This is a repository copy of An Optimum Trajectory Planner for Robot Manipulators in
Joint-Space and Under Physical Constraints..

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/78140/

Monograph:

Zalzala, Ali. M.S. and Morris, A.S. (1988) An Optimum Trajectory Planner for Robot
Manipulators in Joint-Space and Under Physical Constraints. Research Report. Acse 349 .
Dept of Automatic Control and System Engineering. University of Sheffield

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
university consortium eprints@whiterose.ac.uk
/‘ Universities of Leeds, Sheffield & York —p—%htt s:/leprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

An Optimum Trajectory Planner
for Robot Manipulators

in Joint-Space and under Physical Constraints

by:
AM.S. Zalzala and A.S. Morris

Department of Control Engineering,
' University of Sheffield,
Mappin Street,
Sheffield SI1 3JD,

UK.

Research Report # 349

November 1988

7
A @ caa

v 2
P

bt

(<

-
N

)



Abstract

In the following work, a new trajectory planning algorithm has been developed,
where the minimum-time history of the movement of the robot end-effector is defined.
Planning is made in the joint-mode by combining a new approach to polynomial
splines along with an exhaustive search technique to identify the best minimum-time
trajectory. The uniqueness of this algorithm emerges from (1) unique combination of
cubic and quadratic polynomials, and (2) the ability to perform the search on local
parts of each joint trajectory. A scaling process is applied to these local segments to
ensure maximum performance. The method proposed considers all physical and
dynamical limitations inherent in the manipulator design, in addition to any geometric
constraints imposed on the path. Thus a significant contribution is made through
selecting the most accurate, minimum-time, high performance trajectory for a robot.

Simulation programs has been written for a study case, and results are reported for a
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I. Introduction

The Minimum-Time Trajectory Planning problem (MTTP) of robot manipulators
is of increasing importance. Recent developments in robotics applications require pre-
cise and swift motion to accomplish a specific task. A task is generally defined as the
movement of the robot end-effector from a start point to a pre-defined final point.
However, it is obvious that an infinite number of solutions exists. Therefore, selecting
the minimum-time path among a set of possible solutions is an objective. Such a path
would yield better utilization of the capabilities of the manipulator, and leads to a
more satisfactory completion of the task.

Over the last few years, research literature has been full with modest contribu-
tions in an attempt to solve for the MTTP problem. Such a problem owes its extreme
difficulty to several facts, one of which is the nonlinear, coupled nature of the arm
dynamics [Paul 1981] , while another is the inherent limitations on the joints actuators.
In addition, the presence of any obstacles in the robot work space would introduce the
additional significant burden of searching for the best path for the end-effector to
traverse. Due to all these difficulties, the solution for the Optimal Control of robot
manipulators is divided into two approaches, namely : trajectory planning and trajec-
tory tracking. The intention of this work is directed towards the former, which is usu-
ally performed off-line. A trajectory Planner (TP) has the job of describing specific
manipulator motion, and generating a suitable space curve (i.e. path) for the robot
end-effector to traverse. A time history of positions, velocities, accelerations and
torques should be supplied to drive the control loops on the robot joints. Hence, accu-
rate modelling of such a TP is required to maintain correct motion.

Trajectory planning is performed in either Cartesian (World) coordinates or Joint
coordinates. A path is usually more realizable in cartesian coordinates, where it is
expressed as a set of positions and orientations for the robot end-effector [Lee et al
1986,Fu et al 1987]. In contrast, torques (forces) bounds on the actuators are
expressed in joint coordinates. Therefore, one can either transform the given set of the
tip locations to joint coordinates, and then solve for the joint-path planning, or alterna-
tively transform the actuators bounds to cartesian coordinates and solve for the
cartesian-path planning [Paul 1979]. The latter was investigated in [Paul 1979,Taylor
1977 & 1979,Luh 1981] , and was shown to involve a heavy computational burden
[Luh et al 1980]. On the other hand, planning in the joint mode would only involve
the transformation of cartesian positions and orientations to its equivalent joint values.
Therefore, this type of planning has been investigated extensively [Lee et al 1986]. To
achieve such a planning scheme, the cartesian end-effector path is transformed to its
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equivalent joint-space paths by means of the Jacobian Transformation [Orin and
Schrader 1984]. However, since such a transformation is defined only as pointwise ,
selected points on the cartesian path should be chosen. Hence, apart from the start and
end points, several via-points are required. The term via—points is widely adopted in
research literature, and is adequate for our purposes. These via-points can vary in both
number and separation, depending on the path followed. Thus, a longer path may
require a larger number of points. In addition, certain geometric constraints may be
imposed on the path as in the case of the presence of obstacles, for which more
closely-separated via-points are needed.

Although only a few points would be transformed to joint space, the history of a
joint trajectory should be continuous in time. To answer for this need, each set of
transformed points of each joint is to be fitted by a function. Several methods of
curve-fitting were approached. In the case of a set of n via-points, fitting a single n—1
polynomial is one approach, which is generally accomplished using the Lagrange inter-
polating polynomial [Burden at al 1974]. Such a polynomial was adopted for the
interpolation of robot joint paths in [Finkel 1976]. However, this method has disad-
vantages in terms of overshooting and wandering [Paul 1972,Lewis 1974,Press et al
1986]. Another approach is by employing polynomial splines, where a low-order poly-
nomial is fitted for each interval between successive via-points. The fitting is made to
be smooth by setting the derivatives of adjacent polynomials to the same value at their
connecting points. Among all, cubic splines are considered the most common [de
Boor 1978,Vandergraft 1978]. These splines are found to be less prone to oscillations
because they are limited to third order variations. This approach was widely adopted,
and can be found extensively in the literature [Lin et al 1983,Lin and Chang 1985,Jeon
and Eslami 1986]. In addition, quadratic splines [Khalil 1984,Castain and Paul 1984] ,
B-splines [Thompson and Patel 1987] , and least-square approximations [Luh and Lin
1984] have been suggested.

