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Abstract

Identification algorithms which combine structure determination and parameter
estimation are developed based on well-known orthogonal least squares methods.
These algorithms can provide information about the structure, or which terms to
include in the model, and final parameter estimates in a very simple and efficient
manner for a class of multivariable discrete-time nonlinear stochastic systems which

are linear in the parameters.

1. Introduction

Most systems encountered in the real world are nonlinear and since linear models
cannot capture the rich dynamic behaviour of limit cycles, bifurcations etc associated
with nonlinear systems it is important to investigate the development of identification
procedures for nonlinear models. The NARMAX (Nonlinear AutoRegressive Moving
Average with eXogenous inputs) model which was introduced by Leontaritis and
Billings (1985) provides a basis for such a development. When a polynomial
expansion of the NARMAX model is selected the model becomes linear-in-the-
parameters. Providing the model structure, or which terms to include in the model has
been determined, only the values of the parameters are unknown and the identification
can thus be formulated as a standard least squares problem which can be solved using
various well-developed numerical techniques. Unfortunately the model structure of real
systems is rarely known a priori and methods of model structure determination must
therefore be developed and included as a vital part of the identification procedure.
Because the number of all possible candidate terms can easily run into several
thousands even for 'moderately’ nonlinear systems optimal multiple selection methods
(Leontaritis and Billings, 1987) are difficult to use and suboptimal methods of structure

determination such as stepwise regression (Draper and Smith, 1981) become very
complicated and time consuming.

An orthogonal algorithm which efficiently combines structure selection and
parameter estimation has been derived (Korcnﬁérg, 1985) and later extended to the
identification of singlc-ihput single-output nonlinear stochastic systems (Korenberg et
al, 1988). A more reliable verson of the algorithm was developed in (Billings,
Korenberg and Chen, 1988) and applied to multi-input multi-output nonlinear
stochastic systems (Billings, Chen and Korenberg, 1988). Various simulation studies
and practical applications have shown that this algorithm provides a simple and
powerful means of fitting parsimonious models to real systems. A similar structure
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selection algorithm incorporating some statistical tests for nonlinear models without
noise modelling was reported in Kortmann and Unbehauen (1988). A slightly different
structure determination algorithm using projection matrices (symmetric and orthogonal
matrices) was given by Desrochers and Mohseni (1984).

Starting with a review of methods for solving least squares problems, the present
study develops structure selection algorithms for the polynomial NARMAX model by
modifying and augmenting some well-known techniques of orthogonal decomposition
of the regression matrix. It is shown that the onhogonal algorithms developed by the
authors (Korenberg et al, 1988; Billings, Chen and Korenberg, 1988) belong to this
type. Advantages and disadvantages of using the different orthogonal decomposition
techniques are discussed and a comparison of the resulting structure selection
algorithms is given.

2. Nonlinear system identification and linear least squares problems

Under some mild assumptions a discrete-time multivariable nonlinear stochastic

control system with m outputs and r inputs can be described by the NARMAX model
(Leontaritis and Billings, 1985)

YO = fO(=1),...y(t=n)),u(t-1),..,u(t-n,),e(t-1),....e(t-n,)) + e() (1)
where

y1(0) ug(r) e;(r)
yo=| .| uw=|. | en=|. 2)

m(t) ur(f) e,,(t)
are the system output, input and noise respectively; n,, n, and n, are the maximum lags
in the output, input and noise; {e(:)} is a zero mean independent sequence; and f(.) is

some vector-valued nonlinear function. Equation (1) can be decomposed into m scalar

equations as follows

yit) = _f}(y,(r—-l),...,yl(t-—n,),...,y,,.(l—l),...,y,,,(t—n,)l,ul(r—l),...,ul(t-—n,,),...,u,(t—l),...,u,(t-n,,),
e1(-1),....e1(5-1,), s (t=1),..nm(t-1,)) + e{8) i=1,...,m 3)

