This is a repository copy of An On-Line Distributed Minimum-Time Trajectory Generator for
Intelligent Robot Manipulators.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/78117/

Monograph:

Zalzala, Ali. M.S. and Morris, A.S. (1988) An On-Line Distributed Minimum-Time Trajectory
Generator for Intelligent Robot Manipulators. Research Report. Acse Report 358 . Dept of
Automatic Control and System Engineering. University of Sheffield

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
university consortium eprints@whiterose.ac.uk
/‘ Universities of Leeds, Sheffield & York —p—%htt s:/leprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

fam § 24 8 ()

58 5% A P i A

An On-Line Distributed
Minimum-Time Trajectory Generator

for Intelligent Robot Manipulators

by:

Ali M. S. Zalzala and Alan S. Morris

Department of Control Engineering,
University of Sheffield,
Mappin Street,

Sheffield S1 3JD,

UK.

Research Report # 358

April 1988

Abstract

An algorithm is presented for the on-line generation of minimum-time trajectories
for robot manipulators. The algorithm is designed for intelligent robots with advanced
on-board sensory equipment which can provide the position and orientation of the
end-effector. Planning is performed in the configuration (joint) space by the use of
optimised combined polynomial splines, along with a search technique to identify the
best minimum-time uaicctow. The method pro;laosed considers all physical and
dynamical limitations inl"lelzrent in the manipulator design, in addition to any geometric
path constraints. Meeting the demands of the heavy computations involved lead to a
distributed formulation on a multiprocessor system, for which an intelligent control
unit has been created to supervise its proper and practical implementation. Simulation
results of a proposed casy study are presented for a PUMA 560 robot manipulator.

-1-

(e

I: Introduction

The importance of the problem of robot trajectory planning and control is evi-
denced by the large amount of the related research literature. The difficulties associ-
ated with tackling such a problem arise from different inherent properties in the mani-
pulator design. The fact of the nonlinear, coupled nature of the arm dynamics 187
imposes a great computational burden [16:10], In addition, several limitations are
encountered concerning the joint angular velocities and actuator torque (or force)
values. The presence of any obstacles in the robot work space would introduce the
additional burden of searching for the best path for the end-effector to traverse 15 1.
Hence, due to all these problematic issues, the tendency has been towards the division
of the problem of trajectory control into two sub-tasks, namely: trajectory planning and
trajectory tracking. A trajectory planner is executed off-line, where specific manipula-
tor motion has to be described and a suitable space curve for the robot end-effector
traversal is to be generated. A time history of position, velocities, accelerations and
torques should be supplied to drive the control loops on the robot joints. Several
methods had been suggested for planning robot trajectories, for which comprehensive
surveys can be found in [21’24 1.

The general approach in applying off-line planning of a trajectory that would
move the robot hand from a start point to an end point is by the provision of several
intermediate-state points (i.c. via—points). This is of extreme importance when certain
obstacles are known to be present in the robot volume. However, once a successful
and suitable trajectory is predicted for the required task, any changes of the proposed
via-points or the imposed constraints require the complete re-computation of a new ftra-
jectory. Considering the fact that optimal planners would require substantial computa-
tion, such an approach is inappropriate in certain industrial applications where different
unpredicted tasks are expected to occur in a changing environment [1. It is the need
for an efficient on-line trajectory generator that encouraged the contribution presented
by this paper. It is intended to provide an accurate and practical form of robot path

tracking in an integrated automated system, with a high level of sensory intelligence
[9, 19,7).

In this paper, a unique trajectory generator developed for the control of robot
manipulators is described. The concept of point—look—ahead is introduced in an algo-
rithm designed to accomplish maximum performance in a minimum of time. Planning
is made on local basis in the joint space by the use of combined polynomial splines.
The method proposed considers all physical and dynamical limitations inherent in the
manipulator design, in addition to any geometric constraints imposed on the path, thus

-3-

accommodating easily for any obstacles in the work volume.

Although a heavy computational burden is involved for an on-line application, the
fact of the algorithm being highly structured and consisting mainly of repetitive com-
putational blocks that are partialy dependent makes such an implementation possible.
Such a structure allows for a high level of parallelism and concurrency in the computa-
tions, and a distributed architecture has been developed to accomodate for it.

In the remaining of this paper, the proposed work is presented as follows: In sec-
tion II, a statement of the problem is defined, while the formulated algorithm is illus-
trated in section III. The computational complexity of the on-line trajectory planner is
discussed in section IV. In section V, a mapping of the algorithm on a multiprocessor
system is illustrated, along with the intelligent control unit proposed. Simulation
results for a case study involving the PUMA 560 manipulator is included in section
VI. Finally, conclusions are made in section VIL

II : Problem Statement

The aim of this work is to construct the minimum-time trajectories in joint-space,
while the mechanical manipulator is actually in action performing a certain task. Thus,
the minimization of travelling time is the criterion to consider in on-line motion plan-
ning.

I1.1: The point—look—ahead (PLA) concept :

For the robot end-effector to track a minimum-time trajectory using the informa-
tion provided by its on-board sensory equipment, the proposed trajectory should be
constructed on-line with a progressive segments method. Hence, while the manipulator
hand is traversing one present segment, another next segment is being computed by the
controller, based on the sensors advice. The border point between these two present
and next segments of the trajectory is defined as the look—ahead point. Each single
look-ahead point defines explicitly the position and orientation of the robot hand at that
specific moment. Thus, a set of n look-ahead points are sufficient to define the
required trajectory. However, since planning is to be performed in the manipulator
joint space, each position and orientation of the end-effector must be transformed from
the hand Cartesian coordinates to its corresponding joint values, producing N sets of n
points, where N is the number of degrees-of-freedom of a given manipulator, namely

0; » =12,0m 4 j=1,2,N (1)
This is accomplished by applying an Inverse Kinematics algorithm to each posi-

tion matrix

0 0 0 0 @

n(z) s@) a() p()
H(t‘-) - [i i i i
where,
n(t;) = unit normal vector,
8(t;) = unit slide vector,
a(t;) = approach vector, and

p(¢;) = position vector.

yielding a set of n-length vectors 8, one for each degree-of-freedom, as expressed in
M

The most important aspect of the PLA concept is that the via-points, necessary for
the construction of the trajectory, are not chosen by the user priori to planning, but
rather selected as the most suitable point whenever needed. This would release the
constraint on having a structured environment, where all path constraints, including the
obstacles (if any), should be pre-organized and, moreover, fixed during the perfor-
mance of motion.

Nevertheless, since the provided look-ahead points are in discrete values, a con-
tinuous history of the trajectory parameters passing through these points should be con-
structed, which suffices for the continuity required. This will be discussed in section
I following.