Although several approximation techniques were used, emphasis has been on the
planning and minimizing of a single pre-defined path. However, such a path cannot be
guaranteed to be the best choice. Several attempts have been made to perform a
search sequence in order to identify the best trajectory in the sense of having the
minimum traversal time, while conforming to any arm-design limitations. In [Lin et al
1983] , an algorithm was developed to minimize travelling time of a trajectory,
employing a direct search method. Also, [Sahar and Hollerbach 1986] introduced a
state-space search method created by the tesselation of the path points. Both methods,
particularly the second, are computationaly heavy. Similar attempts can be found in



[Rajan 1985,McKay and Shin 1986,0zaki et al 1987]. However, although having
different approaches to all previous algorithms, minimization was made as a global
process for all joints, and over the entire trajectory. Such an implementation would
utilize the full capabilities of one joint while severely under-utilizing another. One
idea for the local-path planning was introduced independently in [Kim and Shin 1985].

In the following work, a new attempt has been made for defining the minimum-
time trajectory for a robot manipulator. A unique combination of cubic and quadratic
polynomial splines is introduced for the planning of each trajectory in the joint-space.
The algorithm, as described, is highly structured, allowing for the maintenance of high
manipulator performance for selected repetitive segments of each joint trajectory. As a
result, greater time reduction can be achieved. In addition, such a structure allows the
use of a highly effective search technique which consequently leads to a more
significant travelling-time minimization. The proposed algorithm considers all physical
limitations related to the manipulator design, namely: the joints limits on position,
velocity, acceleration and jerk. In addition, the dynamics equation of motion [Paul

1981] was considered to ensure the absence of any violations in the torque limitations
on the actuators.

The proposed work is presented as follows: In section II, a statement of the prob-
lem is defined, while the algorithm is fully illustrated in several parts, in sections IIL
The significance of the proposed method is discussed in section IV, and simulations

and case study results are included in section V. Finally, conclusions are drawn
in section VL.



II. Problem Statement

The aim of this work is to construct the optimum trajectories for a mechanical
manipulators in joint space. Thus, the main issue under consideration would be the
best minimization of travelling time. This class of planning problems was discussed in
[Luh and Lin 1981,Brady et al 1982] , where the aspect of fine motion [Kim and Shin
1985] is less significant compared to gaining optimality in the travelling time.

The input to the planner would be N sets of n points, where n is the number of
via-points and N is the number of degrees-of-freedom of a given manipulator. In addi-
tion, time intervals between each successive points should be supplied by a task
planner [Brady et al 1982,Snyder 1985] , which gives an estimation for the total travel-
ling time. Thus, the following must be supplied:

eij y  =lZean, BL2uN (1)
b, i=1,2,..n—-1 2)

where 4 indicates the time intervals.

The set of values in (1) are provided by considering a set of positions and orien-
tations of the robot arm, where each element of such a set is defined as:

He) = [ﬂ(f;‘) s(z) a(z) P(fi)]

O 0 0 0 3)

where,
n(z;) = unir normal vector,
8(t;) = unit slide vector,
a(z;) = approach vector, and
P(;) = position vector.
Hence, applying an Inverse Kinematics algorithm to each position matrix, H(z,),
would yield a set of n-length vectors, one for each degee-of-freedom, as expressed in

(1). Different inverse kinematics schemes are refered to in [Lee and Ziegler 1984,Paul
et al 1981,Bazerghi et al 1984]. ;

For a planning procedure to be accurate, it should take into consideration all real-
istic constraints which may limit the manipulator performance [Brady et al 1982]. The
constraints to be considered in this work are the joint’s limits on angular position,
velocity, acceleration and jerk. The first of these is imposed by the manipulator
geometric design, while the second and third limits are defined by the capabilities of
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the arm actuators. The limit on jerk is imposed to prevent wear and tear in the actua-
tors [Chand and Doty 1985,Lin et al 1983,Brady et al 1982] , which should yield a
longer life cycle. Thus, the following limitations are set:

Blimit; < 8,(1;) < Blimit! (4)
8(t) < | Blimit; | (5)
6;(t) < | Blimit; | (6)
6,(t) < | Blimit; | ™

where,

Blimit; = lower bound on position,

Olimit] = upper bound on position,
Blimit; = bound on velocity,
Olimit; = bound on acceleration,

J

élimitj = bound on jerk.

and, je {12,..N}.

In practice, violations of any of these constraints may cause considerable devia-
tions from the planned path.

Another major constraint to be considered is the dynamic equations of motion.
These equations have the characteristics of being coupled and highly nonlinear [Luh et
al 1980] , and are expressed in terms of positions, velocities and accelerations of each
joint. Thus, whilst these limits might appear to be satisfied when the trajectory is
defined using static equations, dynamic effects may cause a violation in the value of
the allowable torque limit for a joint. The limit on the torque values is given as:

tj(ti) < "Elimitj | (8)
for the same range of i and j.