A special case of the general NARMAX model eqn.(1) is the NARX (Nonlinear
AutoRegressive with eXogenous inputs) model
YO = f(t-1),....y(t=n),u(t-1),...,u(t-n,)) + e(t) “4)
or
)’;{f) :f.l'(yl(l_l)!'"!yl(t_ny)r"!ym(r_'1):---|ym(l_ny)9u1(,_1)9---’1‘1(l_'nu)r‘-,ur(r_l);---y
u{t-n)) + e(t) i=1,...m (5)
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In reality the nonlinear form of f() in eqn.(5) is generally unknown. Any continuous
f{.) however can be arbitrarily well approximated by polynomial models (Chen and
Billings, 1988b). Expanding f{.) as a polynomial of degree I gives the representation

i) = 6 + }':le,‘;’x.-,tr) + 2‘; 00 % (O (1) + + + ):lz 0% () ~x, () + eft) i=1,..m  (6)
L 0 imlr = W=
where
n=mn, +rn, _ | @)
and Sk

51(0) = Y1(=1), 2(8) = $1(-2), *, T () = Y(t-1y)
Tun1() = w1(=1), **, 2,(8) = lt-n,) ®

It is clear that each subsystem model in eqn.(6) belongs to the linear regression model

z(n) = fl‘, p{0e; + & =1,...N - ©)
where N is th; data length, the p(s)’s are monomials of x,(1) to x,(f) up to degree !/
(p1(n=1 corresponding to a constant term), &(r) is some modelling error, and the 6,’s are
unknown parameters to be estimated. In linear regression analysis z() is known as the
dependent variable and the p(r)’s are often referred to as regressors or predictors.

Eqn.(9) can be writien in the matrix form

2=PO +E (10)
with
2(1) 0 &(1)
2= | . |, P=[p1'"pM], o=|.] == | (11)
2(N) 9;; EN)
and
PA1)
p=| . | iztom | (12)
) |

In reality each subsystem in eqn.(6) may involve only a few significant terms
which adequately characterize the system dynamics. If the significant terms are known
a priori and only they are used to form the regrcsésion matrix P a linear least squares
problem can be defined:

Jfind parameter estimate © which minimizes |z — PO)|| (13)
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where ||| is the Euclidean norm. It is well-known that the solution to this problem
satisfies the normal equation

P’PE =Pz (14)
where PP is called the information matrix. Several numerical methods of solving the
least squares problem are summarized in Section 3.

Because the system structure is generally unknown at the beginning of the
identification, the experimenter is often forced to consider the full model set, that is all
possible terms in eqn.(6). The determination of the structure or which terms to include
in the final model is essential since a full model set can easily involve an excessive
number of terms, most of which may be redundant and should be removed. A
parsimonious model is highly desirable if the model is to be employed in controller
design, prediction and other applications. Let P represent the full model set. The
combined problem of structure selection and parameter estimation can then be stated as

follows:

Select a subset P, of P and find the corresponding parameter
estimate ©, which adequately fits the data (a5)
One possible approach to the above problem is to use some optimal multiple selection

methods based on the theory of hypothesis testing (Leontaritis and Billings, 1987).
Because the number of all the possible terms can easily become excessively large it is
very difficult to attain the optimal solution since this would ihvolve examining all the
possible subset models. Some suboptimal methods have to be employed and Section 4

considers a class of suboptimal algorithms based on the orthogonal decomposition of
P.

So far only a polynomial expansion of the NARX model eqn.(4) has been
discussed. If the same expansion is applied to the NARMAX model eqn.(1) a similar
linear-in-the-parameters expression for eqn.(10) is obtained. Unlike the polynomial
NARX case, however, now not all the columns of P can be measured or formed from
the measurements directly, and egn.(10) becomgs a pseudolinear regression model. In
Section 5, the results of Section 4 are extended to the polynomial NARMAX model.

3. Review of methods for solving least squares problems

This section reviews numerical methods of solving the least squares problem of

eqn.(13). There are three approaches which may be considered competitive for
computing 8:
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(@) Solve the normal equation by Gaussian elimination or by forming the Cholesky
decomposition of PP,

(b) Form an orthogonal decomposition of P.
(c) Form a singular value decomposition of P.

