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Abstract

In this paper we shall study the global linearization of nonlinear systems on
a manifold by two methods . The first consists of an expansion of the vector
field in terms of a basis of the space of square integrable vector ﬁe]ds . In the
second method we use the adjoint representation of the Lie algebra of vector
fields to obtain an infinite-dimensional matrix representation of the-system~—A— —
connection between the two approaches will be developed.
Keywords : Global Linearization , Adjoint Representation , Exponential

Map.

T



1 Introduction

The exact representation of nonlinear systems by infinite-dimensional linear
systems has been studied by many authors (see [1],[3]). These methods assume
that the vector field defining the system is analytic and results essentially in
Taylor series representations of the solutions . In this paper we shall study two
methods which require only C® vector fields ; indeed in the first case one can
apply the method to any L? vector field . (We shall say precisely what this
means shortly.)

In the first method , we expand the nonlinear system in terms of a basis of
the (completion of the ) space of ‘square integrable’ vector fields on a manifold.
We shall then demonstrate that for the linear operator A obtained by this
method we may evaluate e#* directly from the series by introducing a sequence
of Banach spaces . Section 3 will deal with the local theory , while section 4
will consider the global result in detail .

In section 5 , we shall introduce an entirely different linear representation
of a nonlinear system by using the adjoint representation of the (infinite- di-
mensional ) Lie algebra of vector fields on a manifold . This will represent the
Lie algebra of vector fields by a Lie algebra of infinite-dimensional matrices .
Finally , a connection between this representation and that of sections 3,4 will

be established .



2 Notation

L3 (R™)

£2

E(M,T(M))
L*(M,T(M))
7 (m)

ad, Ad

B — R [ 5@ P w(e)d < oc)
oo e
{(z1,22,...): Z | z; _|2< oo}
i=1
XCY,iisa c:ontt'nuous inclusion of Banach Spaces
space of continuous linear operators from X toY
tangent bundle of the dif ferentiable manifold M
tangent space at p
inner product on space of vector Sfields
smooth sections of T(M)
completion of E(M,M)) under < .,.>
flow of vector field X with initial point me M

adjoint maps

3 Local Theory of Linearization

In this section we shall consider a differential equation of the form

z= f(z),z € R" (3.1)

The extension of the theory to vector fields on manifolds will be discussed later

. Let LZ(R") be a weighted Hilbert space of square-integrable functions with

respect to w such that the identity function I (I(z) = z) belongs to EL(RY) .
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Moreover , let {e;}o<icco be an orthonormal basis for L2 (R™) , each element of
which is differentiable . Thus we have
o0 -
z= Zx'e.—(a:) (3.2)
i=0
where {z'} € £2 .

Differentiating e, () along the trajectories of (3.1) , we have

%en(z) = Jea(z)E = Jea(2) f(2) (3.3)

where

Jea(s) = (;,f—J())

is the Jacobian matrix of e, . Now make the assumption
Jeq(2)f(z) € LL(R™),n >0 (3.4)

Then we can write

Jen(z)f(z) = Z Unmem(z)

m=0

for some scalars apn. , and so by (3.3) we have

d = =]
Een(:r) = mzﬂ Gnmeém ()

or

— =AE (3.5)

where

E=(eo,e1,e2,...)T



and

A=(anm)

In order to investigate the operator A in more detail , we shall first examine a

more abstract situation . Thus , let
XoCX1CXsC... (3.6)

be a sequence of Banach spaces such that

(i) 4 : X& C X4, is a continuous injection for k > 0 , with
| 2 [[xuss €Il 2 llxe for all z € Xy

(ii) X is dense in X34, (in the topology of Xj11) .
Then {Xg,ir 41} s a directed system of Banach spaces and we let X

denote the direct limit of this system . Thus ,
Xoo = UiZo Xk

and X, has the finest topology for which all the injections
6 X C Xoo

are continuous .

Next let A be an operator in the space £(Xo, X1) and suppose that A has
extensions to each X; , k > 1 such that 4 € £(X}, Xp4+1) . (We shall use the
same letter A for each of these extensions.) Since #; 14, is a continuous injection

» 80 18 Gk k4l = Thyl-1k4£-2 O Fk4to2,k4£-10 ... Odk kg for £ > 2 for £ > 2.