Including the dynamics equations of motion in the planning of manipulator trajec-
tories was approached by [Lin and Chang 1985,Sahar and Hollerbach 1986]. An algo-
rithm was independantly visualized in [Hollerbach 1984] for the time-scaling of trajec-
tories. This aspect will be discussed in section III.7 following.

The interpolating scheme for this work is chosen to be the Cubic Splines, as they
have attractive characteristics. Such a scheme is well known and has its deep roots in
mathematical literature [de Boor 1978 Hildebrand 1974,Vandergraft 1978]. Special
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formulations of cubic splines are required for this application, as discussed in section
IT0.5.



III. The OCQS Algorithm

The algorithm proposed in this work is termed the Optimum Cubic-Quadratic
Splines , or the OCQS for short. This naming will be referred to hereafter.

The OCQS Algorithm will be illustrated over the following sections as follows:
II.1 : Splines Formulations.

II1.2 : Time Scaling.

II1.3 : Interval Contraction.

I1.4 : Time Compensation.

IIL5 : Quadratic Approximations.

1.6 : The Search Technique.

II1.7 : Dynamics Considerations.

Since almost all stages of the algorithm can be applied to all N joints simultani-
ously, the procedure will be illustrated for only one joint as far as possible. An indica-
tion will be made when it is necessary to consider other joints.

III.1 Splines Formulations :

To meet the requirements of the algorithm, the number of via-points n is
increased to

m=3n )

yielding m—1 subintervals. This is achieved by subdividing each of the original n—1
intervals into three equal subintervals. Thus, for a time interval [z , 7;41] the following
is defined:

0(t;11) — ()

0(;) = 8(z) + . (10)
0(r:11) — ()
6(z) = B(t;,,) - —Ll-_%— (1)
O S
=g (12)
ti — 1
Iy =ty ~ (13)

An exception is made for intervals 1 and n-1, which are divided into Jour equal
subintervals, in the same manner. As a result, of these subdivisions, a total of m
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points would be available. The initial aim of creating such a construction is to provide
enough intervals to fit cubic polynomials and quadratic polynomials together in the fol-
lowing manner : within each group of three intervals, two successive intervals would
be expressed by cubics.and the next by a quadratic. Thus, the path would eventually
be of the form ( Cubic - Cubic - Quadratic - Cubic - Cubic - ... - Quadratic - Cubic -
Cubic ). The path structure is illustrated in figure(1) (segment A), where the thickened
adjacent intervals are to be expressed by cubic polynomials , while other intermediate
intervals are to be expressed by quadratic polynomials. As a result, continuity of
second derivatives between cubics and quadratics is to be waived, and only continuity
in velocity is to be accounted for. This will be discussed in section IV.

Initially, a cubic spline is set through the m points, where boundary conditions for
velocity and acceleration would be accounted for, as well as continuity of the first and
second derivatives at mid-points. The linear system of equations involved was derived
in [Lin et al 1983] , and is included in Appendix (A) for reference.

II1.2 Time Scaling :

For each pair of adjacent cubic intervals, a scaling procedure is performed to
achieve two purposes: (a) Ensure the velocity, acceleration and jerk of both intervals
do not exceed certain limits specified by the manipulator design for each of its joints,

and (b) Pull up the performance of the manipulator to a maximum, while taking (a)
into account.

Thus, for the sample segment B in figure(1), the following is calculated :

MAX | 81 MAX 0:(t
K, = MAX — |, — 14
1 te [t;_1,1] Blimil}- te [5t] Blimitj —
K. = MAT éi-l(f'—l) é:(ﬂ') éi(’i+1) (15)
2 Olimit; * Olimiy; * Blimit,
6-_ 1) 9 L
K, = Max| 211 ) (16)

’ e
Blimig Glimirj

and,
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K=MAX[K1,JK_,3\/K_3] 17

where, é, 0 and 9 denote velocity, acceleration and jerk, respectively, and K denotes
the Scaling Factor.

Applying the factor K to the two-interval segment B of figure(1) yields

hi,=K.h_, (18)
hi=K.h (19)
Bi1(tiy) = %  0:1(tio0) (20)
0,(t) = ?1(— . 6,(t) 21)
6i(tur) = = - Byt @)
010t y) = _Kl‘_z 01(5) (23)
0,(z) = }13 . 8,(1) (24)
0i(riyy) = El,;  0(tisy) (25)
-é‘-_l(t-_l) = —[;—3 . §i_l(t,-_1) (26)
6,(t) = % . 8,(1) 27)

where the marker (.) denotes scalar multiplication.

The scaling procedure can be verified by considering
Oy =6;+6, . b+ 0;. K2 +6,. K ©8)
then, multiplying A; by a factor K would cause 8, 6 and 6 to be multiplied by -;—,, ?12-
and %, respectively. This method not only assures that joint performance, for this

particular segment, is kept within limits, but also that it is pulled up to a maximum,
yielding a minimum of time.
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I11.3 Interval Contraction :

For each interval in the two-cubic segment, location of maximum velocity is
found, and the corresponding position cubic function is truncated accordingly. Thus,
for a time interval [z;;,;], the maximum velocity could be at t; , 7;,; or t € [t;,;,1],
which would cause the corresponding time interval to vanish, remain as it is, or be
truncated at some value, respectively, in accordance with the standard properties of a
cubic equation.