Each of these approaches has advantages. If PP can be formed accurately (a) offers
the most economical way of computing & at about half the cost of the second
approach (b) and one-quarter to one-eighth of the cost of the third (c). The second
approach is generally the most accurate. It avoids possible ill-conditioning from the
formation of P'P. The orthogonal decomposition may be carried out via (mddjﬁed)
Gram-Schmidt orthogonalization, Householder transformation or Givens method.
Method (c) is particularly useful when the rank of P is unknown or when P is of full
rank but is ill-conditioned in an unpredictable way. This method is computationally
more expensive. Throughout the discussion in this section it is assumed that P has the
dimension NxM with M<N.

3.1. Methods based on the normal equation

Assume that P is of full rank, then
B = PP (16)
is positive definite. Gaussian elimination reduces B to an upper triangular matrix with
positive diagonal elements. The reduction is achieved by a series of nonsingular
elementary row transformations in which multiples of each row of B are successively
substracted from the rows below to give zeros below the diagonal. Performing these

transformations on the augmented matrix [B:P™z] gives rise to [V:d] where

i ;
Vi V2 Vi3 0 0 iy d
0 Vo 73 -+ - Wy d
V= , d= (17
0 o o - - - ‘Tbﬂf _dMJ =
The elements of & can readily be found by backward substitution
3
o d
9M= _M
Vmm
M > (18)
dl. Z Fikek
6= —=H =M-1,...,1
Vii
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If elementary row transformations are processed further B can be reduced to the
identity matrix I and the same transformations performed on [I:P%z] will lead to [B-1:@)].
This is known as Jordan elimination.
The Cholesky decomposition method expresses B uniquely in the form

B=UU (19)
where U is an upper triangular matrix with positive diagonal elements. & can then be
found by solving two triangular systems

ort ] @
using the forward and backward substitution algorithms. To avoid square root
calculations in forming U, the information matrix B can alternatively be decomposed
into

B = ADA : 1)
where A is an upper triangular matrix with unity diagonal elements and D is a positive
diagonal matrix (Seber, 1977). Denote L = AT and V = DA then

B=LV (22)
The elements of L and V may be determined in M successive steps, and in each step a

row of V and a column of L are computed

Vi = bljv FI,,M
b

===, j2,..M
Y11

(23)
=)
v‘:,- = b'.f -— El’ikvkj, Fi,i‘f‘l,..-,M
= [ =2,..M
bji = Xlwve
k=1

l= ———— jmitl,..M

Vi

e 4

If P'P can be formed accurately, the methods based on P'P are computationally
the cheapest to implement. Forming P"P however introduces roundoff errors; and if P
is ill-conditioned, that is a small change in the elements of P can cause large changes
in (P"P)"! and hence 6 = (P'P)'P’z, any errors in the formation of PP may have a
serious effect on the stability of the least squares solution. Furthermore roundoff
errors accumulate in the process of solving @ and this makes the situation even worse.
The problem of ill-conditioning frequently occurs in polynomial nonlinear models
where the columns of P can often be highly correlated. As an illustration consider the
example of a polynomial model with a single variable up to k’th-degree (Seber, 1977,
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k
z() = Y0 (0) + e() #=1,.,N (24)
=0
Assume that x(r) is distributed approximately uniformly on [0,1], then for large N it can

be shown that P'P is approximately equal to the (k+1)x(k+1) principal minor of the so-
called Hilbert matrix

—

=I
]

(25)

Bl W= o=
IRV Y P N [SPRY [

Pl e

multiplied by N. It is we-ll-known that H is very ill-conditioned. For example, let &9
and Hy, be the 10x10 principal minor of H, then the inverse of H,, has elements of
magnitude 3x10'°. Thus a small error of 107° in one element of P’z will lead to an error
of about 3 in an element of 6.

