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Abstract

In this paper we shall use the global bilinearization of a linear analytic system
using the tensor operator approach introduced in [6]. We shall generalize the
result on finite dimensional bilinear systems [13] to this class of systems. We
use the idea of diagonal dominance for tensor operators to derive an exponential

stability result. Few examples will be presented to illustrate the theory.
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1 Introduction and Notation:

Since its use by Brockett [9], the Carleman linearization [12] has been success-
fully applied and extended by Lo [18], Brockett [10], Krener [17], Takata [19]
and Banks and his co-workers [1]-[8]. It has been always seen as a promising
technique to tackle general nonlinear systems.

In this paper we shall apply this technique to transform linear analytic systems
into bilinear ones in the space of tensors [16]. Then we expand the results in [13]
to this class of systems. We shall present a new functional expansion of the given
input-output map and derive a sufficient condition for exponential stability. This
condition turns out to be the intuitively appealing result that one of the tensor
operators involved verifies the ‘diagonal dominance’ property to be precised later.
The paper is organised as follows. In section 2 we shall present the global ex-
ponential stability for free nonlinear systems. In section 3 we present the new
input-output expansion from which we deduce in section 4 some stability results;
these constitute the generalization of the results in [13]. Finally, in section 5, few
examples will be presented to illustrate the theory.

We shall use the same notations as in [6], that is an n-multi-index is an n-
multiple i = (71,...,1,) of non-negative integers; its length (or order) is given
by | i |[= &1+ ...+ i,. The sum of two multi-indices i and j is defined as
1+])= (f14 J1sevvy-eesin+Jn). Wesaythat i <jifiy <jpfork=1,...,n.

When i < j, we define j—i as (j;—11,...,/n—1,). Wealso definei! =4,!...5,! and

i__ 61 1
x _Il ll.xnn

for x = (21,...,2,) € IR". Also, 1(r) will denote the n-multi-index with 1 in the
rth place and zero elsewhere, and
1 iFi=),

8=
0 ifi#].



We write 1 > 0 if and only if 4; > 0,...,7, > 0.

For an analytic function A : IR — IR, Taylor’s formula becomes

hm=z§Ww,

i>0 &
where

rD(x) = 8liln(x) /62 ... Bzir

n?

Let 1> denote the standard Banach space of square summable sequences and
let I [5] denote the Banach space of sequences (@n)n>0 such that the sequence

(a@n/n!)as0 belongs to I2. Define a norm on I? by

5 31
I (@a)nz0 lle= (Tnzo 28z)* for (en)nzo € I2
Now consider the algebraic tensor product £, = ®,/? and let || - || be any
cross norm on L, [20]. For a simple tensor ®, we have
P = (¢iy..in) =(0f,...00)=a'®...® ",
where o = (af )i,50 € I}(k=1,...,n). Then
12 [l=TII Il o* |,
k=1
For ® = (¢;)i>0 in the space of tensors £ of the form & = (Xi)izg, we have,

@l = TIIl(z)ieso lle

I
—
T, ¥
—_
-,
T |
=
[S)
;
-
SN—
»

1 2
= (520 '('i_!?‘»bl) (11)

Let A be a tensor operator defined by (A®)q = 2p>0 a§ép, p and q being
multi-indices. We say that A satisfies the ‘diagonal dominance’ property if there
exists a p > 0 such that af + Yigp | ai, |< —p,Vp > 0. This is a byproduct of

the generalization of Gersgorin’s theorem to tensor operators [4].
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2 Global exponential stability for free nonlinear

systems:

Consider the system without input given by

i=f(x) ,  x(0)=x (2.1)

where xo € JR" and f : IR® — IR™ is an analytic function such that f(0) = 0.
We shall assume that the solution exists for all time.

Differentiating ¢p = xP, where p is an n-multi-index, along the trajectories of

(2.1), we obtain

. n
¢p = Zkap_l(k)ik

k=1
e )
k=1 UT\!?D o //
= ¥ Zpkf}:nxp:m—l(k)
m|[>0 k=1
= X “i:»‘ﬁp (2:2)
[1|>0
where
SRR | (23)
k=1
or in compact form
=A% , &(0)=2a° (2.4)
S0
bp = aBép + Y apdi (2.5)
I#p
hence
d,. _,P —oP
Tl el =P Y apy (2.6)
I#p
and
B 0 S
e Pgp(t) = 9p(0) + [ €7 T ah(r)dr 2.7)
l#p