I1.2: Planning constraints .

For the planning procedure to be accurate, it should take into consideration all
realistic constraints which may limit the manipulator performance [>]. The constraints
to be considered by this algorithm are the joints limits on angular position, velocity,
acceleration and jerk. The first of these is imposed by the manipulator geometric
design, while the second and third limits are defined by the capabalities of each joint
actuator. Hence, the following limitations are set:

Olimit; < O(t,) < Olimit} 3)

0,(z) < | Olimit; | @)

| 6;(z) < | Blimit,; | 5)
6,(t) < | Blimit; | (6)

where,
Blimit; = lower bound on position,
Olimit] = upper bound on position,
élimitj = bound on velocity,
élimitj = bound on acceleration,
élimitj = bound on Jerk.
and, j € {1,2,...,.N}.

One further major constraint to be considered is the coupled and highly nonlinear
dynamic equations of motion (18]. Thus , a limit

T{2) < | 'tlimitj | @)

= =

is set to govern the output of each joint actuator. In practice, violation of any of these
constraints may cause considerable deviation from the desired planned motion.

II : The OLOCQS Algorithm

The algorithm proposed is termed the On-Line Optimum Cubic-Quadratic Splines
or, the OLOCQS for short. This naming will be referred to hereafter. It is based on
the previous work reported in [225]. The joint-trajectories required for planning the
manipulator motion are composed of successive polynomial segments between every
two look-ahead points, hence providing the continuity required. A sample joint-
trajectory is shown in figure (1), with n segments and n look-ahead points (excluding
the starting point). The manipulator tip is assumed initially to be at point #1, with
zero initial velocity and acceleration. The first look-ahead point (i.e. point #2) is then
detected by the on-board sensory equipment, giving the position and orientation of the
robot end-effector, and a trajectory segment is constructed between both points. How-
ever, once the manipulator starts to traverse the first segment, a second look-ahead
point (point #3) is detected, and planning is resumed for the second segment of the tra-
jectory. Hence, providing that the planning procedure for the second segment is com-
pleted before the manipulator reaches the end of the first segment, continuity of motion
is guaranteed. Defining the following

1 1 = the travelling time berween points i-1 and i ,
t‘;xec = the execution—time for planning a movement between points i and i+1 ,

then the following condition

-1
t’axec < Uravel (8)
is necessary and sufficient to ensure accurate tracking. However, if the planning time
exceeds that of the traversal, the manipulator would be in an indeterment state, and

effectively out of control. Therefore, the main task on hand is to accomplish as
shorter a planning cycle as possible.

These trajectory segments are usually constructed by employing a set of spline
functions in order to provide a continuous smooth motion. Cubic splines are the most
applicable [132] due to their attractive characteristics [2>6]. This form of polynomial
splines has been utilized in a previous attempt to design an on-line planner [°].
Another earlier attempt was made [] employing a trapizoidal acceleration profile [!7
1. However, both of these attempts only constructed a single feasable trajectory, for
which the minimum-time criterion was not accounted for.

III.1: General Interpretation :

The time-minimization problem addressed by the presented algorithm depends on
fitting a combined spline of both cubic and quadratic polynomials for each segment of
the trajectory, and further varying the produced trajectory in an attempt to optimise the
travelling time. The search technique involved will be discussed in section I11.4.3.

In order to perform the required optimisation procedure, the path of figure (1) is
subdivided as shown in figure (2), providing a total of 4 via-points for each segment.
This configuration would allow a cubic spline to be fitted for each 4-point segment, as
shown in the following section.

I1.2: Splines formulation :

The general theory of splines can be found in [®] while one application of cubic
splines in the planning of robot trajectories is illustrated in [13].

The planning of a segment-trajectory is to be performed by 3 methods, according
to the boundary conditions assumed for that specific segment, as follows:

(1) Planning the 1st segmenr :@ The initial values of position, velocity, and
acceleration is to be specified at the start of the interval, and continuity of position and
velocity is to be maintained at the end-point. The initial conditions for velocity and
acceleration are usually taken to be zero.

(2) Planning the nth segmen: : Continuity of position and velocity must be
guaranteed at the start point, and final conditions for position, velocity, and accelera-

tion should be met at the end-point (i.e. nth look-ahead point). The latter are, again,
assumed to be zero.

(3) Other intermediate segments : should account for the continuity of position
and velocity at their start and end points.

Hence, considering all the continuity and boundary conditions required by each
individual case, a system of / equations in / acceleration variables is constructed, tak-
ing into account values of position and time intervals provided, where /=3 for the 1st
and nth segment, and /=4 otherwise. The time intervals are defined as

b=ty -y 9)
and are initially given the value
| 01— 6;
= — 10
Glimitj (20)

for each joint segment. The system is represented as

A.x=b (11)

where, x is the required acceleration vector. The linear system of equation for each
case is defined in the following :

* for the 1st segment

h2
3hy+2hyt— hy O
hy
h
A= hz—"’:"' 2(h3+h3) h3 (12.1)
2
I 0 hs 2h; |
we 1
9-3 91 1 1 . h%ﬁl .
6 [—h;-'--}:] = [71:4“’; 91+h191+—'3— - hy6,
M| 1 6 (11
= ! h —_— | — i — = | —— ;
b 6 [81+ 10+ 3]hz + P h3+h2 6, (12.2)
. [008,)]
616, -

6
x= |6, (12.3)
04
* for the nth segment
(28, 0)
A=| h 2hg+hy)) (13.1)
hy
0k 3h3+2h2+h—%
L hQ o

- 10 -

. h0, | 11
b= 6 [94—94’!3: 3] h.z E + hl
1,1 . k8, | 6, 6
6 —[h2+h] [94_94h3r 3] rh3
6
X= éz
0
* for other intermediate segment
- .
2h, hy 0 0
hy 2(hy+hy) hy 0
A=l 0k 2ngthy by
0 0 hy 2hs
62_61 .
. 030, | _ [6,-6,
L R) | M
b —J - r
6 0,05 _ 6,-0,
- h3 o L h'2 o
. 6,-6
[61 7
6,
X= 63
0

-11 -

(13.2)

(13.3)

(14.1)

(14.2)

(14.3)

I11.3: The optimisation procedure :

Each segment of the on-line trajectory constructed is similar to that shown in
figure (3). Two procedures are applied to both intervals h;_=[?_;,%] and
h=[1t;, .] to accomplish the minimum time criterion, namely: fime scaling and
interval contraction.