A measure of the ill-conditioning of P is its condition number x[P] which is
defined as

X[P] = ratio of the largest to smallest nonzero singular value of P (26)
The singular values of P are the nonnegative square roots of the eigenvalues of PP,

Other definitions can also be used. Because

XPP] = K(P] @7
and x> 1, P'P is more ill-conditioned than P. Eqn.(27) indicates that, using k-digit
binary arithmetic, we will not be able to obtain even an approximate solution to the
normal equation (14) unless x[P] < 2*? (Bjbrck, 1967). This is clearly an unsatisfactory
feature of the methods based on the normal equation. Therefore unless k[P] is of
moderate magnitude and PP can be formed accurately it is better not to form P'P at
all, and methods based on orthogonal decomposition of P are better alternatives.
Although some authors (Golub, 1969; Wilkinson, 1974) have pointed out that the
effect of ¥*[P] cannot be avoided entirely, solviﬁ'g least squares problems by forming

an orthogonal decomposition of P is generally safer and more accurate than utilizing
P7P.

3.2. Methods based on orthogonal decomposition of P

As shown in Section 3.1 actually forming and solving the normal equation (14)

numerically has serious drawbacks because PP is often so ill-conditioned that the
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answer obtained is quite inaccurate. Now let F=PS where S is an MxM nonsingular
matrix. From eqn.(14) it follows

FP8 = F'z (28)
This equation can be used instead of the normal equation for solving for @ and F can
be chosen in such a way that

[FP] = x[P] e (29)
Indeed, since P is of full rank, it can be factorized as

P=QR (30)
where Q is an NxM orthogonal matrix (Q7Q=1I), that is the columns of ‘Q are
orthonormal, and R is an MxM upper triangular matrix. Choosing F=PR-'=Q, the matrix
F'P = Q'QR=R is triangular and eqn.(28) can easily be solved by backward substitution.
Moreover the condition (29) is satisfied since

[F'P] = x[R] = x[QR] = x[P] ' (31)
R'R is in fact the Cholesky decomposition of PP, eqn.(19). The factorization of
eqn.(30) can be obtained in several ways and these are summarized in the following.

Classical Gram-Schmid:

In the actual computation it is preferable to use a different factorization of P
rather than eqn.(30) in order to avoid computing square roots. The factorization that
corresponds to the Cholesky decomposition of eqn.(21) is

P=WA (32)
where
1 o og3 + - oy |
1 323 PR T uZM
A= .. . (33)
1 ogm
1

is an MxM unit upper triangular matrix and
W= [Wl Wu] : (34)
is an NxM matrix with orthogonal columns that satisfy

WW=D (35)
and D is the positive diagonal matrix in eqn.(21).

The classical Gram-Schmidt (CGS) procedure computes A one column at a time

and orthogonalizes P as follows: at the k’th stage make the k’th column orthogonal to
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each of the k-1 previously orthogonalized columns and repeat the operations for
k=2,...M. The computational procedure is represented as

-

w;=p
1 1 (36)
= . ik
<W;,W,> r
1 k=2,...M
Wi = Pr— 2,0uW;
&=1
where <.,.> denotes the inner product, that is,
N
<WuPe> = W P = Iw{Op(1) - (37
. =l
Define
g=D"W'z (38)
or
<W,I> . .
o i=1,...M (39)
Then the parameter estimate @ is readily computed from
AB=g (40)

using backward substitution.

Modified Gram-Schmidt

It is well-known that the CGS procedure is very sensitive to roundoff errors. The
experimental results (Rice, 1966) and the theoretical analysis (Bjorck, 1967) indicate
that if P is ill-conditioned, using CGS procedure, the computed columns of W will
soon lose their orthogonality and reorthogonalization will be needed. On the other
hand, the modified Gram-Schmidt (MGS) procedure is numerically superior.

The MGS procedure calculates A one row at a time and orthogonalizes P as
follows: at the k’th stage make the columns subscripted k+1,...M orthogonal to the -k’th
column and repeat the operations for k=1,..M-1 (e.g. Bjbrck, 1967). Specifically,
denoting p{®=p; i=1,..,M, then

w = pfr?
<wplt> :
Oy = — " kil M b k=12, M-1
<Wp,Wp> >

p‘(k) = p‘(k-l) - oW, =k+1,...M
) 41
wy = pi " ~

The elements of g are computed by transforming z¥ = z in a similar way
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<wp s

L <WpWp>

z(") = z(k_l) - 8w k=1,2,...,M (42)
The CGS and MGS algorithms have distinct differences in computational behaviour.
The MGS procedure is more accurate and more stable than the CGS procedure. This is
particularly remarkable since both methods perform basically the same operations, only
in a different sequence. Indeed, if there were no computer roundoff errors they would

produce the same set of w;’s with the same number of operations.