IT1.4 Time Compensation :

At this stage, as all segments of two-cubics are optimised, they are to be con-
nected by approximated quadratic segments similar to that shown in segment C of
figure(l). Values of the first derivative (i.e. velocity) at the end points are already
specified by the neighbouring cubics. Since the second derivative of a quadratic is a
constant, each quadratic interval is initially set so as to get the maximum allowable

acceleration 6limit;,

Bi2(tis3) — 8440(ti2)

Olimit,

| |
b = | | 29)
| |

Hence, as a result of this approximation, corresponding intervals of each of the N
joint-paths will have different values, leading to a different total travelling time
between srart and end points. This situation is best simulated by figure(2), assuming a
4 via-points path, (i.e. n=4, m=12), and 6 joints (i.e. N=6). Thickened lines represent
cubic equations, while light lines represent quadratics. Obviously, since each joint is
being treated individually, a different total travelling time occurs for each one. One
joint is expected to reach the end point faster than the others (e.g. joint 4 in figure(2)).
Thus, it is appropriate to add some additional time

g4 | j=1,2,..,N (30)

for each lagging joint to make its total travelling time equal to that of the leading joint.
In figure(2), tfdd time is added for j € {1,2,3,5,6} to achieve equal travelling time for
all six joints. '

However, t]"dd can be added in two ways. It could be added so as to maintain
equal time between each successive pair of original via-points, i.e. the n points given
by the inverse kinematics transformation. This could be undertaken when path
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constrains are imposed, and the end-effecter is to be forced to go exactly through cer-
tain positions during movement. Alternatively, £/ could be added in a manner where
no constraints are put on the end-effector’s path, and all that is needed is to move it
between start and end points. It should be mentioned that any time addition should be
made to the quadratic intervals only. As for the minimization of time, the first
approach would cost more, since certain restrictions were made on the path.

The two methods of adding t}‘dd will be discussed now; a quadratic interval will
be refered to as Ay,

1.4.1 Time Addition — Constrained path :

The value of k., in each of the n—1 segments of each joint is adjusted so as to
satisfy (a) The maximum allowable acceleration (egn.29), and (b) Equality of total
time of each segment over all joints. This would maintain via-point constraints. The
value of the added time would be

no. of quadratics MAX s ; §
7= X LLz,..,N[ q‘ﬁad] - h&‘ﬁad] (1)
=

Now, to fit in a quadratic equation between any two positions 6,r;) and 8,(z;, 1),
and velocities 0,(z;) and 6,(z;;;), the corresponding time interval must be given as

e 2[&(&”) - 9;-(1;)]

k™= éi(ti) + éi(fi-u)

(32)

However, since hg,,; cannot be guaranteed to equal h;m, an approximation for

the quadratic polynomial must be made. The derivation of (eqn.32) can be found in
Appendix (B).

I11.4.2 Time Addition — Unconstrained path :

It is realized that for a quadratic polynomial to fit correctly, its time interval must
be h;m of (eqn.32), while the initially assumed interval is hguaq- Thus a difference of
Paif = hguad — Pguad (33)
must be compensated for. And for the whole path, .l
no. of quadratics i
Boga = E{ haigi (34)

must be added.
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However, since total compensation time was predefined as t“dd (eqn.30), the qua-
dratic interval of each segment i is set as

_ | Bagi

Pawad = |G

add

where tj“‘” is divided proportionally between all quadratic segments in the path,

depending on the value of hgy of each. However, since the computed 4, ., cannot be
guarenteed to equal hqmd, an approximation for the equation is again needed.

] LB =12, no. of quadratics (35)

As a result of applying the procedure of section IIL4.2 on the example of
figure(2), equal time trajectories would be expressed as in figure(3).

I11.5 Quadratic Approximations :

An approximation must be made for the quadratic polynomial between positions
0(z;) and 6,(z;,,), and velocities 6, (t;) and 8, i(tix1), in a period h4uaa- The approximation
is accomplished by utilizing an equal interval, large-number-of-segments cubic spline.
The time interval hguaq is divided into / equal sub-intervals

h
haiy = "}‘“" (36)

Since the velocity during interval Pguaq is a first order polynomial (i.e. a straight
line), the corresponding velocity at the start of each hg;, interval is calculated as -

; ) (t..1) — O.(¢
0, = 0,(1;) +w. [e‘(t‘“) : ‘(I‘)} , (37)

w=12..I-1

Thus a system of /-2 equatxons in I-2 position variables is constructed, taking
into account values of hy, and B calculated. The system is represented as

A.x=b (38)
where,
_26 —3— 0 i e w 0
hgiy kg, -
3 —6 3
hcziiv hng h(%iv
0
A= (39)
5 0
3 -6
0
A ]




and,

36,

hgi

B= : (40)

-36;
| hgﬁv ]
and x is the required positions vector,

X = (41)

)

-3 el_l -

It was found that as ! — oo, then haiy = 0, and the cubic polynomials concerned
tend to form a quadratic. However, the value of / should be properly chosen for each
approximation, to assure minimum discontinuity among sub-intervals, and to avoid
unnecessary computational burden.

The linear system described has been derived utilizing the Hermir interpolation
polynomial. Detailed derivations are included in Appendix (C ).