I1.3.1: Time scaling :

For each of the indicated intervals, a scaling procedure is performed to achieve
two purposes: (a) ensure the velocity, acceleration and jerk of both intervals do not
exceed certain limits specified by the manipulator design for each of its joints, and (b)
pull up the performance of the manipulator to a maximum, while taking (a) into
account. Thus, the following is calculated,

MAX 81 () MAX 0:)
K, = MAX _— —_—
: te [1y,1] 8limit; *te [,] Blimit, (15)
0._(r. 0.t 0.(t,
Ky = Max| - R0 o (16)
ehmztj ma:tj lemztj
0. (1. .t
K3 = MAX i)) 17)
elimitj Blimitj
and,
K = Max[K, , \K; , VK] (8)

where, é, 6 and 6 denote velocity, acceleration and jerk, respectively, and K denotes
the Scaling Factor. Applying the factor K to the two intervals yields

hiy=K . hi,y (19)
h=K.h 20)
i1 = % - 81 @)
6it) = = - 6i(t) 22)
0:(ri1) = 71(‘ YRy (23)

-12 -

0:1(ty) = L. 0;-1(ti-1) (24)

KZ
0,z) = Eli . 0.1) (25)
0,(1,sy) = Elz' 0t;y) (26)
6.-_1("-1) = _K% 84(tiy) 27)
6.1) = % 8.1 (28)

One exception is made in the case of the lsr and nth segments, where the other
3rd interval ,h; 5, is included in the scaling procedure, and its parameters are checked
as in egns.(13-15).

II1.3.2: Interval contraction :

For each of the intermediate segments, the two designated intervals (i.e. h;,_; and
h;), the location of the maximum velocity is found, and the corresponding position
cubic function is truncated accordingly. Thus, for a time interval [z,7;,,], the maximum
velocity could be at ¢; , 7;;; or t € [r;2,,], which would cause the corresponding time
interval to vanish, remain as it is, or be truncated at some value, respectively, in accor-
dance with the standard properties of a cubic equation. However, since the initial and
final conditions associated with the 1st and nth segments may be affected by such a
procedure, only intervals h; and A;_; are processed in these two segments, respectively.
The resulting time of each joint-segment is denoted ’{-ub[l] and af:,,b[zl, as it covers two
cubic polynomials. In the case of the two end segments, a third interval, t{;ub[g] is also
present.

IIl.4: Quadratic Interpolation :

The two procedures presented in section IIL3 are applied to each joint-segment
independently. Thus, maximum performance is expected to be achieved for all joints.
It should be noted, however, that the optimisation procedure yields a time history of
only part of the segment processed, and produces different travelling times for each
joint of the robot. Hence, the remaining part of the segment should be constructed so
as to provide the remaining time-history, while setting an equal travelling time for all
joints. The rest of the segment is constructed by an approximated quadratic spline.

< T3«

However, a time compensation process must be conducted first to achieve equality in
travelling time.

II1.4.1: Time compensation :

The following procedure is applied to all segments, except the 1sz, since it con-
tains no quadratic intervals. Hence, since the second derivative of a quadratic is a

constant, each quadratic interval is initially set so as to get the maximum allowable
acceleration, Blimirj,

(29)

Qlimit.

0(t1-1) = 1(‘:'-2)1
i

hgliad = i

l

This scheme is shown pictorically in figure(4) for segment i of a 6 joints manipulator
(i.e. N=6), where solid lines represent cubic equations and dashed lines quadratics.
Obviously, since each joint is being treated individually, one (or more) joint(s) is

expected to reach the end point faster than the others (e.g. joint #4 in figure(4)). Thus,
it is appropriate to add some additional time

tha o =1,2,..N (30)

for each lagging joint to make its total travelling time equal to that of the leading joint.
In figure(4), tj,'gd is added for j € {1,3,4,5,6} to achieve equal travelling times for all
six joints. Hence, the value of AlY suad in each joint-segments is adjusted so as to satisfy
(a) the maximum allowable acceleration (egn.29), and (b) equality of total segment-
time over all joints. The value of the added time would be

e) - (s] 01

where, ki uble is the 2nd cubic interval of the previous planned segment, i~1. Thus,
the values of the quadratic intervals are updated as follows

hhod = s + 1y (32)
Once this procedure is applied to the example of figure (4), equal time segments
are expected between all pairs of the look-ahead points, as shown in figure (5).

I11.4.2: Approximating the quadratic :

Now, to fit in a quadranc equation between any two positions 6(z;) and 6(z,,),
and velocities B(t,) and B(t,_,_l), the corresponding time interval must be given as

« Tdos

(33)

. 9([;_._1) - B(I")
hl‘] =2 | —
quad [B(t‘) + 9(t£+1)]

However, since A, cannot be guaranteed to equal hitlag» an approximation for the
quadratic polynomial must be made. The derivation of (eqn.29) can be found in
Appendix (A).

The approximation is accomplished by utilizing an equal interval, large-number-
of-segments cubic spline. The time interval A, is divided into / equal sub-intervals
Bl aa

l

hdiv = (34)
Since the velocity during interval hf;-{;ad is a first order polynomial (i.e. a linear

variant with time), the corresponding velocity at the start of each hg;, interval is calcu-
lated as

é(t;-n) = é(fi)] (35)

éw=é(t")+w.[]
w=12,../-1

Thus a system of /-2 equations in /-2 position variables is constructed, taking
into account values of hy, and 6, calculated. The system is represented as in
eqn.(11), where

—?56— 2 0 S 0
haiy, hgiy
3 -6 a
hgiv h%iv hgiv
A=l (36)
0
0) . . .0 % '26
hdl'v hdiv i

and,

-15 -

—361 |
h%iv
- 91 - 92 + 2 93

hdiv

B= (37)

and x is the required position vector,

x=| (38)
0,2
=3 91_1 -

It was found that as / — e, then hy;, — 0, and the cubic polynomials concerned
tend to form a quadratic. However, the value of / should be properly chosen for each
approximation, to assure minimum discontinuity among sub-intervals, and to avoid
unnecessary computational burden. The linear system described has been derived util-
izing the Hermit interpolation polynomial. Detailed derivations are included in
Appendix (B). '

I1.5: The search technique

The planning procedure described in previous isections (II1.2-111.4) has been con-
cemed with only one single segment, which may not be necessarily the best choice.
Thus, to obtain optimality in the time criterion, a search procedure must be employed.
This is made possible by varying the positions of all via-points in a segment except for
the one representing a look—ahead point, by a certain value 6,,. Furthermore, the pro-
cedures of sections III.2,I[1.3 and II1.4.1 are applied, yielding yet another optimised
segment. In order to compare the two resultant minimum-time segments, the following
is defined according to the interpretation of figure (3) as

éorig(r__l) _ éor:'g (t'-2)

£rie = h?’ig + h,"_f‘lg + X
Blimitj

(39)

- 16 -

and,

0" (1,_,) — 6°8(z,_,)

" = B + K + —
maztj

(40)
where superscripts orig and new denotes original and new segments, respectively.
Hence, for a new segment to be accepted as a possible optimum, the following condi-
tion must be satisfied

¥ < o' (41)

It is noted from egns.(39,40) that the initial velocity condition for both segments
is the same (i.e. B""'g(t,L_z)). An exception is once again made for segment #1, where
the following condition is imposed

K + K + W% < B8 + hrig + hY 42)

This process is repeated with a negative added value to the via-points, — 6,,,., and a
yet newer segment is constructed, optimised, and chosen to be the minimum-time one
if the condition of egn.(41) (or (42)) is satisfied. At this stage, it would be appropriate
to decide whether incrementing the positions or decrementing them produces greater
minimization.