Householder rransformation

An equivalent decomposition to eqn.(30) can be obtained by augmenting Q with
N-M further orthonormal columns to make up a full set of N orthonormal vectors for
N-dimensional Euclidean space: |

Q = [Q:Am1 AN = [QuriQu-pd] ‘ (43)
Then

_-. _|R
P=QR=Q 0} (44)
where R is the MxM upper triangular matrix in eqn.(30), and Q7 can be used to
triangularize P. If Q”z is partitioned into

|| 1M
2=, | 3 Neut @5)
we have
iz - PO|| = |Q7(z - PO)| = ||z; — R|| + ||z, (46)

The least squares estimates can therefore be obtained by solving the triangular system

RO =z, @7
and the sum of the squares of the residuals is given by |jz,|>.

The Householder method triangularizes the Nx(M+1) augmented matrix
1 " Pim Pimn

P1
= [pa] - [ P P @8)

Dn1 * Dm Pamst

to give

pon _ [N @
PP=1y 4, . (49)
using a series of Householder transformations

H® = I — OyBOT g1, M (50)
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Here the v®’s are N-vectors with certain properties, the H®’s are NxN symmetric and
orthogonal matrices, that is, (H®)=H® and (H®)"H®=I. Furthermore

Q7 = HMHHM-D...xg® 51)
Denoting

PO = HOP*D, k=1,...M and PO =P (52)
the ¥’th Householder transformation is explicitly defined as (e.g. Golub, 1965;
Bierman, 1977, Chapter IV)

o® = 4 f i(ﬁg—l))z
i=k

1
o®e® + ™) >

B® = (53)
0 for i<k
vio = pﬁ_l) + sgn[ﬁf‘f”]c(k) for i=k
D for i>k

and
P® = P(th.l) —y® [ﬁ(k)(v(k))i"i)(*-l)] (5 4)
Givens method

A Givens transformation rotates two row vectors

0,...,0,.?‘-,?‘:,_1,...,?'*_,... }
0,10,0,B:Bis 15+ Broee
resulting in two new row vectors

(35)

L0 % 75 JUDT ST

i---1090!Bi+l!'":Bh--- (5 6)

o

where

-

Fr=cry+ 5By

Be=—sr + Py
F= NGB " (57)
c=r;lF;

§= B" /f’,

v

There are two ways of applying a sequence of Givens transformations to triangularize
P of eqn.(48).

For j=1,..M, the first method rotates the j'th row successively with the

(j+1)’th,...,N’th row so that the last N-j elements in the j’th column are reduced to zeros.
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This leads to the triangular system, of eqn.(49). z, can be transformed further to
(8,0,...,0)7, then the sum of the squares of the residuals is simply &2

The second method processes one row of P at a time as follows:

R®+D 2D RY zf"
LGS N 50 (58)
PuitseBts P 0,..0, 0

for &=1,...N. The initial R®, z{” and & can be taken as zeros. It is readily seen that this
way of implementing Givens method leads to on-line identification algorithms (e.g.
Result 7.2.2 in Goodwin and Payne, 1977). Similar to the Gram-Schmidt procedure,
the computation of square roots in eqn.(57) can be avoided (Gentleman, 1973).

Comparisons

MGS and Householder algorithms are highly competitive. The MGS algorithm is
easier to program but requires slightly more computation. It seems that the MGS
algorithm is slightly more accurate than the Householder algorithm (Jordan, 1968;
Wampler, 1970). |

The reduction of P to upper triangular form requires approximately NM*-M%2
multiplications and M square roots for the Householder method; and about 2nM?
multiplications and NM square roots for the Givens method if transformations are
carried out in the form of eqn.(57) (Seber, 1977). However the modified Givens
method (Gentleman, 1973) requires no square roots and reduces multiplications to only
three quarters of 2vM>. Furthermore the Givens method processes one row at a time
and has important on-line implementations.