IIL.6 The Search Technique :

Up to this stage, planning procedure has been concerned with a single pre-defined
path. However, the trajectory produced is not necessarily the best choice.
Therefore, a search procedure has to be employed to obtain optimality in terms of the
travelling time. -

The search is performed by varying the positions of the end-points of each two-
cubic segment of a joint-path, figure(1)-B, by a certain value, 6,,,. The variation is
done on the initial via-points of (egn.9), and the spline fitting of section IIL.1 is applied
yielding a new trajectory. This new trajectory is then processed by the scaling and
contraction procedures of sections IIL2 and IIL3, yielding the minimum of time for
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each two-cubic segment. The scgments are then compared to their equivalents in the
original trajectory, according to the following:

Refering to figure(1), considering a two-cubic segment B with its middle point at
position 6,(;), we define

éorig (t:'—l) _ éorig ( l"-z)

1278, = h2"E 4 poris 4 f (42)
Olimit;
and,
6" (t ;) — 6% (s,
Gty = Wpev + ey 4 — e =9 ) @3)

Olimit;

where superscripts orig and new denotes original and new trajectories, respectively.
Thus, for a new segment to be accepted, the following condition must be satisfied:

ks = 2, (44)

This condition should be satisfied for all cubic segments in the trajectory, except
for the first, for which the following condition is imposed

RP + B < h@rig + horig (45)

Thus, some of the two-cubic segments of the original trajectory will be replaced
by new less time-consuming segments from the new trajectory, and new corresponding
quadratics are fitted, leading to a further reduction in traverse time.

The previous procedure is then repeated with a negative added value to end-
points positions, namely -8, and a yet newer trajectory is constructed, where the
replacement process is carried out under the same conditions. The situation so far is
shown in figure(4) for an 8-via-points joint-path. It should be mentioned that the ori-
ginal » via-points are not altered during the search, but rather kept stationary.

Now, the value of 6, is to be increased to 204;,, and mwo other new trajectories
are constructed and processed in a similar manner,

This task is to be continued for
Ogaa=u.04 , u=%123,. (46)
until no more two-cubic segments could be exchanged.

However, it should be emphasized that the value of 0,4s must not exceed the
position bounds imposed by (egn.4). If such a situation occurs, 6, should be set to
the corresponding bound value.

w17 =



The initial task of the search process is to vary the value of velocity for each
two-cubic segment, leading to a smaller scaling factor, K, and therefore less time.

The value of 0,4, is chosen to be relatively large at the start, (e.g. 10 degrees),

which was found to give better results than a smaller value. This will be illustrated in
section V.

The search is stopped once the total trajectory time for a path with an incremental

value B:‘g}i is equal to that with a value of 9:;(,, where u; € {1,2,3,..} and
u € {2,3,..}.

Nevertheless, since a large incremental value of 6, was used, larger minimiza-

tion could be achieved considering a value 9:;[1, where
0,y < 02 < 6,51 47)

Thus, a new search phase is initiated, with a start position of BZLM and an incre-
mental value of

ediv
10

Bl =u . L u=%123,.. (48)

where a new smaller travelling time would be achieved.

A difference tolerance is assumed,

tol = ttlo:al - ttzozal (49)

which represents the difference in the total travelling time between one phase of the
search and the proceeding phase. If the value of 7ol was not met by the first two search
phases described, then a third phase is to be initiated with

041,
100

and so forth until the value of rol is met.

0Ly =u. L u=+123,., (50)

Once the search is completed, the time compensation process of section IIL5 is
applied to the optimum trajectories obtained for all joints.

III.7 Dynamics Considerations :

The limits on the trajectory performance considered in (egns.4—7) are constant
approximate values that were deduced for simplicity [Paul 1979,Hollerbach 1984).
However, since the presence of interaction between different manipulator joints is a
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fact, such an approximation is not totally reliable [Hollerbach 1984]. Attempts were
made for the determination of exact time-dependent values for these limits by [Vuko-
bratovic and Kircanski 1982,Bobrow et al 1985]. Unfortunately, the proposed methods
proved to be computationally unacceptable, which emphasized the need for the
development of a time-scaling procedure of moderate computational burden. One
algorithm was independently developed by [Hollerbach 1984], while another algorithm
was introduced by [Lin and Chang 1985]. Both proposed methods proceed in the
direction of computing the modified trajectory’s dynamics by means of linear combina-
tion of the original dynamics values.

The equations of motion for a manipulator is defined by [Paul 1981,Fu et al
1987] as

= )Af D8, E ﬁv; Bigm 8y O + ¢ (51)
g=1 =1 m=1
y J=1,2,..,N
or, alternatively, in matrix form as
1) =DO@) 6() + h(O®).0()) + c(B()) (52)
where,
(1) = [ 1), 1), -, WO = Nx1 generalized torque vecror ,
0(1) = [ 0,(1), 85(), - - - , 811 = Nx1 vector of joint variables ,
0(1) = [ 6,(), 629, * - , O] = Nx1 vector of joint velocity ,
0(r) = [ 6,0, 6,0, -, BT = Nx1 vector of joint acceleration ,

D(6(2)) = NxN inertial acceleration— related matrix ,
h(G(t),é(t)) = NX1 nonlinear coriolis and centrifugal force vector , and

¢(8(1)) =Nx1 gravity force vector .

