669.

BEICZY, A. K. AND PAUL, R. P, (1981). “‘Simplifed Robot Arm Dynamics For Control,” in
Proc. 20the IEEE Conf. Decision and Control, San Diego, pp. 261-262.

BINDER, E. E. AND HERZOG, J. H., (1986). ‘‘Distributed Computer Architecture and Fast
Parallel Algorithms in Real-Time Robot Contol,”” IEEE Trans. on Systems, Man, and
Cybernetics, vol. 16, no. 4, pp. 543-549,

D’Souza, A. F. AND GARG, V. K., (1984). Advanced Dynamics: Modeling and Analysis,
Prentive-Hall, Englewood Cliffs, N.J.

DENAVIT, H. AND HARTENBERG, R., (1955). ‘‘A Kinematic Notation for Lower Pair Mechan-
sims Based on Matrices,”” J. Applied Mechanics, no. 22, pp. 215-221.

Fu, K. S., GONZALES, R. C., AND LEE, C. S. G., (1987). Roborics: Control, Sensing, Vision,
and Inrelligence, McGraw-Hill, New York.

HAMBLEN, J. O., (1987). ‘“‘Parallel Continuous System Simulaton Using the Transputer,”’
Simulation, vol. 49, no. 6, pp. 249-253,

HAYNES, L. S., LAU, R. L., SIEWIOREK, D. P., AND MIZELL, D. W_, (1982). “*A Survey of
Highly Parallel Computing,”’ JEEE Computer, pp. 9-24.

HOLLERBACH, J. M., (1980). ‘A Reccursive Lagrangian Formulation of Manipulator Dynam-
ics and a Comparative Study of Dynamics Formulation Complexity,”” IEEE Trans. on
Systems, Man, and Cyberntics, vol. smc-10, no. 11, pp. 730-736.

HWANG, K. AND BRIGGS, F. A., (1985). Computer Architecture and Parallel Processing,
McGraw-Hill, New York.

IEE,(1988), Parallel Processing in Control- the Transputer and other Architectures, IEE
Workshop, UCNW, Bangor, Wales, U.K..

INMOS,(1984), OCCAM Programming Manual, Prentice-Hall, Englewood Cliffs, N.J.
INMOs,(1986), IMS T800 Transputer, Product Overview.
INMOS,(1988), IMS T800 Architecture, Technical Note 6.

JONES, D. I, (1985). ““OCCAM Structures in Control Applications,”” Trans. Inst. of Measure-
ments and Control, vol. 7, no. 5, pp. 222-227.

JONES, D. 1. AND ENTWISTLE, P. M., (1988). ‘‘Parallel Computation of An Algorithm in
Robotic Control,” in Int. Conf. on Control 88, Oxford, UK., pp. 438-443.

KANE, T. AND LEVINSON, D., (1983). ““The Use of Kane’'s Dynamical Equations in Robot-
ics,”” Int J. Robotics Res., vol. 2, no. 3, pp. 3-21.

KASAHARA, H. AND NARITA, S., (1985). ‘‘Parallel Processing of Robot-Arm Control Compu-

tation on a Multi-microprocessor System,”” JEEE J. Robotics and Automation, vol. 1, no.
2, pp. 104-113.

KERRIDGE, J., (1987). OCCAM Programming: A Practical Approach, Blackwell.
KUNG, H. T., (1982). ““Why Systolic Architectures,”” JEEE Computer, pp. 37-46.

KUNG, H. T., (1985). ‘‘Memory Requirements for Balanced Computer Architectures,” J. of
Complexity, vol. 1, no. 1, pp. 147-157.

-



[24) LATHROP, R. H., (1985). ‘‘Parallelism in Manipulator Dynamics,’’ Int. J. Robortics Res., vol.
4, no. 2, pp. 80-102.