3.3. Singular value decomposition of P

If the rank of P is less than M the least squares problem no longer has a unique
solution. Many of the methods discussed in Subsections 3.1 and 3.2 can be adapted to
handle this. The singular value decomposition however offers a general solution to the

least squares problem.

Assume that the rank of P is n (<M). According to the singular value
decomposition theorem (e.g. Golub and Reinsch, 1970) P can be factorized as
P=UsV7 (59)
where U is an NxM orthogonal matrix consisting of M orthonormalized eigenvectors
associated with the M largest eigenvalues of PP?, V is an MxM orthogonal matrix
consisting of the orthonormalized eigenvectors of P'P, and
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S = diag[sy,....5y) (60)
has the singular values of P as its diagonal elements. The diagonal elements of § are in

the order

512822"'25'”20 . (61)
If n <M, sy = =su=0. There are alternative representation to egn.(59) (e.g. Hanson
and Lawson, 1969), however, eqn.(59) is convenient for computational purposes.

The pseudoinverse of P is defined as

Pt = VstU” | - (62)
where

S* = diag[s3,....si] (63)
and

1/s; for 5;>0

=10 for 5=0 _ (64)
Then

6 =Pz=Vs* U (65)

is a solution of the least squares problem. Details of an algorithm for computing ®

using singular value decomposition can be found in (Golub, 1969; Golub and Reinsch,
1970).

4. Selection of subset models using orthogonal algorithms

When identifying nonlinear systems with unknown structure, it is important to
avoid losing significant terms which must be included in the final model, and
consequently the experimenter is forced to start with large values of n, and », and a
high polynomial degree / in eqn.(4). The number of columns in P is therefore often
very large, even thousands perhaps. For example, even in the single-input single-output
(SISO) case, if n=n=10 and =3, P has 1771 columns. Previous experience has shown
that provided the significant terms in the model can be detected models with about ten
terms are usually sufficient to capture the dynamics of highly nonlinear SISO processes
(Billings, 1986; Billings and Fadzil, 1985; Billings et al, 1988; Billings, Chen and
Backhouse, 1988). Throughout the rest of the discussion P will be used to represent
the full model set of a (sub)system so that M <N becomes unnecessary. This section
considers the combined problem of structure selection and parameter estimation,
defined by eqn.(15). It is shown that by augmenting the orthogonal decomposition

techniques of Subsection 3.2, simple and efficient algorithms can be derived that
determine P,, a subset of P, in a forward-regression manner by choosing one column of



-15 -

P for which the sum of squares of residuals is maximally reduced at a time.

4.1. Using the CGS procedure
Assume that P, has M, (M,<M and M,<N) columns. Factorize P, into W,A, as in
eqn.(32) where W, is an NxM, matrix consisting of M, orthogonal columns and A, is an

MxM; unit upper triangular matrix. The residuals are defined by
26) i
ol |e2- PO, =z~ (P.A)AB) =2- W, (66)
&)
Eqgn.(66) can be rewritten as
(67)
(68)

z=Weg +2
The sum of squares of the dependent variable z is therefore

M.l
<z, = Y glaw,w> + <E5>
=1
The error reduction ratio due to w; is thus defined as the proportion of the dependent
(69)

variable variance explained by w;

gl<w;,w>
lerr); = ——
<Z,7>
Eqn.(69) suggests a way of computing W, (and hence P,) from P by the CGS

procedure. At the i’th stage, by interchanging the i to M columns of P we can select a
p: which gives the largest [err]; when orthogonalized into w;. The detailed procedure is

as follows:
At the first stage, for i=1,...M, denote w{ = p; and compute

= <wiz> fersff = (gf)<wi,wi>
g <wg"’wi' ] q,z)
Assume that [err]{ = max{[err]{, 1<isM}. Then w=w{ (=p,) is selected as the first column
of W, together with the first element of g, g;=g{ and [err];=[erry.
At the second stage, for i=1,...M and i#j, compute

i _ WuP> | e G
ail— <y, W ’ Wﬂ =D uhwl:
<wiz> i (g8 <wl wi>
ferrlf = 2T POTE>
<z,2>
Assume that [err}§* = max{[err]§, 1<i<M and ixj}. Then w,=w§* (=p;~0;,w,) is selected as the