which can be rewritten as

“Fep0) = 4p(0) + [ F65(r) S Pr-plr)ar

lI#p
Suppose that x(7) is in the unit ball

{x € R": mazk=1,. n | T |< 1} for 7 < t, then,

| Btgp(t) 1<1 6p(0) | + [ 1B () | T 1af |

I#p
Using Gronwall’s lemma, we conclude
-aP oP
| €7*P'6p(t) I<] ¢p(0) | ' Zhrpl1
Thus,

|¢p(t)| o e(Z;,,p|af’|+aB)t

< e Pt

hence, taking into account (1.1), we obtain

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

I &) [I< e
and
e fI< e
(since || @ ||=| e*@° [[< e , V&° = (x(i));zo. Note that this inequality

only holds on the nonlinear subspace LI of tensors of the form & = (Xi)izg and

it does not follow that it holds for ®° in the closed linear span of tensors of this

form [3]) provided there exists a p > 0 such that
a£+l§|af|5—-p<0 , Vp=o.
P

Hence, we have proved the following

Theorem 1:

(2.14)

Any solution of (2.1) starting in the unit ball {x € R" : maz=y, . | 2 |< 1}
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will remain there and will go to zero exponentially as ¢ — oo if there exists
p > 0 such that
aB+Y |af |<-p<0 , Vp20. (2.15)
I#p
Remark 1:
This diagonal dominance property known as Gersgoring’s theorem has been used

in [4] to prove the non-existence of limit cycles in nonlinear systems.

Corollary 1:
Any solution of (2.1) starting in the unit ball {x € R" : mazs=1,.n | 7 |< 1}
will remain there and will go to zero exponentially as t — oo if there exists

p > 0 such that

1k 1k
b ol [ el [ (2.16)
q20

Proof:
Indeed,

n n
ap + S laf| < Epkfkl(k) +> ) ok lec_p+1(k) |
k=1

L#p Hpd=1
— Zpk f:(k} s z I fi—P+1(k] I]
k=1 L l#£p
L k
- Ealav s ism| 217
k=1 | q#0
Therefore, if
fz_(k) n Z |ff+1(k) IK=p , k=1,...n (2.18)

q#0
then, the previous theorem applies.



3 A nonlinear input-output map for linear an-

alytic systems:

Consider the linear analytic system

X = 00+ Sugx) . x(0)=g0 (3.1)

o= B

where xo € R",u; € R,j = 1,...,m and f,g;(j = 1,...m) : R* — IR" and
h : R" — IR™ are analytic functions such that f(0) = 0,g(0) = 0. We shall

assume that the solution exists for all time and (without loss of generality) that

Let ug(t)=1; ¢t >0 and go = f, (3.1) becomes

g = ioujgj(x) B — (3.2)
y = h(x)

As in previous section, define ¢p = xP for an n-multi-index p, differentiating
along the trajectories of (3.2) and replacing the g; , (7 =0,...,m) by their

Taylor series expansions, we obtain

$p = 2 pxPTI Mg,

k=1
= Y pxP 0N 3 ot
k=1 =0 [l>0
= > a Y udat
ll‘ao k=1 =0
m n - k
= D u ) [ngﬁc e )] dq
3=0 la|>0 Lk=1
That is
& = SuN;9 ; ®(0) = @° (3.3)
3=0
y = C® (3.4)



where

® = (ép)p
(Ni®)p = > aj(p)éq
lal>0

= —p+1(k
af(p) = Y pegliPH
k=1

(C® = 3 hidq

la|>0

Now, for a given k, consider the change of variable
U = N fyunlirg (3.5)
We have ¥(0) = ®°. Differentiating U and taking into account (3.3) we get
U = oM j:uk{f)drPk(t)eNk I u,‘(-r)dr_gSﬁ_;{’/@;? (3.6)
where, Pi(t) = Tk u;iN;.
Let Ux(7) = [y ux(o)de, Then,
U(t) =d° + fot e~ NeUx(7) Py ()M Uk g (1) dr (3.7)
Hence, we obtain the nonlinear input-output map given by

y(t) = CeMUxgo |

LIDID IR 2l I P

121 n#k aFk
Uk(t)— T Ne[Ug(m)- Ti—
C eNe[Uk(t)-Ux( ‘)]Nj,e k[Uk(m)=Us(n 1)]Nj:-1

. Nj, eNk[Uk(ﬁ)-Uk(Tl)]leeNkUk(ﬂ)(I;U

u;, (1) .. ujy(m)dn .. d7y (3.8)

4 Stability of linear analytic systems:

In this section we shall present sufficient conditions for a kind of L*°-stability of

nonlinear systems. In [13] we introduced the following
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Definition 1:
We say that the nonlinear system (3.1) is (£2, L*°[0, oo; IR?])-stable where
L C L*>[0,00; R™] if

Yu € Q C L*[0,00; R™] — y € L*°[0, o0; IR?]

where u and y are respectively the input and output of the system.