[25].LEE, C. S. G. AND CHANG, P. R., (1986 ). “‘Efficient Parallel Algorithm for Robot Inverse
Dynamics Computation,”” IEEE Trans. on Systems, Man, and Cybernetics, vol. 16, no. 4,
pp. 532-542.
{2_6]@LEE, C. S. G, (1983). ‘‘On the Control of Robot Manipulators,”” in Proc. 27th of the Society
T of Photo-Optical Instrumentation Engineers, San Diego, vol. 442, pp. 58-83.
[27).LEE, C. S. G., LEE, B. H, AND NIGAM, R., {1983), “Development of the Generalized

D’Alembert Equations of Motion for Mechanical Manipulators,” in Proc. 22nd Conf.
Decision and Control, San Antonio, Tex., pp. 1205-1210.

[28] LEWIS, R. A., (1974). ‘‘Autonomous Manipulation on a Robot: Summary of Manipulator

Software Functions,”” Tech. Memo. 33-679, Jet Propulsion Laboratory, Pasadena, Cali-
fornia.

[29] L1AO, F. Y. AND CHERN, M. Y., (1985). *‘Robot Manipulator Dynamics Computation on a
VLSI Processor,”’ in Proc. Ist Conf. on Supercomputing Systems, st. Petersburg, Florida,
pp. 116-121.

[30] LIN, C. S. AND CHANG, P. R., (1984). ‘‘Automatic Dynamics Simplification for Robot Mani-
pulators,”” in Proc. 23rd conf. on Decision and Control, Las Vegas, pp. 752-759.

[31] Lun, I. Y. S., WALKER, M. W., AND PAUL, R. P., (1980). “‘On-Line Computational Scheme
for Mechanical Manipulators,”” Trans. ASME J. Dynamic Systems, Measurements, and
Control, vol. 102, pp. 69-76.

[32] LUy, J. Y. S. AND LIN, C. S., (1982). “*Scheduling of Parallel Computation for a Computer

' Controlled Mechanical Manipulator,”” IEEE Trans. on Systems, Man, and Cybernetics,
vol. 12, no. 2, pp. 214-234.

[33] MEGAHED, S. AND RENAUD, M., (1982). ‘‘Minimization of the Computation Time Necessary
for the Dynamic Control of Robot Manipulators,” in Proc. Conf., on Industrial Robot
Technology 6th Int. Symp. Industrial Robors, Paris, pp. 469-478.

[34] NEUMAN, C. P. AND TOURASSIS, V. D, (1983). ‘“‘Robot Control: Issues and Insight,”” in
Proc. 3rd Yale Workshop on Applications of Adaptive Systems Theory, pp. 179-189,

[35] NEUMAN, C. P. AND MURRAY, J. J., (1987). *‘‘Customized Computational Robot Dynamics,”’
J. Robotic Systems, vol. 4, no. 4, pp. 503-526.

[36] NIGAM, R. AND LEE, C. S. G., (1985). “‘A Multiprocessor-Based Controller for the Control of
Mechanical Manipulators,’” IEEE J. Robotics and Automation, vol. 1, no. 4, pp. 173-182.
[37] ORIN, D. E., MCGHEE, R. B., VUKOBRATOVIC, M., AND HARTOCH, G,, (1979). “*Kinematic
and Kinetic Analysis of Open-Chain Linkages Udlizing Newton-Euler Methods,” Math.
Biosci., vol. 43, pp. 107-130.
[3811 ORIN, D. E., CHAO, H. H., OLSON, K. W., AND SCHRADER, W. W, (1985). ‘‘Pipeline/Parallel
Algorithms for the Jacobian and Inverse Dynamics Computations,”” in Proc. IEEE In.
Conf. on Robotics and Automation, pp. 785-789.
[39] PauL, R. P, (1972). “‘Modelling, Trajectory Calculation and Servoing of a Computer Con-
B trolled Arm,”" Stanford Artificial Intelligence Laboratory, Stanford University, AIM 177.
[40] PAUL, R. P., (1981). Robor Manipulators: Mathemarics, Programming, and Control, MIT
Press, Cambridge, Mass.
[41] RAHMAN, M. AND MEYER, D., (1987 ). *‘A Cost-Efficient High Performance Bit-Serial Archi-
tecture for Robot Inverse Dynamics Computation,’’ IEEE Trans. on Systems, Man, and
Cybernerics, vol. 17, no. 6, pp. 1050-1058.