Thus ig41, k420 A € L(Xi, Xe4t) , and by abuse of notation we shall denote this
operator by A , it being clear from the context which spaces form the domain

and range of A . We write

” Az ”XH-:

Tz Ix R

” A ”k.k-H: SUPze X, ,z#0

and we assume that
A=A e k42

is independent of k , k > 0. The notation || A || is therefore unambiguously
defined . Let A = Ao...0A4: X} — Xe4e for each £ > 1 (£ factors). Then
we have

Lemma 8.1

| A% lkkse<l| A ||k > 0,61

Proof

If £ € X, then

A

“ Alz ”Xi+! = “ A “k+£—1,k+l ” A1z ”xk+¢-1

< N Allkte-vae || A |lk4e-2,b40-1 || A 2% s 0a

< AN = |ix,

(3.8)

and the result follows .



Xeo is a Hausdorfl topolgical vector space which is not complete . Let X,
denote the completion of X, .

Theorem 8.2

For any z € X, the series 229 (f.—:t") z converges in Xeo.

Proof

Suppose first that z € X and for any integer N > Olet m > n > N . Then
consider the series 3 - ({‘,—'t’) z . We have , for any k > m,

m A" J m ti )
1> ('ﬁf') zlx, < Y 7 14 |lx,

i=n
m

t ;
< 2 glAllzlx.,  (byiemma3.)

i=n
m

< Y LlAllzlx () (3.9)

i=n
Since i; : X3 C X is continuous , it follows that the sequence Ef=0 (T;t’) z
is a Cauchy sequence in X, and so it converges in Xo, . Similar reasoning now
holds for any z € X, and the result follows .

Corollary

Define the operator e4’ : X,, — X by

A — (A’
e ’z:E(-i—lt')z,xEXm

i=0 )

Then e#! is continuous and hence has an extension

et X — X

which is bounded .

Proof



This follows directly from (3.8) and the definition of direct limits .
Ezample
In order to bring out the significance of the various spaces introduced above we

shall now present a trivial example in the form of a one-dimensional system
Z = cosmz. (3.10)

To simplify the computation we shall consider the system on the finite domain
[-1,1] and so the expansions will only be valid on this domain . Since the exam-
ple is only for illustrative purposes , this is not really a restriction. Indeed , in
some situations it may be that we know that the solutions of a system & = f ()

belong to some bounded region  C R” and so we can then consider the space

L¥(Q) .
Thus consider the o.n. basis Vlg,coswz,sinnz,...,cosmrz,sinnm:,... of
L3(-1, 1) . This basis can be written in the form e, €s,€3,... Where
o = 1
n
en = cosg Tz, n even
. n—=1
€n = sm—2—7r:r:, n odd
Note first that
(s =]
2 = 3 tutes
n=1
where
I = 0



z, = 0 , neven

2
L= (=122
% (=1) (n=D)r
To evaluate the matrix A in (3.5) note that

é] =0
ég = -—(7!'/2)65
éa = w/2(1+eq)
€n = —E&E(en_l +éent3),n even,n > 4
; n—1
én = T‘.ﬂ'(en_3 +ent1),nodd,n>5

This gives rise to an A matrix of the form

o
o
o
o
|
(UL
o
o

4
o
(e ]

(L
(=]
o
o

Y R

0 0 0 o0 -3 o o o0 -3 g

0 0 0 % 0 o0 0 3 oo...

If £(0) = zo € (—1,1) is the initial value , then



n
en(0) = cos—wzg,n even

2

en(0) = .~;z'1rt1'1 wTg,n odd

and so , if E(0) = (e1(0), e2(0),...)T , then the solution of (3.9) is given by

z(t) = Y za(ezp(At)E(0))n

n=1

For the spaces X; we may take

Xg=f2

Sy 8
Xy = {s:(sl,sz,...):(31,32,-33,...)6){;:_1}

4 A Global Theory

In this section we shall globalize the results of section 3 and hence obtain a
solution to the problem of linearizing equations on manifolds . Thus ,let M be
a compact differentiable manifold and let T(M) denote the tangent bundle of
M with tangent space Tp at p € M . Let (,) be a metric on T(M) , i.e. (,)p is

an inner product on 7}, for each p € M and the function

n):U—R (&) = (@), n(p))p)

is C% , where §,n are local sections of T(M) onU C M . Let ubea

strictly positive smooth measure on M and define an inner product on the

10



space E(M,T(M)) of smooth sections of T(M) (i.e. smooth vector fields ) by

(€ n) = /X (€(p),n(p))pdu
for any €,7 € E(M,T(M)) (see [1] ).
Let L?(M,T(M)) be the completion of E(M,T(M)) in the norm (,) . Then
L*(M,T(M)) is a Hilbert space and as such has a basis {v;} which we may as-
sume belongs to E(M,T(M)) i.e. the elements of the basis are smooth . Then

we have

[vi,v;] € E(M, T(M)) C L*(M,T(M)) (4.1)

for each 4, j , where [|] is the standard Lie bracket . Note that E(M,T(M)) is

an infinite dimensional Lie algebra , but L?(M, T(M)) is not , since if we define

(£, =3 figilvi, vs]

for any f,g € L*(M,T(M)) where f = Y fivi,g = Y_g;v;, then [f,g] &
L*(M,T(M)) , in general .