#=—p e
second column of W, together with the second column of A, ap=of;, the second

element of g, g,=gf* and [errl,=[errls.
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The selection procedure is continued until the M,’th stage when

Ml
1-Ylerrl;<p (70)
=1
where p (0<p<1) is a desired tolerance. Other criteria can also be used to stop the
selection procedure, for example,
g%f,+1<WM,+hWM‘+!>

M‘
<2,7> — Y gi<w,w>
=

[err]M'+,x100<alolerance or x100 < a tolerance
The subset model parameter estimate 6, can casil'y be computed from A©=g, by
backward substitution.

It can easily be seen that the orthogonalization procedure used in (Korenberg,
1985; Korenberg et al, 1988; Billings, Korenberg and Chen, 1988; Billings, Chen and
Korenberg, 1988) is the CGS procedure by simply comparing it with eqn.(36), and the
algorithm of this subsection is in fact identical to the forward-regression orthogonal
algorithm of Billings, Korenberg and Chen (1988), Billings, Chen and Korenberg
(1988). Application of this orthogonal algorithm to the identification of the polynomial

NARX model is straightforward since the identification of any subsystem is decoupled
M,

from the others. From eqn.s(68) and (69) it is seen that 1 - i[err],- is the proportion of
=1

the unexplained dependent variable variance. The value of p determines how many

terms will be included in the final (sub)model and hence the complexity of the model.

Let p; be the desired tolerance for the i’th subsystem. Ideal p; should be closely related

to E[e?(DVE?()). Since the latter is not known a priori the appropriate p; may have to

be found by trial and error.

The criterion of eqn.(70) concerns only the performance of the model (variance of
residuals) and does not take into account the model complexity. A criterion that
compromises between the performance and complexity of the model is Akaike’s
information criterion AIC(¢)

AIC(9) = N log C(8,) + M0 . (71)
where
c®,) = -If-,-:.e_,a (72)

is the variance of the residuals, and ¢ is the critical value of the chi-square distribution
with one degree of freedom for a given significance level. To use this criterion the
user is first required to specify a significance level. Leontaritis and Billings (1987)

pointed out that ¢=4 is a convenient choice and it corresponds to the significance level
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of 0.0456. AIC(4) provides an alternative criterion to stop the above forward-regression
model selection procedure. When the minimum of AIC(4) is reached the selection
procedure is terminated. Other statistical criteria can also be employed to stop the
selection, and the relationship between these criteria and AIC(¢) has been investigated
in (Sbderstrbm, 1977; Leontaritis and Billings, 1987).

As mentioned before the CGS orthogonalization is sensitive to computer roundoff
errors. Notice however that the model selection algorithm in this subsection is not
designed to orthogonalize the whole P which is often ill-conditioned. It selects P,
usually a small subset of P and typically about ten columns for SISO systems. Since P,
contains only significant terms of the system it is usually well-conditioned and the
problem of columns of W, losing their orthogonality rarely occurs. Indeed this model
selection algorithm performed well in many previous applications. Nevertheless it may
be desirable to employ the MGS orthogonalization procedure in a similar model
selection algorithm because of its numerical superiority. |

Using the CGS procedure to select terms does have two important advantages
which are worth emphasising. Storing the matrix P in the memory of a microcomputer
could be a problem because its size is often huge. Notice that each column of P is a
monomial function of the input-output data and the CGS algorithm computes one
column of A and orthogonalizes a column of P at a time. Every time a column is to be
orthogonalized it can be generated quickly from the input-output data. In this way
storing P can be avoided and only W,, which is often of modest dimensions, needs to
be kept. Implementing the CGS algorithm in a microcomputer should therefore be
straightforward. This will not be the case for MGS because storage for the whole P is
required. The way that the CGS orthogonalization operates also makes the algorithm
easier to extend to the polynomial NARMAX model where noise modelling is a part
of the identification procedure. This is further discussed in Section 5.