At another step in the search procedure, the value of 6,,, is to be increased to
26,,,, and the value would be added to (or subtracted from) the via-points, depending
on the decision made in the previous step. An alternate segment is constructed and
processed in a similar manner. The situation so far is illustrated by figure (6) for a

single segment, and by ﬁgurc (7) for the entire trajectory. This task is to be continued
by adding

0haa=u.0,, , u=134,.. (43)

until no more minimum-time segments could be exchanged. However, it should be
emphasized that the value of 07,; must not exceed the position bounds imposed by
(eqn.3). If such a situation occurs, 63, should be set to the corresponding bound
value.

The initial task of the search process is to vary the value of velocity for each
two-cubic part of the segment, leading to a smaller scaling factor, K, and therefore less
time. The value of 6, is chosen to be relatively large at the start, (e.g. 10 degrees),
which was found to give better results than a smaller value. The search is stopped
once the total segment time for a path with an incremental value 6%“}} is larger or equal
to that with a value of 0},,.

< T

Nevertheless, since a large incremental value of 6,,, was used, larger minimiza-

tion could be achieved considering a value 6%, where
LR (44)

Thus, a new search phase is initiated, with a start position of eg;d and an incremental
value of
ediv

uoo= ” N = i 1,2, geos 4
Oadd U 10 u 3 (5)

where a new smaller travelling time would be achieved. A difference tolerance is
assumed, 8, which represents the difference in the total travelling time between one
phase of the search and the proceeding phase. If the value of 8 was not met by the
first two search phases described, then a third phase is to be initiated with

ediv
100
and so forth until the value of d is met.

0u=u. o p=f 105 (46)

Once the search is completed, the time compensation process of section IIL.3 is
applied to the minimum-time segments obtained for all joints.

II1.6: Dynamic considerations

The limits on the trajectory performance considered in egns.(4—6) are constant
approximations that were deduced for simplicity. However, since the precence of cou-
pling between the manipulator joints is an inherent fact, such an approximation is not
totaly reliable [!!]. Hence, a time scaling algorithm is to be employed, as described in
11147 The equations of motion for a manipulator [18’8] is defined as:

T = f; D8, + 5";)’f Hiam O O + ¢ 47)
=1 =1 m=1
, i=1,2,.,N
or, alternatively, in matnx form as |
w0 = DO) 8() + hOMH®) + c(O() (48)
where,
(D) = [1), ©@), - , W]’ = Nx1 generalized torque vector ,
0(1) = [6,(r), 05(8), - - - , O] = Nx1 vector of joint variables ,

- 18 -

() = [6,(r), 82(1), -+, O] = Nx1 _— of joint velocity
6() = [6,(), éz(}), co o, OnOIT = Nx1 vector of joint acceleration
D(0(r)) = NxN inertial acceleration— related matrix ,
h(B(:),é(t)) = Nx1 nonlinear coriolis and centrifugal force vector , and
¢(0(r)) =Nx1 gravity force vector .

Thus, introducing a scaling factor, K", the new torque values would be

t,’-‘" = (Tl)z [‘l:j - r:j] + ¢ (49)
or,
t}"“’:_%qu—eL-t-%%h- %+c- (50)
g KPR =1 m=1 K :

The value of K™ can be found by considering the limit on the torques imposed by

eqn.(7), then
K= MIFN V L_ (51)
=1 | thimit; | - c;

The recursive Lagrangian formulation of the equations of motion were chosen for
this application, as described in [10].

-19 -

IV: The Computational Complexity

In this section, an attempt will be made to classify the computational complexities
associated with each procedure of the OLOCQS algorithm. These processes are sum-
marized in the following, along with their required execution time, Vs, for a single
segment (i.e. one look-ahead point);

Process #1 : Transformation of a single point from the cartesian space to the
configuration space (inverse kinematics algorithm); (V).

Process #2 : Splining and optimisation procedures, composing the search method, and
including

a : three spline-fit (Gauss-Elimination) and optimisation procedures;
[3(Vg + Vi) 1

b : (r-1) spline-fit and optimisation procedures, including phase #1 of the search;
[0-1) € Viptine + Vi))

¢ : (r(p—1)) spline-fit and optimisation procedures, composing other search phases;
[r(=1) (Vipjine + Vip) 1.
where p is the number of search phases and r is the number of the constructed seg-
ments of each. Thus, total process time would be V., .4 = (p.r+2) (V{;p,ine 2 V{;p, b

Process #3 : Quadratic approximation; (V{wd).
Process #4 : Dynamics considerations, (inverse dynamics algorithm; (Vip).
Hence, the total execution time required by the controller for a single segment i is

tehee = Vi + Viearch + Viuad + Vip

= Vig + 0.142) (Vi, + Vit) + Viuas + Vip (52)
or, in global terms,
. N . 2
teree = Vik + X [merch + Vi] +Vp (53)
Fl

Therefore, if the condition of egn.(8) is to be met, all the processes which require
£ .. time should be accomplished while the manipulator is traversing the previous
look-ahead segment, i—1. The travelling time of the 1sz segment is defined as

ter = eiopn) + Biibizy + hihpa) (54)
or,
1 P o
ttravel = P'gfv (txr'gzvel) (55)

= 90 =

We further define

14 I 1
hrgmain = tr'gwef = Yravel (56)

Also, for other segments i-1, i=3,4,...,n+1,

iy = Bt + R + Kol + Bk, (57)
or,
. N . .
fravet = MIN (1) (58)
and,
W =gk -5, (59)

The value of hi;k;. is present because of the independent manipulation of each joint,
which leads to a different travelling time. This has been made clear in figure (5).

