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Abstract

This paper introduces a Rational Expansion for Nonlinear Input-
Output Maps. The method is new and is based on the rational expansion
of functions of several complex variables. If truncated, this series reduces to

a ratio of truncated Volterra series. A ‘feedback form’ will be presented.
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1 Introduction:

The mathematical theory of Nomnlinear Systems has been dominated for
many years by the use of the Volterra series expansion for Nonlinear input-
output maps [5], [17]. Volterra’s own work on the series is summarized in his
book [18] which dates from a 1925 series of lectures. In the 1940’s, Weiner
became interested in the idea and since then papers dealing with such ex-
pansions have appeared periodically e.g., [1],[3]-[16] to cite a few.
However, this expansion has a major drawback, the large number of terms
required to obtain a ‘good ’approximation. In this paper, we shall introduce
a new expansion in terms of ‘rational functionals °. If truncated this series
reduces to a ratio of truncated Volterra series and as such it is expected to
produce a ‘better’ approximation in a smaller number of terms.

In order to derive this representation, we shall need some results from the
theory of functions of several complex variables. These preliminaries will
be presented without proofs in section 2. In section 3, we derive the new
rational expansion for single-input single-output systems, while in section 4
this result is extended to the multidimensional case. In section 5, we shall
present a ‘feedback version’, i.e., the output is written in terms of input

and output.



2 Some facts from complex analysis:

In this section we shall present some facts from the theory of functions of
several complex variables. All the results in this section will be presented
without proofs, and are introduced for completeness, the interested reader

is urged to consult reference [2] (or a similar book) for details.

Let M and N be subsets of C™ where C is the set of complex numbers,
then &M denotes the boundary of M, M is the closure of M, M? is the
interior of M and M C N means that M is compact and M C N° We
denote by A(D) (resp. A(K)) the class of functions holomorphic in a do-
main D (resp. compact set I{). A™(D) will denote the class of mappings

f=(f1,..., fm) that are holomorphic in D.

Let D be a bounded domain in C™, and suppose that h is in C(D)
and is positive in D. Denote by LZ = L2(D) the collection of all functions

f € A(D) with norm

LF1=N £ llb= Up | £I2 h dv)?

L% is a Hilbert space with the inner product < f,g >= [ fgh dv. It is easy
to see that ifa polydisc U = U(°,r) = {z € C™:| 2; — 2} < r,j = 1,...,m}
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satisfies U C D then for every f € L?

| f(°) < e || FlIb

where the constant ¢ depends on r and h but not on f or 2°.

Definition 1:
Let x1,...,x~n,N > m be holomorphic functions in the domain D ¢ C™

and Dy, ..., Dy domains such that D; C x;(D),j =1,...,N. The set
A={z:z€ D;xij(z)e Dj,j=1,...,N}

is called an analytic polyhedron.

Definition 2:
A Weil polyhedron is a connected component of an analytic polyhedron for
which the boundaries D; are piecewise smooth and the intersection of k of
the faces 7; = {2:2 € D;,x; € 8D;,x; € D;,j # I} has dimension at most

2m-k.

Let 7i,.....im = M=y Vix » We give these m-dimensional edges the natural

orientation determined by the order of the faces v;,,...,%i,,.-



Definition 3:
The distinguished boundary (or skeleton) of the polyhedron A, denoted o,

is the union of all m-dimensional edges G

Definition 4:
A bounded domain D is said to be strictly pseudoconvex if there exist a
neighborhood U 2> D and a function p € C@(U) such that D = {z :
z € U,p(z) < 0}, where grad p # 0 on 8D and the function p is strictly

plurisubharmonic in U, i.e.,

n
w"&ﬁ >0

forzEUanda.lleC",w#O.

Theorem 1: (Oka and Hefer)
Suppose that D is a pseudoconvex domain in C™ anf f € A(D). Then for
any domain G C D there exist functions P;(£,2) e A(GXxG),j=1,...,n,
such that

f(&) = f(Z) — Pl(f! z)(&l - 21) +...4 Pn(g, z)(fﬂ - zn)

for £,2 € G.