We claim the following:

Theorem 2:
Suppose there exists at least one N; (j = 0,...,m) (say Ni) verifying the diagonal
dominance property,
If Q is the set of u € L*[0, 0o; IR™] for which the following conditions hold:
(2) limesco Jo[—prui(T)+ || Pe(r) [lJd7 < 0o
where p; > 0 is such that || €Mt ||< e7#%t, Pi(t) = Y4 us(t)N;
(b) ux 2 0.
Then the system (3.1) is (£, L*[0, oo; IR?])-stable. Furthermore, if the limit is

—oo then y(t) — 0 as t — oo.

Proof:
From the previous section, we know that if N satisfies the diagonal dominance

property,then there exists a positive constant py > 0 such that || eM! ||< e=#xt |

Combining (3.5) and (3.3) we obtain
8(1) = MU, + | " MMMV P, (1) B (7)dr (4.1)
which yields,
| @) Il o | e~ + _/; e OO P(r) | || @(7) [l dr (4.2)
since Ug(t) > Ui(7) 2 0for t > 7 > 0 (because ux > 0). Therefore,
A0 [ 8(2) <] Bo ||+ [ I Pelr) [ 2B [[8(r) [1dr (43)

8



Using Gronwall’s lemma, we obtain

PO || 9(2) ]| @ | expl [ 1| Pi(r) | dr) (1)

Hence,
1@ IHC 11 @ Il eop [ Tpeus(r)t | Br) Ilar (4.5)

Thus the theorem is proved.

Corollary 2:
Assume that there exists at least one N; (7 = 0,...,m) (say N;) satisfying the
diagonal dominance property, and let  be the set of u € L*[0, oo; IR™] for which
(a) limysoo fo[—pru(T) + Tjsn | us(r) | | N |[Jdr < o0
where p; > 0 is such that || eM*t || < e=##t
and
(b) ux 2 0.
Then the system (3.1) is (€2, L*[0, oo; IR?]) -stable. Furthermore, if the limit is

—oo then y(t) - 0ast— oco.

5 Examples:

In this section we shall present few examples to illustrate the theory.

Ezample 1: All the solutions of the system

Ty = =521+ 2zisi -z}
. 9 4
Ty, = —2z9+ z,

starting in the unit ball {(a,b) € R? / maz(| a |,| b |) < 1} will go to zero
exponentially as ¢ — oo and | z;(t) |<| z;(0) | e™* , ¢=1,2. Indeed, the sum
of a diagonal coefficient -5 (resp. -2) and the absolute values of the corresponding

off-diagonal elements 2, 1 (resp. 1) is -2 (resp. -1).



Ezample 2: Consider the system

: 1.3
ry = —5:1’,‘1 + Z.’L'z.'ﬂl
£, = —6z; — jriz}

such that £:(0) = z10,72(0) = z30. Let @ = maz{| z10 |,| 220 |} # 0. Define

z= %x. We obtain,

. 3
7y = =bz+ %23
. 4
Zy = =6z — %22

A sufficient condition for exponential stability is given by the diagonal dominance

inequalities from which we get & = maz{| 210 |,| z20 |} < 2(3)% .

FErample 8: Consider the single-input system
x=f(x)+ug(x) , x(0)=% , y=x (5.1)

where f(z1,23) = (1423, —23+222)T | g(z1,22) = (=221 + 2129, — 325+ 22)T .
The tensor operator associated with g is diagonally dominant (p = 1). Let §) be
the set of u € L*°[0, co; IR™] for which the following conditions hold:

(a)limy_o f5]—u(r)+ || No || d7 < 00 , (b)u > 0. From theorem 1, the system
is (2, L*[0, oo; IR])-stable, and if the limit is —oo then y(t) — 0 as t — oo.

Ny is the tensor operator associated with f.

6 Conclusion:

We have presented in this paper a functional series representation for linear an-
alytic systems using the tensor operator approach introduced in [6]. This result
extends the one derived for bilinear systems [13]. We also derived a condition un-
der which a free nonlinear system is globally exponentially stable. The condition

is based on the diagonal dominance for tensor operators.
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