It should be noted from egn.(53) that the largest computational complexity is due
to the value of Vjp, since this involves a multiple solution of the nonlinear equations
of motion at some specific rate over the entire segment-time. Hence, an efficient and
fast inverse dynamics algorithm is required to enhance the performance [26 1.

-21 -

V: The Distributed Trajectory Generator

The computational complexities associated with the processes of the OLOCQS
algorithm imposes a certain lower-limit upon the permissible minimum travelling time.
It is desired to keep such a limit as small as possible in order to get a smaller control
cycle leading to a better tracking performance. In our contribution to deal with this
matter, the concepts of distributed processing have been adopted, leading to a consider-
able reduction in the execution time. The OLOCQS algorithm is readily structured for
such an approach. However, since the travelling time of each of the look-ahead seg-
ments planned is more likely to differ, dynamic assignment of the involved procedures
to the available processors has to be dealt with on-line. Hence, some sort of a
control unit had to be constructed to perform the task of scheduling, which will be dis-
cussed in section V.2. In the following section, the distributed formulation is illus-
trated.

V.1: The distributed formulation :

Concurrency in the formulation is exploited at two distinct levels, as follows:
A. Global level : where each joint-segment is planned independently.

B. Local level : where the optimisation of possible joint-segments is performed by
concurrent modules.

The proposed structure for the distributed formulation is illustrated in figure (8). It
should be noted that each of the Inverse Kinematics and the Inverse Dynamics pro-
cedures is being treated as a sequential process, although a distributed form could be
accommodated for, as will be discussed later.

It is proposed to map the OLOCQS algorithm onto M processors, supervised by
the controller. Thus, for each joint of the manipulator, a number L = -f\,i Processors is

available to perform the planning. Searching for the minimum-time segment is started
by performing three spline and optimisation procedures, one for the original values of
the via-points, and two others for the incremented and decremented alternatives. Upon
the decision which side of the search is the best, a Qet of (r—1) spline and optimisation
procedures are initiated to decide on the minimum-time segment for this first phase of
search. Depending on the accuracy of the minimization required (i.e the value of § of
section IIL.5), a set of (p.r—r) similar procedures are involved. Once the time-optimum
segment is found, a quadratic approximation procedure is used to produce the required
segment.

-22.

The total execution-time required for the previous combination of tasks is
225 = 0.r+2) (Vptine + Vopr) + Vguaa (60)

where each of the spline and optimisation procedures is proposed to be performed on a
single processor. Adding the required time for the kinematics and dynamics computa-
tions, the total execution-time required is

toec = Vg + 225+ V) (61)

However, since the traversal-time #;),,; cannot be guaranteed to accommodate for
the required ¢, a compromise should be sought.

V.2: The intelligent control unit (ICU) :

Since the travelling time of the previous segment (i.e. £;),,;) may be less than that
required to plan the present (i.e. t‘;m), some of the processes covered by egn.(61) may
have to be ignored. Hence, an intelligent control unit should be created to supervise
such a task. The ICU is to instruct the controller what number of the available proces-
sors is to be used. Such a decision is based heavily on the difference

Ar = t‘exec - I‘l.:jvel (62)

If Ar is very large, it may be necessary to delete the dynamics evaluations, or comput-
ing them at a different rate, thus reducing the execution time by a significant amount.
Otherwise, if the time difference is slight, a mere deletion of one or more phases (p) of
the search may be adequate, or even a few segments (r) of each.

Although certain reductions in the execution time are acceptable, there is a certain
lower bound that should be maintained,

¢

o thound = Vi + Vipine + Vope (63)

which represents merely the requirements for computing the inverse kinematics
transformation of the look-ahead point in addition to constructing a single feasable seg-
ment.

We consider here the extreme case of having
Bhound > s (64)
which prevents the ICU from issuing the simplest solution offered by egn.(63). Hence,
the ICU should be programmed to check the value of the available travelling time a

priori to executing its corresponding segment, and further rescaling the value of time,
if necessary, to accommodate for the lower-bound imposed.

=23 -

In summary, the ICU would act as a supervisor to the multiprocessor controller,
activating periodically the appropriate number of processors. Its ultimate aim is to
plan as accurate and optimum segment as possible for the manipulator to track,
although a certain percentage of the accuracy and/or optimality sought could be waived
away in certain critical situations, thus ensuring a continuous and predictable motion of
the robot.

V.3:. The inverse dynamics and inverse kinematics computations :

The solution for the inverse dynamics (ID) was considered as a single sequential
unit in the formulations of sections V.1 and V.2. However, the ID process is to be
computed at a certain rate defined by the robot control cycle [3]. Therefore, the
required computational ti;ne is actually

t;ravel

Vip=1tp . (65)

tcycle
where,

Yeyele = the period of the robot control cycle

tp = the time required to compute a single ID procedure |

Hence, reducing the value of 7;, would lead to a better efficiency. This can also be
achieved by the application of parallel/pipelined structures, for which several contribu-
tions could be found in the related literature. One practical system is proposed in [26
], which enables the computations at a speed of 26 microseconds per procedure,
employing an MIMD array of transputers.

A similar argument could be made for the inverse kinematics algorithm, for
which an efficient pipelined formulation had been developed in [12].

-24 -

VI: Simulation Results

In this section, an attempt is made to prove the practicality and efficiency of the
proposed trajectory generator by solving for the 6 degrees-of-freedom PUMA 560
robot manipulator as a case study. Simulation programs have been written in the
C programming language and run on the Sun Workstation. A total of 7 look-ahead-
points were chosen for each of the manipulator joints, as shown in Table (1). The
constraints on the manipulator parameters are given in Table (2).

Table (1) : Joint Variables
Joint#
Point#
1 2 3 4 5 6
Start 10 15 45 5 10 6
i 60 | 25 | 180 20 | 30 | 40
2 75 30 | 200 60 | -40 80
3 130 | 45 | 120 110 | -60 | 70
4 110 | -55 15 20 10 | -10
5 100 | -70 | -10 60 | 50 10
6 -10 | -10 | 100 | -100 | -40 | 30
7 -50 10 50 -30 10 [20
Table (2) : Manipulator Constraints
Joint#
Limit
1 2 3 4 8 6
Velocity 100 95 100 | 150 | 130 110
(deg.sec™)
Acceleration 45 40 75 70 90 80
(deg.sec™?
Jerk 60 60 55 | 70 75 70
(deg.sec™®
Torque || 97.6 | 186.4 | 89.4 | 242 | 201 | 213
N.m.)

=25 -

Applying the OLOCQS algorithm, joint trajectories could be constructed in a
look-ahead manner, as was described in previous sections. The minimum-time seg-
ments obtained are compared with the originals in Table (3), where the total travelling
time was reduced from (34.117) down to (8.811) seconds.