Lot 3, .4, =det || gy || Tord = ty50 58 ] = Liccn

where g,;(£,2z) € A™(D x D) is obtained from theorem 1

xi(€) = xi(2) = Tliz1 01;(6,2)(&5 — 2;)

Theorem 2: (Weil)
Let A be a Weil polyhedron and let f € Ag(A) = A(A)N A(A). Then for

z€A

= o LA ] FE)Q, . i (£:2) dE
f(Z) i 2‘1<"'<1’" f""i'--im H:;1[Xik(f)—Xik(z)]

This is called the Bergman-Weil integral representation.

Remark 1: This formula recovers the value of the holomorphic function
fin A from its values on the m-dimensional distinguished boundary ¢ and
has a kernel that is holomorphic in z, but the form of the kernel depends on
the shape of the domain (unlike Cauchy integral formula for a function of a

single variable).

Consider a Weil polyhedron A = {z:z € D,xi(2) < 1,1 =1,...,N},

xi(z) € A(D),l=1,...,N,AC D.



Theorem 3: (Weil)

Every function f € A(A) can be expanded for z € A in a series

flz) =

JE),...ir, (£,2) dE
i1--6m xf,‘“(&)---x'—""“(&)

‘m

k k
251 <oilim Ezf,...,kmzo (2—1337_"— f'y X X:ll (2) L X;:(Z)

uniformly convergent on compact subset of A.

Definition 5:
A polyhedron A is called a polynomial Weil domain if all the x;(z) are poly-

nomials.
Definition 6:
A Runge domain D is a domain such that every f € A(D) can be approxi-

mated uniformly on compact subsets of D by polynomials.

Corollary 1:

Every polynomial Weil domain is a Runge domain.

Remark 2:The series in theorem 3 is not in general unique.



Definition 7:
Let M be a compact connected set. M is said to be approximated from

the outside by a sequence of domains Dp,p = 1,2,... if Dpyy T D, and

M =, D,.

Let D,,p = 1,2,... be a sequence of domains approximating M from
the outside such that each D, has a one-sheeted envelope of holomorphy
K(D,); then we say that the compact set M has a one-sheeted envelope of

holomorphy, and define K(M) = N, K(Dp). We have

Proposition 1:
K(M) is compact and does not depend on the choice of the sequence D,,

and each function holomorphic on M is holomorphic also on K(M).

Proposition 2:
If every function holomorphic on M is also holomorphic on a set E, then

E C K(M).

Proposition 3:
On K(M) each function in A(M) takes only the values it takes on M.

7



Definition 8:
A domain D C C™ is said to be linearly convex if for each £ € 0D there

is an analytic plane of complex dimension (n-1) passing through £ and not

intersecting D.

Remark 3: Every convex domain in C™ is also linearly convex. A topo-

logical product D = Dy X ... X Dy, of domains in C! is a linearly convex

domain.

Definition 9:
A compact set M is said to be linearly convex if there exists a sequence of

linearly convex domains approximating it from the outside.

Theorem 4: (Aizenberg)
Suppose that the compact set M has a one-sheeted envelope of holomorphy
K(M). Then every f € A(M) can be represented in some neighborhood of

M (depending on f) by a uniformly convergent series

f(z) = Zp=1 H;.’;l(ﬂpj] z1+...4+apjm zm+bp;)



where 2 | e P= Li = Lamp= 1,2, .., Sope1 | Ap < o0
if and only if the envelope of holomorphy K(M) is a linearly convex compact

set.

Theorem 5: (Znamenskii)
A domain (compact set) is strongly linearly convex if and only if it intersects

every complex line in a connected and simply connected set.

Theorem 6: (Trutnev)
Every f € A(M) can be represented in a neighborhood of M by a uniformly

convergent series

=3 = (21)

p=1 (aplzl + s+ Tpm Zm + bm)m

where Y7L, | apr 2= 1,3p21 | Ap |< oo if and only if the envelope of

holomorphy K(M) is a strongly linearly convex compact set.