Thus, for a new constructed trajectory segment, and assuming a scale factor, K*,
the following is deduced for time z;,

éw=i

' K
.
e

substituting these values in (egn.51) gives :
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TR W S O & (53)
sai = — + - ——— + C;
=T @ S P B S
Then simplifying yields :
1
TFEW = (K*)z [1:] - Cj] + Cj (54)

Now, considering the limit on torque imposed by (egn.8), then,

[(?1)2 [T] o CJ]] + CJ- < | 'tlzmzt] | (55)

K= ‘\/ S tad: M (56)
l T[I,??Il.fj | - Cj

The minimum-time joint-paths constructed by the OCQS algorithm are to be
tested to maintain limits on torques. However, since a limit was considered for both
velocity and acceleration values (i.e. egns. 5 and 6), the scaling factor K* must satisfy

or,

K21 (57)
to eliminate any possible overloading in velocity or acceleration.

Thus, the role of the dynamic scaling procedure is to work as a safeguard against
any breach in a torque value for a joint, due to its coupling with others. Consequently,
the total travelling time along the path could either increase if a joint torque is above
limit, or alternatively mainrain its previously predicted value.

The usual approach for scaling is to get a global value for K~ over the trajectories
of all joints, and then scale all N paths simultaneously. However, this is found to be
inefficient in terms of time, since one joint capabilities may be under-utilized for the
whole path of motion because of a violation in another joint at one particular point.
Thus, in our approach to solving such a problem, scaling is once again performed on
local selected segments of the constructed trajectories.

Considering the structure of the OCQS algorithm, a violation in the torque value
of a joint can occur either at a cubic or at a quadratic segment. Hence, scaling must
be performed for that segment and the corresponding cubic or quadratic segments of
all other joints. The procedure for scaling both types of segments is discussed.

III.7.1 Violation at a Cubic :

% T



For this case, the situation is illustrated in ﬁgure (5) for a single joint. Employ-
ing the local scaling factor, K", new values for A, 6, 6 and @ for intervals [i_1.%;] and
[#:1;.1] are scaled using (egns. 18-27). As for the neighbouring quadratic interval
[2,_2.ti-1], @ new value for hg,,q; 5 is set as

11 (i) — 0,9(t0)

mi—2 = 8 (58)
i-2

where,

éx—l(f 5q) = éi—z(fi-z)

é,‘_z = h (59)

quad,i-2

Similarly, for interval [z;,1,¢,2] We get

M = i1 (ti+2)"— i1 (i) (60)

011

where,
. e I; - 9 L

9,-+1 _ :+1( ;+2) :+1( +1) (61)

hguad i+1

I11.7.2 Violation at a Quadratic :

The situation is again simulated in figure (6) for one ]omt where the violation is
assumed to occur during interval [z;,%;,,]. Thus, A, B 6 and 6 parameters for the neigh-
bouring cubic intervals [z, ,,7;] and [f;,%;,3] are scaled by a local factor K" using

(egns. 18-27). Accordingly, a reduction in é,—(ti) and é,-(t,-+1) by a factor of % would

cause the quadratic acceleration, 9;, to reduce by the same factor. However, according

to (egn. 53), 6 is to be reduced by a factor of ——. Hence, h,,,4; should be adjusted

K*Z

to account for the difference,

0:(tiy1) — 6,(1)

hguadi = E (62)
' i
[rz] ‘
where 6l is set to its new value,
. 0;
new __ i
ei - (Km)z (63)

5], =



The side quadratic intervals [r;_s,;_] and [z;,3,2;,4] are treated as in section II1.7.1
previously.

Once the scaling procedure is completed for the violated joint-path, other joint
paths are treated similarily employing either the procedure of section III.7.1 or II1.7.2
as appropriate.
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IV. Discussion

In the previous section, an algorithm for the robot MTTP problem was intro-
duced. It is intended now to discuss and verify the different technical and numerical
aspects for each procedure proposed. Throughout the development of this algorithm,
two important aspects in the MTTP were given priority: time optimality and path accu-
racy. Robot manipulators are expected to execute a certain task in a minimum of time.
However, during this optimal planning procedure, certain accuracy is expected within
the controller. This accuracy may be corrupted by mis-utilizing joint actuators through
applying some unrealistic burden on their performance. In the methods of joint-
trajectory planning, the initial time required by the manipulator is estimated by a task
planner [Brady et al 1982]. However, this estimate may force the manipulator to devi-
ate from its pre-planned task if saturation occurs in any of its actuators. The initial
calculation of time is tested and correction is applied if any of the three constraints,
namely velocity, acceleration or jerk exceeds a specified limit. The values of velocity,
acceleration and jerk are kept to their maximum allowable state, to utilize the
actuator’s capabilities in full. This was found appropriate since several parts of a joint
path could be scaled individually, yielding a large reduction in time. As for the effect
of maximizing acceleration to its limits on actuator performance, the jerk is set as a
safeguard. It is defined as the rate of change of acceleration [Brady et al 1982,Lin et al
1983], and is expected to protect against wear and tear if kept within a certain limit. It
was realised that maintaining high velocity movement would cause a considerable
reduction in travelling time. Therefore, location of maximum velocity in each cubic
interval was found. To achieve minimum travelling time between these maximum
values of velocity, linear variation should be implemented. A first order equation was
used for velocity, giving a quadratic equation for position. However, this assumption
caused a constant acceleration value, which waived away the idea of acceleration con-
tinuity. The idea of using both second and first order polynomials for velocity was
adopted to maintain smoothness in transitions throughout the path. The use of a first
order polynomial throughout motion may cause considerable roughness, since sudden
changes in velocity are to be expected at transition points (i.e. via-points). In such a
situation, a manipulator would be caused to stop at these points [Khalil 1984].