Table (3) : Simulation Results

Trajectory || Original Planned
Segment Time * | Minimum Time *
1 7.214 1.227
2 2.878 0.856
3 4.272 0.829
4 5.615 0.955
5 2.915 0.833
6 5.879 - 1.179
© 7 2.672 0.393
8 2.672 2.207

* values in seconds

The process of applying the optimization procedure and conducting the search
technique is illustrated in Figure (9) for the st segment of joint #1 of the manipulator.
In Figure (9a), several possible segments are constructed, where each is optimized
independently, yielding different travelling time for each, as shown in Figure (9b).
Finally, the optimum segment amid these is chosen, as in Figure (9c). All other look-
ahead segments are processed in a similar fashion. Hence, the first rwo segments con-
structed are presented in Figure (10) for joint #1, while the complete minimum-time
trajectories for all 6 joinfs of the PUMA are included in Figures (11-16). The initial
and final conditions for velocity and acceleration at both start and end points are taken
to be zero.

To elucidate the function of the ICU, values should be assigned for each of the
execution times of egn.(52) when run on the Sur microsystem with a floating point
accelerator [20]. These values are arranged in Table (4).

-26 -

Table (4) : Processes Execution Time

Execution Time Value (msec)
Viistine 12
Vit 65
IID * 67

* Vip is as in egn.(65)

However, as the execution time of the inverse kinematics algorithm, V, is minute
relative to the total completion time, it has been neglected in this simulation. Further-
more, taking into account the value of ¢, for the inverse dynamics algorithm, it was
regerded to produce a significant overload in computations, particularly when a cycle-
time of r,.,,= 28 milliseconds (i.e. control frequency of 36 Hz) is maintained for the
PUMA [81.

As the construction of segment #1 is carried out while the manipulator is at rest,
no limit is placed upon the planning (execution) time needed. However, the travelling
time of the lst segment, computed by egn.(55) is to be taken as the planning time
required for the next. the planning procedure of the 2nd segment is illustrated in
Table (5) for all 6 joints of the manipulator. Consequently, the number of needed
phases (p) of the search, along with the number of optimisation procedure (r) for each
joint could be recognized, considering an accuracy tolerance of & = 0.01 for the optim-
isation. The minimum-time segment was found to be of duration t%,ml = 1.422
seconds, and is to be planned within a time ..., = 0.737 seconds. Although the plan-
ning time for most joints was within the required limit, the optimum planning time for
joint #5 exceeded it (1.540 > 0.737), where a total of 5 search phases were needed to
come in terms with the required tolerance, 8. Hence, the ICU was invoked to reduce
the time by limiting the serches to 3 phases only, as shown in Table (5).

-7 .

Table (5) : Planning of the 2nd Segment
Search History
. Optimality Requirements ICU Instructions
Joint #
P r Total | Planning || p r Total | Planning
Time * Time *
1 3 3+2+2 7 0.539 3 | 3+42+2 7 0.539
2 3 3+242 7 0.539 3 | 3+2+2 7 0.539
3 3 3+2+1 6 0.462 3 [34241 6 0.462
4 3 3+2+2 7 0.539 3 | 3+242 7 0.539
5 5 | 3+2+7+7+1 20 1.540 3 | 3+2+4 9 0.693
6 3 3+2+2 7 0.539 3 | 3+2+2 7 0.539
* values in seconds

The fast algorithm for the inverse dynamics computations presented in [26]
requires a time of 2.46 milliseconds per solution, employing a network of 4 tran-
sputers, which would have accommodated easily for the dynamic effects in this exam-
ple.

The data used in this case study were obtained from [!%22] for comparison pur-
poses, while the related PUMA data were extracted from [13:1].

- 28 -

VII: Conclusion

An algorithm has been developed for the minimum-time tracking of robot motion,
where planning was performed in local basis for each joint trajectory. The proposed
method has its main thrust for being able to generate the required trajectory in an on-
line scheme. The introduction of the supervisory control unit design complements its
performance capabilities, and ensure accurate and continuous motion to be possible.
The computational burden caused by the global selection of different constraints for
solving the planning problem was substantially reduced through a distributed realiza-
tion of the formulation. The authors see the primary benefit of providing such an
integrated system for certain applications where the precence of intelligent sensory-
based robots is a must when complicated, varying and unstructured environment exists.
Further research is currently being conducted, where the proposed algorithm is to be
mapped on an array of T800 transputer machines, for which programming is per-
formed in the parallel C language. Hence, the practicality of the algorithm would be
shown through its implementation on an actual multiprocessor system.

-29 .

References

[11.

[2].

[31.

[4].

[5].

[61.

[71.

[8].

[9].

[10].

[11].

12].

[13].

[14].

[15].

[16].

17].

[18].

19].

ARMSTRONG, B., KHATIB, O., AND BURDICK, J., (1986). ‘‘The Explicit Dynamic Model and Iner-
tial Parameters of the PUMA 560 Arm,”’ Proc. 1986 IEEE Int. Conf. on Robotics and Automa-
tion, vol. 1, pp. 510-18.

BOLLINGER, J. AND DUFFIE, N., (1979). *‘Computer Algorithms for High Speed Continuous-Path
Robot Manipulators,”’ in Annals of the CIRP, vol. 28, pp. 391-95.

BRADY, J. M., HOLLERBACH, J. M,, JOHNSON, T. L., LOZANO-PEREZ, T., AND MAsoON, M. T,,
(1982). Robot Motion : Planning and Control, MIT Press.

CASTANN, R. H. AND PAUL, R. P., (1984). *‘An On-Line Dynamic Trajectory Generator,”’ Int. J.
Robotics Research, vol. 3, no. 1, pp. 68-72.

CHAND, S. AND DoTy, K. L., (1985). ‘‘On-Line Polynomial Trajectories for Robot Manipula-
tors,”’ Int. J. of Robotics Research, vol. 4, no. 2, pp. 38-48.

DE-BOOR, C., (1978). A Practical Guide to Splines, Springer-Verlag.

DICKINSON, M. AND MORRIS, A. S., (1988). ‘‘Co-ordinate Determination and Performance
Analysis for Robot Manipulators and Guided Vehicles,” IEE Proceedings, Part-A, vol. 135, no.
2, pp. 95-98,

Fu, K. S., GONZALEZ, R. C., AND LEE, C. S. G., (1987). Robotics : Control, Sensing, Vision and
intelligence, McGraw Hill.