Corollary 2: (Aizenberg)
For every f € A(M) to be representable in a neighborhood of M by a uni-
formly convergent series (2.1) it is necessary that (M) be a linearly convex

compact set, and sufficient that (M) be approximated from the outside by



regular linearly convex domains.

3 Rational Expansion for Nonlinear Maps : -

Scalar Case

Consider a single-input single-output system ¥ defined by the causal input-

output map

F:L*0,00;C] — L?*[0,00;C] (3.1)

We recall that F is called causal (strictly causal) if Uj[o,f] = V[0, (respectively
U|jo,t) = V|[o,)) implies that F(u)(t) = F(v)(t) for any u,v € L%[0, 00; C] and
t > 0 where ¢|; denotes the restriction of the function ¢ to the interval I.

For agivent > 0 and u € L?[0,00; C] consider the truncation u* € L2[0, 00; C]
defined by u*(7) = u(r) for 7 € [0,t] and zero elsewhere. Since F is causal

we have

y(t) F(u)(t)

F(u*)(t) (3.2)

10



Let £ = {e;,j = 1,2,...} be an orthonormal basis of L?[0,00; C]. Let m be a

positive integer, and approximate u* by the finite sum 3772, u}ej, Therefore,

y(t) = F(3 ute;)(0) (3.3)
j=1

t being fixed, the expression in the right hand side of the previous equation

t
i

can be seen as an ordinary function of m complex variables ul,...,u
Hence, we obtain

y=H(ul,...,ui) (3.4)
which can be expanded, under suitable conditions, to be precised later, in a
uniformly convergent series of ‘partial fractions ’.
Let @ = (uf,...,ul,) € M and suppose that M is a compact set having a

one-sheeted envelope of holomorphy K(M). We claim the following

Theorem 7:
Suppose that the nonlinear map F is such that H € A(M). Then F can
be represented in some neighborhood of {u € L%[0,00;C] : @ € M,t > 0}

(depending on F') by a uniformly convergent series

— u = 5 Ap(t)
y(t) = F(u)(t) ?::[bm(tH JEa(t, €)u(€) deIm

for some functions A,,bn, and af, if and only if K(M) is a strongly linearly

(3.5)

convex compact set.

11



Proof:

Using Trutnev theorem, we conclude that H can be represented in a neigh-

borhood of M (depending on H) by a uniformly convergent series

V= ?;‘: [bm + ap1Uy +...+ arpmum]m

(3.6)

where 372, | ap; |?’= 1 and 332, | 4, |< oo if and only if the envelope of

holomorphy K(M) is a strongly linearly convex compact set.

Writing explicitely the time dependence, we obtain,

3 = Ap(2)
V)= 2 (o) a0k + - F G (DT

JE
But u; =< u',€; >, s0

_ = Ap(1)
B E; [bm(1) + api(t) < u'yer >+ + apm(t) < ulyem >]™
Therefore,
oo At
y(t) =3 2

7= () + fo [ap(D)e1(€) + - - + apm(t)en(§)] u(€) déIm

Thus,

3 o Ap(1)
Y0 = 2 b (s €)uE) e

(3.7)

(3.8)

(3.9)

(3.10)

for allt > 0 since t was fixed but arbitrary; where af, (,€) = 3°7%; apj(t)e}(£).

Hence, we have proved the theorem.O
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Corollary 3:
Suppose the conditions of theorem 7 are fulfilled.

If u is in the ball of radius pp, = infygpoee) | bm(2) |, then

k
- Ap(1) 4
v ;[bm(tn JEab,(t, €)u(€) de]m I< lom— 1 |l 1™ p_%li p(1) |-
(3.11)

Proof:

Immediate and shall be ommitted.O

Remark 4: If we approximate y by the sum of the first k terms, gr =
Z:::l Yp, then reducing these fractions to the same denominator and ex-

panding all the expressions, we get

0 (1) + Ttk fg B Nf L (460, E)u(Er) . u(E)dEy ... dE
k(t) + 21_1 0" e D (€1, EDu(6r) - u(6)dEy L dE
(3.12)

gi(t) =

for £ > 1 and t > 0, which is a ratio of truncated Volterra series.