During the performance of a task, certain constraints may be imposed on the
required path, such as passing the end-effecter through specific locations. When this is
the case, the given via-points must be available on the new planned path. If not, the
problem is reduced to the simple matter of moving the end-effector from one point in
space to another. This is expected to be usually faster, since there are no constraints

0% .



in terms of special passage points. The proposed algorithm accounts for both cases.

When the required time for a quadratic is calculated, a set of splined functions
has been adopted as an approximation. Since the difference between calculated qua-
dratic intervals and real interval values changes from one segment to another, the
number of splined functions would change correspondingly. A greater difference is
expected to lead to a larger set of splines.

As for the search technique suggested, the variation in the end-point positions of
the two-cubic segments is governed by the position bounds on each joint, (egn.4).
Thus, varying these bounds for each segment throughout the path would be of great

help if obstacles are expected in the work area, where the path would be restricted
locally within certain bounds.

Finally, it should be outlined that the OCQS algorithm is most applicable to the
planning of long paths, with a relatively large number of via-points, where the main
goal is to minimize the execution time. This is quite different from the concept of fine
motion , for which the manipulator is expected to make short moves, and where there
are many other important factors apart from travelling time. With this idea kept in
mind, the discontinuity in the acceleration profile of the planned trajectory becomes
acceptable [Luh and Lin 1981,Kim and Shin 1985]. This type of disadvantage is com-
pensated for generously by the fact of optimum minimization of time, for which
gross-motion and fast controls could be achieved.
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V. Simulation Results

In this section, results applying the OCQS algorithm for the trajectory planning of
a PUMA 600 robot manipulator, with 6 degrees-of-freedom, are reported. Programs
has been written in the C programing language on the Sun Workstations running under
UNIX. An 8-via-points path has been chosen as an input, giving 6 sets of 8 joint
values, as illustrated in Table(1). Initial values for the time intervals were calculated
by a global scaling process [Lin 1983], taking into account the physical limitations on
the manipulator.

The limitations for each of the manipulator joints are tabulated in Table (2).

These 8 points are expanded to 24 via-points, as required by the OCQS structure,
giving a total of 23 intervals. Applying the scaling and contraction procedures to the
trajectory of each joint separately, and then compensating for time differences leads to
a reduction in time from (32.481) seconds to (14.215) seconds.

Once the search technique is applied, time was minimized from (32.481) seconds
to (7.167) seconds. Since the search was conducted for each joint-trajectory
separately, different numbers of search-phases were detected. Hence, while one joint
required only mwo phases to reach its optimum trajectory, another required as much as
four phases. This indicates the great importance of distributing the algorithm on
separate local segments of each joint-trajectory. The search process for joint#1 is
shown in figure (7), indicating the position profile.

The significance of the contracrion procedure is obvious through the fact that, for
all joints, up to four cubic intervals vanished when contracted. This, again, greatly
owes its success to the search performed.

As for the dynamic equations of motion, the Recursive Lagrangian Formulation
introduced by [Hollerbach 1981] was adopted. A full data model for the PUMA 600
robot is included in Appendix (D).

The results of this simulation are summarized in Table (3). The constructed
optimum joint trajectories are shown for all 6 joints of the robot in figures (8)-(13),
where position, velocity, acceleration and jerk profiles are plotted. In addition, torque
profiles of joints 1 and 3 are included in figures (14) and (15).

The data used in this study case were obtained from [Lin et al 1983,Thompson
and Patel 1987] for comparison purposes, while the PUMA model data were extracted
from [Leahy et al 1986,Armstrong et al 1986].
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Table (1) : Joint Variables
Joint#
Point#
1 2 3 4 5 6

1 10 15 45 5 10 6

2 60 25 | 180 20 30 | 40

3 75 30 | 200 60 | -40 80

4 130 | 45 | 120 110 | -60 70

5 110 | -55 15 20 10 | -10

6 100 | -70 | -10 60 50 10

3 -10 | -10 | 100 | -100 | -40 30

8 -50 10 50 -30 10 20

Table (2) : Limits
Joint#
Limit
1 2 3 4 5 6
Velocity 100 95 100 150 130 110
(deg.sec™)
Acceleration 45 40 ¥ - 70 90 80
(deg.sec™?
Jerk 60 60 55 70 75 70
(deg.sec™
Torque 97.6 | 186.4 | 894 | 242 | 20.1 | 21.3
(N.m.)
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Table (3) : Trajectories Time-Reduction History
Joint- Assumed Initial Search | Searched Final Final Vanished
Trajectory Trajectory Minimized | Compensated
Time Phases* Paths Intervals
No. Time Time Time

1 32.481 8.864 4 40 5.532 7.167 4

2 32.481 7.417 3 12 6.126 7.167 2

3 32.481 12.734 4 60 5.691 7.167 3

4 32.481 12,350 2 12 4.886 7.167 3

5 32.481 10.164 2 10 5.125 7.167 3

6 32.481 7.710 2 8 5.154 7.167 3

* Assuming a difference tolerance of r0/=0.01

-27 -




VI. Conclusion

A new algorithm for the minimum-time trajectory planning of robot manipulators
in joint space has been developed. Although planning is initiated with a pre-defined
trajectory, a search technique is employed to define the optimum trajectory, through
the minimization of selected local segments of each separate joint-trajectory. All real-
istic physical constraints forced by the manipulator design and the surrounding work
volume are taken into consideration. In addition to obtaining minimum-time joint-
trajectories, one side result that is of great importance is the algorithm’s ability to be
adopted for obstacle avoidance tasks. The proposed algorithm is very structured in
formulation, which suggests its adoption as an on-line scheme for trajectory planning.
The feasability of such an idea is currently under investigation.
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Appendix (A)
Acceleration Approach to the Formulation of Cubic Splines