[42] RAIBERT, M. H. AND HORN, B. K., (1978). *‘Manipulator Control Using the Configuration
Space Method,”” Indusrial Robot, vol. 5, no. 2, pp. 69-73.

= I7 =



[43] SILVER, W. M., (1982). “‘On the Equivalence of Langranglan and Newton-Euler Dynamics for
Mampu]ators " Int. J. Robotics Res., vol. 1, no. 2, pp. 60-70.

[44] TORBY, B. J., (1984). Advanced Dynamics for Engineers, Holt-Saunders, New York.

[45] TOURASSIS, V. D. AND NEUMAN, C. P, (1985). *‘Properties and Structure of Dynamic Robot
Models for Control Engineering Applications,’” Mechansim and Machine Theory, vol. 20,
no. 1, pp. 27-40.

[46] VUKOBRATOVIC, M. AND STOKIC, D., (1983). ‘‘Is Dynamic Control Needed in Robotic Sys-
tems, and, if so, to What Extent 2, Inz J. Robotics Res., vol. 2, no. 2.

[47] VUKOBRATOVIC, M., KIRCANSKI, N., AND LI, S. G., (1988). ‘‘An Approach to Parallel Pro-
cessing of Dynamlc Robot Models " nt J. Roboncs Res., vol. 7, no. 2, pp. 64-71.

[48] WALKER, M. W. AND ORIN, D. E., (1982). “‘Efficient Dynamic Computer Simulation of
Robotc Mechanisms,’’ Trans. ASME J. Dynamic Systems, Measurements, and Control,
vol. 104, pp. 205-211.

[49] ZAKHAROV, V., (1984). ‘‘Parallelism and Array Processing,”’ IEEE Trans. Computers, vol.

_ 33, no. 1, pp. 45-78.

[50] ZHENG, Y. AND HEMAMI, H., (1986). ‘‘Computation of Multibody System Dynamics by a
Multiprocessor Scheme,’’ IEEE Trans. on Systems, Man, and Cybernerics, vol. 16, no. 1,
pp. 102-110.

[51]1 ZOMAYA, A. Y. AND MORRIS, A. S., (1988). ‘“The Dynamic Performance of Robot Manipula-
tors Under Different Operating Conditions,”” Research Report No. 345, Dept. of Control
Engineering, University of Sheffield, Sheffield S1 3JD, UK..

[52] ZomAYA, A. Y. AND MORRIS, A. S., (1988). “‘Distributed VLSI Architectures for Fast Jaco-
bian and Inverse Jacobian Formulations,”” Research Report No. 346, Dept. of Control
Engineering, University of Sheffield, Sheffield S1 3JD, UK.

- 18 -



Fig.1 The INMOS T800 Transputer

(a) General Representation

(b) Schematic Representation

Fig.2 Three-Transputers Network

Fig.3 Six-Transputers Network

Fig.4 Seven-Transputers Network

Fig.6 Eight-Transputers Network

Fig.8 Total Processing Time

Fig.7 Block diagram representation of the Algorithm
on an Eight-Transputers Network

Fig.5 Offset-time Variation

Fig.9 Speed Up in Computations

Fig.10 The Efficiency of the different Task Allocations



FLOATINGPOINT UNIT

A
._f\ SYSTEM 3 32 32 BIT
—~| seRvices cPu
32
LINK "
4K BYTES | 13 32
ON-CHIP <:> i g
INTERFACE
RAM
32
LINK .
<::::;>IHTEHFACE
32
H YT S O
INTERFACE

§

\1_3 :
MEMORY
INTERFACE
32 EXTERNAL
MEMORY BUS

(a) General Representation

Lino Louto

Lint ———»

TRANSPUTER

L out 1+

(b) Schematic Representation

LI=LINKINTERFACE
Lout?2 Lin2

Fig.1 The INMOS T800 Transputer



ylomlaN sieindsuei]-saiy], 7 3ig

HILNdSNVHLHO HOSSADOHd - d
ANITIVNOLLOIHIAIA 114

cld <cld <ld
€1d €y :mA_\’!HVSm Zg el JEed by g
ol1d o1d o1d
€1d cld id
(od) HOSSADOHd HALSVIN
ol1d
1Nd1NO/ 1NdNI