HIRZINGER, G. AND DIETRICH, J., (1986). ‘‘Multisensory Robots and Sensorybased Path Genera-
tion,”” in Proc. IEEE Int. Conf. Robotics and Automation, vol. 3, pp. 1992-2001.

HOLLERBACH, J. M., (1980). ‘‘A Recursive Lagrangian Formulation of Manipulator Dynamics
and a Comparative Study of Dynamics Formulation Complexity,”” IEEE Trans. Syst., Man,
Cyber., vol. SMC-10, pp. 730-36.

HOLLERBACH, J. M., (1984). ‘‘Dynamic Scaling of Manipulator Trajectories,” Trans. ASME, J.
of Dyn. Syst., Meas. and Control , vol. 106, pp. 102-06.

LEg, C. 5. G. AND CHANG, P. R., (1986). ‘‘A Maximum Pipelined CORDIC Architecture for
Robot Inverse Kinematics Computation,”’ Report TR-EE-86-5, Purdue University.

Lm, C. S, CHANG, P. R., AND LUH, J. Y. S., (1983). “‘Formulation and Optimization of Cubic
Polynomial Joint Trajectories For Industrial Robots,”” IEEE Trans. Automatic Control, vol. AC-
28, pp. 1066-74.

LI, C. S. AND CHANG, P. R., (1985). *‘‘Approximate Optimum Paths of Robot Manipulators
Under Realistic Physical Constraints,”” in Proc. IEEE Int. Conf. on Robotics and Automation, 5)s3
73742,

LOZANO-PEREZ, T., (1987). ‘‘A Simple Motion-Planning Algorithm for General Robot Manipula-
tors,” JEEE J. Robotics and Automation, vol. RA-3, no. 3, pp. 224-38.

Lug, J. Y. S., WALKER, M. W,, AND PAUL, R. P. C,, (1980). “‘On-Line Computational Scheme
for Mechanical Manipulators,” Trans. ASME, J. of Dyn. Syst., Meas. and Control, vol. 102, pp.
69-76.

PAUL, R. P, (1976). ‘“‘Explaratory Research in Advanced Automation,”” SRI Project 4391,
Chapter 4, 5th Report.

PAUL, R. P., (1981). Robot Manipulators : Mathmatics, Programming and Control, MIT Press.

PORRILL, J., POLLARD, S. B., PRIDMORE, T. P., BOWEN, J. B.,, MAYHEW, J. E. W,, AND FRisBY, J.
P., (1988). “TINA: The Sheffield ATVRU Vision System,”” AIVRU memo #27, Al Vision

-130 -

Research Unit, Sheffield University, United Kingdom.
20]. SUN,(1986), Floating-Point Programmer’s Guide Jfor the Sun Workstation, Sun Microsystems Inc..

[21]. SAHAR, G. AND HOLLERBACH, J. M., (1986). ‘‘Planning of Minimum-time Trajectories for Robot
Arms,’’ Int. J. Robotics Research, vol. §, no. 3, pp. 90-100.

[22]. THOMPSON, S. E. AND PATEL, R. V., (1987). “‘Formulation of Joint Trajectories for Industrial
Robots Using B-Splines,” JEEE Trans. , vol. IE-34, pp. 192-199.

[23]. VANDERGRAFT, J. S., (1978). Introduction to Numerical Computations, Academic Press.

24]. ZALZALA, A. M. S. AND MORRIS, A. S., (1988). “‘An Optimum Trajectory Planner for Robot
Manipulators in Joint-Space and Under Physical Constraints,”” Research Report #349, University
of Sheffield, Department of Control Engineering.

[25]. ZALZALA, A. M. S. AND MORRIS, A. S., (1989). *‘Optimum Trajectory Planning for Robot Mani-
pulators,” To appear, IMA Conf. on Robotics: Applied Mathematics and Computational Aspects,
12-14 July, Loughborough University of Technology, United Kingdom.

26]. ZALZALA, A. M. S. AND MORRIS, A. S., (1989). *‘A Distributed Pipelined Architecture of the
Recursive Lagrangian Equations of Motion for Robot Manipulators with VLSI Implementation,”’
Research Report #353, Department of Control Engineering, University of Sheffield, United King-
dom.

- IV
SHEFFIELD UNIV.
APPLIED SCIENCE
-31- LIBRARY

Appendix (A)
Quadratic Splines

Since 6(¢) is a quadratic, then é(t) must be a linear function

é(t) = -?i(t,- 1D + E(r—to (A.1)
h; h;
, i=1,2,...,m
where,
=ty -t (A2)

and m is the number of points.

Integrating (A.1) yields

. 9; 0.1
8() =- —z‘h—i(*‘i+1—t)2 ;i 2 (=15 + C; (A.3)
Evaluating C, yields
ih;
9(t£) = 9,- = - T + Cl (A.4)
04,
= C;=6;+ .. (A.5)
also,
6;41h;
O(riy1) = 041 = H; - + C (A.6)
0. .h
= C,=6,, - ‘*2‘ ‘ (A7)
Equating (A.5) and (A.7) gives
h, . .
01 =6; + '2—‘ (0:+6;,1) (A.8)

-32 .

Appendix (B)
H
Velocity Approach to the Formulation of Cubic Splines

For an interval with only two points known, the Hermit Interpolating Formula
can be expressed as

. n-0%(t—t,_ - -t)2t
6() = 6, (2)(2 1) _ek(kl)z(k)
ki ki

(Bt 200ty +hy] +6 (=t)21ty +hy]

k-1 k (B.1)
h hi
where,
=t —t (B.2)
then,
v 2 . . Bk—ek_l
0(ry) = —(0;_1+20,) — 6|——— (B.3)
: 2 041—0
0(tgyy) = P (0,+26,1) - 6[_+21“*"] (B.4)
k1 M
Equating (B.3) and (B.4) yields
2 . : 0,9, 2 B141-0
~—(0,_,+268,) — 6 = (0,420,.,) -6 (B.5)
hk k-1 k) [h% J hk+1 k k+1 %+1
Setting equal values for all values of A’s and simplifying gives
5 6 3 ..z £ ol
'Fek—-l - ";'15‘91: + Fem = 5 [0k176,+26,,] (B.6)

» k=2,3,...,1-1

where / is the number of points. Since the values of ©; and 6; are known, then for
k=2,

6 34 Loz 2 : 3
- -;2-92 + 71593 = -}-;-[—91*92+293] - ?91 (B.7)
also for k=I-1,
3 6 - : 3
?9;_2 - -;1-59,_1 = I[—B,_2-81_1+261] - ;2‘91 (B.8)

- 3% .

Thus, a system of /-2 equations can be solved to obtain the required position
values 6, k=1,2....,/-1.

=3 .