In order to obtain a global theory of linearization we first consider the local
vector field interpretation of the method of section 3 . Assume , temporarily |,

that f is analytic and consider the differential equation
&= f(z),2(0) = 2 (4.2)

defined on R™ . Then , as is well known (see , for example , [6] ) if we interpret

f(z) as the vector field 3., f’"t%.- , We can write the solution of (4.2) in the

11



form of the Lie series :

z(t) = ezp(tif.—(z);%)z
>y (Zf.( )5"’—) (43)

J-D =1

Assume that the sum in (3.2) is essentially finite , i.e

¢
z= E z¥er(z)
k=0

for some £ (indeed , we could arrange for I(z)/ || I || to be a member of the

basis {e,} ) . Then we can differentiate to obtain

Consider the operator }_ fi(z)z> which appears in (4.3) . Then

1‘

th("' (Z”Je.:(’:) = Z‘Uj _Ef.—(::)a—az—‘_—e,-(z)

i=1 j=0 i=1
)

= Z:r:-’ Za,—mem(m) (4.4)
j=0 m=0

Hence , the solution of the system (4.2) given by the Lie series (4.3) corresponds
to the solution of the system (3.5) . Hence , the matrix 4 in (3.5) can be regarded
as a matrix representation of the operator appearing in the Lie series . Note ,
however , that the analyticity requirement for the existence of the Lie series is
no longer necessary in the L? theory so that the system (3.5) can be thought of
as a direct generalization of the Lie series .

Now let f be a vector field on M which we shail assume for the moment to

be differentiable (i.e. f € E(M,(M)) ). If p € M then choose a coordinate

12



system ¢ : U — R" for some open set U with p € U € M . Assume that
#(p) = 0 and denote the coordinates as usual by z; = ¢:(¢),¢ € U . Then we

can write
- 5
f= L @)z e = ¢ €l

We have chosen a basis {v;} C E(M,T(M)) of L*(M,T(M)) and again , we

can write , locally

= 0
w=d ui(@)g e =40 €.

y=1

Let e;(z) denote the vector of local functions (vi1(z),...,%in(z)) - We must
next choose the analogue of x in (3.2) as a combination of the functions e;(z) .

To do this define the vector field on ¢(U) C R™ by

n

X= Zx;a% € T(4(U))

i=1

and let ¢*(X) € T(U) be the pullback of X to M . Then we can extend ¢*(X)
to a vector field on M which we denote by X . Since X € E(M, T(M)) we can

write

]
X = E ‘J-:"U,'
i=0

Returning to the local expressions on ¢(U) we can therefore write
(=]

r= Z'fe.'(:t)

i=0

Now define the local vector fields Eix on ¢(U) by

33 fe@) g hi(o)

i=1£=1

Ep

e @ige

13



Again we can extend each ¢*(E}y) to M (nonuniquely!) to obtain vector fields

E}y . Thus, for each k , we have

_ oo
Ek = Z&jvj
j=0
and , locally ,
0
Ek = Z:Ekjej (45)
j=0

We have therefore proved
Theorem 4.1
Given a vector field X on M we can represent the differential equation defined

by X locally in the form

where
E = (&)

is given by (4.5) and E = (eg, e, es,...)7 is the local representation of the basis
vector fields vg, v1, ... of L2(M,T(M)) .

Moreover , if = satisfies the conditions of theorem 3.2 on the spaces X C X; C

X5 C ..., we can write
E(t) = exp(St)E(0)
and so
z(t) = if‘ (czp(Et)E(Q));

14



5 The Adjoint Representation

In this section we shall consider a different approach to the global linear repre-
sentation of vector fields on a manifold , by applying the adjoint representation
to the Lie algebra of vector fields on the manifold . Thus , let L = A(M,T(M))
denote the Lie algebra of analytic vector fields on M and suppose that each vec-
tor field is complete . If X € L the flow v generated by X defines an element
of a Lie transformation group on M given by m — 5 (m),m € M for each
fixed t . Let G denote the (infinite-dimensional) Lie group of diffeomorphisms

of M . We can define the exponential map ezp(tX) by
ezp(tX) = 7}
and by (4.3) it is given locally by the Lie series ; i.e. if

X= Ef,-(x)a%

i=1

in the local coordinate x , then we have

exp(tX)z = vX(2) = exp (t Zf.(z)a%) z
i=1 :

(where we have identified points on M with their coordinates).