(H31NdWOD TYNOSHAd)



yiomloN siandsuel-Xi§ €81

HIAINdSNYHL HO HOSSIDO0Hd - d
MNITIVNOILDIHIAIY 14

-
clid cld cld m
~e1d 9y gy e S 14 Ned vy gl ﬂ
o1d old old
cld m m
~ed €y ey Ne1a ey ngl Netd by gl
o1d old o1g
€14 <ld 1d E
M
~
b
(od) HOSSAD0Hd HALSVYN
o1d
1Nd1LNO / 1NdNI o

(HILNdWOD TVYNOSHId)



J1omIaN stajndsuer]-uaaag 314

HILNdSNYHLHO HOSSIO0Hd - d
ANITIVNOLLO3HIAIA -1

I

cid cid

€16 9y 11a( Je1d Sy el Ned vy :m\_

o1d o1d old

m cid cid cid
e1d €4 gl Je1a ey gy NeTd by 1ay Ne1d 4y 1id

m 01d o1d old

€1d cid g

(od) HOSSADOHd HALSYN
o1d
1Nd1LNO/1NdNI

(H31LNdWOD TYNOSHId)

¢ 13Ad1

| |

L 13AT1




OfFfset Time

.45

.35

Cram e o>

Offset Time vs, Mumber of Processors

Stanford Manipulator

}

b5

Number of Processors

Fig.5 Offset-time Variation

?

3

18



yiomiap stendsuer]-ydig 9814

HILNdSNVHL HO HOSS3D0Hd - d
MNITTIVNOILO3HIAIA - 1d

cld

UL Ga—

o1d

cld

€14 44 119

o1d

€ld
(0od) HOSSAD0UHd HALSVIN

O1d

1Nd1NO/ 1NdNI
(H3ILNdWOD TYNOSHAd)

J

¢ 1aAd1

| L

L 13Ad1




Send position variables (i)

Po Sendvelocity variables @) ..
Send acceleration variables §i)
P1 ! pa P7
Recelve Recelve Recelve
al, al ol , 6l al, 8l
% P2 P4 & P5 % P8
Send required Recelve Recelve lg—] Send .Sz:_:,..n mnns._co wﬂ_n&_q”—“_”n Recelve
el , 8l to P2 al, ol el , 6 el , 6l to P4 al , 8l " oB el , al
} | ] } P6 ! ! |
Form §I and di Form 81 and di Form &1 and di Farm §1 and di _“_Muu__u".a mmq_.“u _WM ol Form §1, di Form §i, di
Computa D !

Compute Dij m_m_n ol I Compute n__x nuahﬂ“mc_n Ik Form §I, di Form §1, di Compute n___n Compute n__x
Computa Ti * Compute Ti Compute Ti Compute T Compute c___n Compute n,_x Computs Ti Computa Ti
Becems I send Tl to P1 send Ti to P2 Rl S Computa i Compute Ti mmwﬂ:__uw sena Tl 1o P7

=Ti+n =T 4T - Aecelve Ti =
n=Ti+T H=T+T Send 1l to P5 Irom FB n=T+1
Send fl lo Po Send [i to Po n=T +1
Recelve [
Send [l to P7 from PS5
fH=n+n
Receive the partial sum of the Forces
Po & Torques & add these sums to produce Send fl to Po

the Final Force/Torques vector

Fig.7 Block diagram representation of the Algorithm on an Eight-Transputers Network




Proovessing Time <(seseod

Totmsl

38

Total Processing Time vs. Mumber of Processors

27

24

21]

18]

154

12

Stanford Manipulator

: 3 4 5 4

Mumher of Processors

Fig.8 Total Processing Time

?

)

18



SEpreed Lx

18

Speed Up vs. Number of Processors

Stanford Manipulator

2

P4 5

Mumber of Processors

Fig.9 Speed Up in Computations |

?

8

1¢