Remark 5: Using the expansion

1

e T E( 1)JCI+ 1-"“" , lzl<l
14z)™ >0 m=
where C’,’_’;_,,n_1 is the binomial coefficient, we could obtain a direct relation-

ship with the Volterra series representation.
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4 Rational Expansion for Nonlinear Maps : -

Multidimensional Case

In this section we shall extend the idea developed in the previous section to
multi-input multi-output systems. Let ¥ be such a system defined by the

causal operator

F:IL%[0,00;C"] — L?*[0,00;C"] (4.1)

Hence, we are considering a system with n inputs and r outputs.

For a given ¢ > 0 and u € L?[0,00;C"] consider the truncation u' €
L?[0,00; C"] defined by u!(7) = u(r) for 7 € [0,%] and zero elsewhere. Since

F is causal we have

y(t) = F(u)t)

F(u*)(1) (4.2)

Let £ = {e;,j = 1,2,...} be an orthonormal basis of L%[0,00;C]. Let m

be a positive integer, and approximate u'? by the finite sum ¥ u;-’"ej.

14



Therefore,

m m
v'(t)=F (> ujlej,...,z:uj-”ej)(t) 851y cuy T (4.3)
i=1 i=1

Again, for fixed ¢t > 0, the expression in the right hand side of the previous

equation can be seen as an ordinary function of m X n complex variables

uiq,...,ufg;q =1,...,n. Hence, we obtain

& __ s¢, 11 t1 in tn

Y= H (U] yeeeyUimyere s Uy geenyUim (4.4)
Let @' = (ul,...,ull,...,ul",...,ui") € M and suppose that M is a com-

pact set having a one-sheeted envelope of holomorphy K(M). Then, using

the results related to the scalar case, we obtain

Theorem 8:
Suppose that the nonlinear map F is such that H € A(M). Then F can
be represented in some neighborhood of {u € L%0,00;C"] : @' € M,t > 0}

(depending on F) by a uniformly convergent series

o = A1) _
y*(t) = F*(u)(t) = ; T o Fen G Ow@ S Loooyr
(4.5)

for t > 0, if and only if K(M) is a strongly linearly convex compact set.

15



Corollary 4:
Suppose the conditions of theorem 8 are fulfilled.
If u is in the ball of radius p,, = mins=1,...r infyg[0,00) | b5.(t) |, then

2(1) — K z?ps(t)
| Y ( ) z:‘F'—l [b;n(i)-i-zn j;' abig (t,€)ud(g) dgjmn I

=1

< [pm—_ﬂlgn-]ﬁ; opmkt1 | Aps(?) | (4.6)

for & = I 42

5 Feedback Version:

In this section we shall derive a ‘feedback version ’ of the previous results.

Consider the multi-input multi-output system ¥ defined by the equation

y= F(y,’ﬂ',) (51)

where, u and y are respectively the input and output of the system and F

is the operator
F : L*[0,00; C"] x L¥[0,00;C"] — L?[0,00;C"] (5:2)

Defining w = (¢/,v’)’ where the superscript ' denotes the transpose, we de-

duce

16



Corollary 5:

Provided F ( y = F(w)) satisfies the conditions of theorem 8, we have

¥'(t) = i a1t

1 [65.(1) + Ty Jo alia(1,6)ua(€) dE + iy Jo Shma(t, €)ya(6) dEImn+7)
(5.3)

fors=1,...,7rand t > 0.

6 Conclusion:

In this paper we have introduced a new series representation for a nonlinear
input-output map. If truncated, this series reduces to a ratio of truncated
Volterra series and as such, it will give a ‘better’ approximation in a smaller
number of terms. A ‘feedback form ’ has been derived to reduce this number

further.
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