Since O(z) is assumed to be a cubic function, then its second derivative should be
a linear function,

e:'+1

h:

2

. 61-
9(!) = E‘ (ti+1'—t) +

(=) (A.1)
where,
h" =ha— (AZ)

Now, integrating (A.1) twice, and invoking the continuity conditions

0;_1(ti1) = 6,(7;1) (A.3)
0;(7;) = 0;,.1() (A4)
yields,
- 0; , B R T 0, k.6
= — L= —_— (1=t st — | — A
0(r) o (t—0)" + 2k (t-1;)° + 7 c h; 5 (A.5)
and,
8(r) = 6—}; (0% + 6‘;; (t-1)% + [ }‘: - = | 1)
6, A6
“m T Te (tip1—0) (A.6)
By continuity of velocity,
0,1(1) = 6,1) (A.7)
then,
.. @ ” 0,9, 6-6,_
hi10iy + 2(h+hi1)8; + By, = 6[ ‘: - - lh - 1] (A.8)
i i1

,i=23,.m-1
where m is the number of points.

Thus (A.8) gives a system of n—2 linear equations, which can be solved to obtain
values for each 6;.
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If the first and second derivatives at the boundaries are to be preset,

is considered :

61 = leart
. K. K.
62 = 61 + hlel + —5—01 + ?82
A P
en—l = en - hn—len + ; ] en * 21 er:--l
en = eend

the following

(A.9)

(A.10)

(A.11)

(A.12)

Substituting (A.9-12) into (A.8) enables the presetting of él, é,,, él and én by the
user. Once the system is solved, and 63 and 6,_, are known, the values of 6, and 6,_,

can be calculated.

59 .



Appendix (B)

Quadratic Splines

Since 6(¢) is a quadratic, then é(t) must be a linear function

6() = Ei(r,.ﬂ—r) + E(z—zo (B.1)
h; h;
, i=1,2,....m
where,
hi =ty — (B.2)

and m is the number of points.

Integrating (B.1) yields
: 6, 0i1
8(r) = — E}T(““ % + —(:—ﬁ +C, (B.3)

Evaluating C; yields

O:h;
B(r,-) = 9[- =- _5.— + Cl (B.4)
9 h;
== Cl = e + T (BS)
also,
011
0(1,1) = 0,1 = 5t Cy (B.6)
0,k
=> Cl = Bf-!-l - ol X (B?)
Equating (B.5) and (B.7) gives
h, . .
041=6;+ ) (0:+0;1) (B.8)
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Appendix (C)

Velocity Approach to the Formulation of Cubic Splines

For an interval with only two points known, the Hermit Interpolating Formula
can be expressed as

; t—0)2(t—t,_ | (=t )2t~
6 =6, (g )(2 21 _ek( kl)z(k ) 2
hi hy

(20—t Ry i ()2t 1)+hy]

k-1 k {C.1)
h; i
where,
B =ty — 4 (€.2)
then,
e 2 . . ek_ek_l
0(ry) = — (0,426, — 6 C3
() = 5 ©1+269 [h% ] (C3)
. ;A 0,.,-9
B(tps1) = ——(0,+28),,) — 6 k+; . (C4)
Piar k+1
Equating (C.3) and (C.4) yields
2 : 0,61 2 i 0110,
—(0,_14+26) - 6 = (0,420,.) -6 (C.5)
PR © 7 PR »
Setting equal values for all values of A’s and simplifying gives
3 6 3 | E
Z'z'ek—l = ?ek + ﬁem = 2 [01=6126,,1] (C.6)
, k=23,...,1-1
where [/ is the number of points.
Since the values of 8; and 6, are known, then for k=2,
6 e 1.2 2 _ 3 3
also for k=I-1,
3 6 12 : : 3
;591—2 - ﬁem = 5 [05-0,,+26] - “g{ez (C.8)
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Thus, a system of /-2 equations can be solved to obtain the required position
values 6, k=1,2,...,I-1.

- 35 -



Appendix (D)

The PUMA 600 Model Data

Table (D.1) : Link Coordinate Parameters

Joint i 0; o a; d; 6 Range
(degree) (degree) (mm) (mm)  (degree)
1 90 90 0 0 -160 to 160
2 0 0 431.8 | 149.09 | -225to 45
3 %0 50 -20.32 0 -45 to 225
4 0 -90 0 433.07 | -110 to 170
5 0 90 0 0 -100 to 100
6 0 0 0 5625 | -266 to 266
Table (D.2) : Masses and Centres of Masses
Centre of Mass (cm)
Joint# Link Mass (kg)
X y z
1 227 0 7.3
2 1591 -43.18 0
3 6.82 0 10
4 3.18 0 10 0
5 0.91 0 1.
6 0.45 0 3.
6 (loaded) 2.75 0 8.018
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Table (D.3) : Radii of Gyration

Radii of Gyration (sz)
Joint#
X y z

1 84.58 170.9 117.6
2 62.85 | 2323.0 | 2369.0

3 1326 | 4167 | 329.2

4 106.3 3.145 103.1

5 33.97 | 3397 4.396

6 120.1 120.1 6.667

6 (loaded) || 92.40 | 92.40 6.109
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