Now consider the adjoint representation of L defined by
ad: L — L(L)

where

(adX)Y = [X,Y),X,Y € L.

15



(Here L(L) is the vector space of linear maps from L into L.) As before , let {e;}

be a basis of L?(M,T(M)) . Moreover , let P, denote the projection operator
Pn:L— L,
where L,, is the subspace generated by {e;,...,em} and define
Ly =Uy_y PnlL

ie. Ly is the linear space of elements of L which have a representation as a
finite linear combination of elements of the basis {e;} . Then , for any X € L,

we have

((@dX)eie5) = ([D_ Xuex, el e5)

k=1

= Zxk([ek,e,-], e_,-)
k=1

= Zxk'cii
k=1

where ¢}, are the structure constants of L given by

[==]
lex &) = z Ci.-ez

=1

Hence , in the adjoint representation the vector field X has the matrix repre-

sentation
A=) "Xp.d, (5.1)

Erample

Consider the system in (3.10) again , i.e.
Z = cosTz

16



The vector fields e; = 7158%?52 = COSTI’I%,E}] = s:'nwza%, oo iy B = cosnw:%, €4l =

sinnwzZ, ... for an o.n. basis of L?((~1,1),7(—1,1)) . We have

X = ccunrzi

Oz
and so
X=e
Hence
((adX)ei,e5) = ([e2, €], €5)-
Now
il = e 52
= 73"
[e2,e2] = 0
[e2,e3] = +/2me;
[e2, 6] = [cos:rz-é-a—ﬂ?,cosfarza—z] if i=2( (even)

1 1
= —5(2 + 1)7!'6,'_1 — 5(-6 - 1)1!'8,'+3
b . 0. ...
[e2, €] = [coswza—x,smfﬂsa—x] ifi=2{+1 (odd)

1
= §(f+ l)ei-3 + %(f— l)meiy1,i2 5

17



This gives the matrix representation

A oo o L

We can provide a connection between the two representations given in sections
4 and 5 by noting the following well-known result on adjoint representations .
(See [2]) :

Theorem 5.1

Let G be a (finite-dimensional ) Lie group and for each g € G let ¢(g) : G — G

be the map
c(9)(z) = gzg™".

Then , if LG is the Lie algebra of G , ad : LG — End(G) is the map which

makes the diagram

18



L(G) il G

ad Ad

End(LG) ezp Aut(LG)

commutative , where Ad : G — Aut(LG) is the map

g — d(c(g))

Moreover ,

ad = d(Ad)

( d is the differential operator ) .

If M is a compact manifold , then the space of diffeomorphisms of M is an
infinite-dimensional Lie group (see [5] and [4] ) with Lie algebra E(M,T(M))
. Let M denote the set of all real infinite matrices and let I; : LG — M, I :
LG — M be the maps associate with a vector field X the matrices obtained
, respectively , by the representations of sections 4 and 5 . Also let M; =
Rangel, , M2 = Rangel,. Then I : LG — Mj and I, : LG — M, are

injective and so we can define the maps
Jl :M1 — LG,J: CMz — LG

where J; = I7!,Jo = I;' . Then we have

Theorem 5.2

19



Let M be a compact differentiable manifold and let (U,¢) be a coordinate
system around m € M where ¢(m) =0, and ¢(U) = R™ . Let {e;} be a basis
of L%(R™) so that 2j=16ij -5;_— is a basis of L*(R",T(R")) . If X is a vector

field on M , let

X= EX(z)a

i=1

be the local representation of X in U . Suppose that A; is the representation of
X (inU ) (i.e. Ay = (X)) obtained as in section 4 and that A, is the matrix
representation of X (i.e. Ay = I5(X)) obtained from the adjoint map as above

. Then

ezp(Ast)Y = {(J1(ezp(Ar1t)Yiezp(—Ait)), ei) }icicoo

where , for any vector field ¥ on M , Y7 is the matrix representation obtained

in the same way as A; is obtained from X and ) is the column vector
Y ={{Y,e:)}

Proof

This follows from the above definitions and the fact that Ad(y;¥)Y is given by
8/0s |o a(t, s)

where

a(t, s) _e:p( EX —) exp (szl’i%) ezp( ZX Bm.)

and I; gives a matrix representation of the Lie series .

20



6 Conclusions

We have presented two new methods of linearizing nonlinear dynamical systems
, which do not require analyticity of the vector field . The first is an essentially
local procedure , but the adjoint representation provides a globally valid matrix
representation of the vector field . It also has the advantage of being a Lie alge-
bra homomorphism and so it will enable systems of vector fields which generate
a subalgebra of E(M,T(M)) to be studied by matrix Lie algebra techniques -

a point which will be investigated further in future papers .
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