(¢) ainbi4

L+1 ! b1 ¢l
o © o
| * L-1 = ¢l _.._
. —.* —\—
(¢) @inbiy
ug uewbeg , (1-u)# wowbag c# Juowbag c# uowbag | L uowbeg
i e e
uod pug .
¥ oo o o o Xffy¥—o0o o % e o ¥ oo o ox
(Wsuiody (-uedyT EUHUOdYT ggquiod v z#uod v L#uod v wiodyels
(1) a21nbiy
juodpug wiodyels
¥ ¥ ¥ x ¥* ¥ —
(1 +U)# uod W#wod (1-u)# Juiog t# Juod e# Ujod Z# Wiod

ki uiod

LAP,, LAP.

Joint#1 e———-—- e ;- v
*x-—— - * ©
*-— °— *—o
-0 *

R -© *—o

Joint#6 ®#--© *— —©

Figure (4)

Joint #1 M*Pij___ll;gi,___e " j’;‘i’“]*LLAPi hjci‘jbi‘?]
W e * —&
k- O &

i
e o & ... remain
-~ o k—o6 !
Joint#6 *K--—-———-—- © * o

Figure (5)

(2)@inbiy

(9) ainbiy
Q. N
A s
b/f / \U.\mw--.-..o

N ra

\L

(L3 # dv o (1-D# dv1

@oum..c?oﬁa(owﬁwﬂﬁw

1

@o_w_oma :Em.wa

Aowspy waisAso |

wiyILoB)y solweuAq asionu

(8) ainbi4

uonewxoiddy oa&ﬁc@

i

@o_m_owc yoleoag)
S

eZIWNAO Yuu =

m_o.:coo yoleag v
|

9

wiyiLob)y sonewaury asiaAu|

m._osz_xo._an_(o_uEvﬂ.Gu
{
@O_mmown_ r_ohwmwv

oZ)WRAD Y u = ou_rmﬁo

m |01JUOD YoIeag u

ﬂ

uiod peaye-j00j B Jo UOIBIUSLIQ) % UOIISO]

10.000

SOTTT POSITION (DEG)

Q.000

i i i — 1 TIMELSE

18.871

8:838

1 VELOCITY (DEG/SEC)

186.47Q

Q.000

—18.430Q

11. 415

Q0.Q00

—19.977

]

—1 TIME (5E

———————
e ———
—————

Figure 9a

40.900 _ posITION (DES)

10.000

5.000 1 TIME §55<)
26.939 JVELOCI'I"Y (DEG/SEC)
3:833 1 TIME 4850
37.798

0.000Q

= - | =S S t 1 TIME (85
—25.714] \

80.000 ERKLBESASESSI——

0.000 | t t t t t t t t i ﬂMEéggC)

—_— 1

Figure 9b

24.783

+ POSITION (DEG)

10.000 X . i . N i |
5.000 f T ' f 1 ' ' t — TIME 485

23.808 + VELOCITY (DEG/SEC)

9:999 . - ; ; i '. , : ! { TIME (SEC
37.798 1+ ACCELERATION (DEG/SEC2)

3:3338 t . . - : ; : : +——— TIME (SEC)
80.Q00 R LR S E

S ; : : ; 4 ; b ; 4 TIME (SEC)

—-80.000

Figuré 9c

S9.845 _ posImTIioN (DEG)

10.000

0.008 J f t f f f t f { TIME (3EC)

23.811 < VELOCITY (DEG/SEC)

2:33% ‘ f f t t 1 f ; f t — TIME (SEC)

37.798 1 ACCELERATION (DEG/S 2)

e - : : i ; \; ‘ i ; J\;HM§_1<§gc:

—9.888
80.000 +
W : t+ ; + : t t ; ; { TIME (SEC)
—-80.000 -

Figure 10

130.093

Q.000

—-590.Q00

T POSITION (DEG) Jelnt #1

t t t e t } t ‘.\., 'I‘IME_B(SECD

24.848

Q0.0Q00Q0

—24.329

. [, ; .\/ ; : 1 TIME (35

4+5.000

9.QQ009Q

—aa.910Q

ACCELERATION (DEG/SEC2)

4

1 TIME (559

80.000

Q.Q00

—80.000

~ERHy (DEG/SECT)

I .
=1 T
L .
T T
" 1 1 "
T T

3
i
1
i

1 T 455

Figure 11

31.417 -W\ delnt 2
p— : : ; i : : -~ SR~ — TIME (SEC)
—70.025
12.414 - VELOCITY (DEG/SEC) /_—\
0.000 ‘ t ! ' =5 ' i t i = TIME (55
—3%0.183
39.525 1 ACCELERATION (DEG/SEC2)
0.000 = * } t / |‘] t \‘I/‘ TZME 5<8§c)
—40.000 | L]
£0.000 wERK (DEG/SEC3) —
0.000 ; f 1 f t t — —1 TIME £55°
—80.000 .

205.318

1 POSITION (DEG) Jeoint #3

e t t t t ; e 1/.\;1 TIME £35°2
44.850 < VELOCITY (DE EC)

0.000 ' ' L f ' t /T\—-\\/ TIMEE ECSZEC>
-32.797

75.000 <+ ACCELERATION (DEG/SEC2)

0.000 ' ! E : P ' f '\' TIME §35°°
~75.000

55.000 —~ERK—LBEG/SEC3)

e \ ; ‘ : H ; i i . oy —

0.000 y ! L l L : N b ' ! 5.335
—55.000 —

Figure 13

110.028 1 POSITION (DEG) Jolnt #4

o : : ; : -+ : t i i —i TIME (SEC)

—103.878

40Q.528 <+ VELOCITY (DEG/SEC)

n

0.000 | t f t t t t e f t = TIME (SEC)

—23.8%51

87.889 ACCELERATION (DEG/SEC2)

N |

0.000) ’ ! 3 eSS L ! ' ‘I‘mg_a(ggc:)
—S51.833
70.000 <ERK (DEG/SECSI) —
. N I B . . : r . FTINE psEC
o.ooo] T 1 1 1 1 i 1 1 1 E_agg
—70.000

Figure' 14

S51.489

+ POSTITION (DEG) Jolint #5

L — \ el g

- - | | \/ | \\/ <3Ec}
-89.715
385.727 < VELOCITY (DEG/SEC) /\
—38.795 i
53.233 ACCELERATION (DEG/SEC2)
0.000 [= t t T AN 1 T t / TIMaE.a(QSEEC)
—72.Q93
75.000 r!((DEG/SEC3) e
0.000 1 f f f +— f " ; f i 'rmg-a(ggc)
-75.000

Figuré 15