4.2. Using the MGS procedure

The development of a forward-regrcssioﬁ' orthogonal algorithm using MGS
orthogonalization is straightforward. Because the MGS procedure makes the
(k+1)'th,...,M’th columns orthogonal to the k’th column at the k’th stage, the matrix P °
must be kept in computer memory. The memory space for A, up to M, rows, must also
be provided and this is of course much larger than the space for A, requircd in the
algorithm using CGS orthogonalization. Employing the same notations as eqn.s(41)
and (42) and setting
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PED = [ wy = wiy D - pf? ) (73)
If some of the columns pf™,..pfi" in P*Y have been interchanged this will still be

referred to as P*? for notational convenience. The forward-regression orthogonal

algorithm using the MGS orthogonalization can now be summarized as follows:
At the k’th stage, for i=k,...M, compute

PR i SRR 050l o
&k = =1 oD Lerrl = <z

Assume that [err]f = max{[err]f, ksisM}. Then the j'th column of P*?" is interchanged
with the £’th column; the j’th column of A is interchanged up to the (k-1)’th row with

the k’th column. The rest of the operations are as indicated in eqn.s(41) and (42). The

selection procedure can be terminated in the same ways as discussed in Subsection 4.1.
Notice that z*” is simply the residual vector and

<z(M' 5 (M) M

L2 _ 1= Ylerr) , (74)
=1

<z,7>
A, is the MM, principal minor of A.

4.3. Using the Householder transformation

The Householder transformation method can be employed to derive a forward-
regression algorithm. Unfortunately as in the case of the MGS method, the whole of P

must be stored in computer memory. Denote

PO=[Pz]=[p" ~ pffx®] (75)
and R, the k<t principal minor of R where R is defined in eqn.(44).

After H? i=1,...,k-1 have been successively applied to P, it is transformed to

R,
P _ S : piD e gD (76)

Two important properties of H® should be noticed:
(i) It leaves the first k-1 rows of P*™) unchanged.
(ii) It leaves the column lengths invariant.

If the process were stopped at the (k-1)’th stage ‘and a subset model of -1 parameters
were chosen, the sum of the squares of residuals would be

3 [0 an

=k
and this is reduced to

30T T - (o]
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after H® has been applied to P*". The task is then to choose a column from
pEh,...pf " for which (zf?)? is maximized, and this can be achieved as follows:

Denote p{*" = @™, . .. p™)T j=k....M. Compute

N N
aff = ‘\/E(ﬁ.‘f'”)z. b = TH[0AD, for k.. M
=k =k

Assume that the maximum of

b + sgnlpf a1 2 (Y
k1) _ (s(k-1) SO-1) (b, 2 J ] .
[zi B5 " + sgnlpl Mai)x a®@® + |pf) £ for j=k,....M

is achieved at j=j,. Then interchange the j,’th column of P*" with the #’th column.

The rest of the operations are as indicated in eqn.s(53) and (54). The procedure is
terminated at the M,’th stage when

N s R )

<p
o <tI> = <zz>

or when AIC(4) is minimized. It can be seen that (z{’)%<z,2z> corresponds to [err]; in the

CGS and MGS algorithms and if the notation [err]; = (:)%<z,z> is used eqn.(79)

becomes identical to eqn.(70). The subset model parameter estimate ©, is computed

from
g ]
R, 6, = : , that is Ry ©, = | (80)
A9 0

using backward substitution.

This algorithm seems to require less computer memory space than the algorithm
based on the MGS method because R is stored by overwritting part of P. Using the
Householder transformation method to select predictors in such a forward-regression
manner was mentioned in (Golub, 1965). & and 5® for j=k,...M can be calculated
quickly in the following way. Given

N N 3
@2 =3EM% b =350 1M (81)
=1 =1

After P® has been computed, (a*")? and {*? for j=k+1,..,M are updated according to

(= @0 = G, B = o0 D et 82)
Naturally, if the columns of P*" are interchanged, the 4®’s must be interchanged

accordingly and so must the 5{’s.
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5. Iterative schemes for polynomial NARMAX models
For the polynomial NARMAX model delayed noise terms are included in each

subsystem model and these are generally unmeasured. The solution to this problem is
to replace e(r) by the prediction errors or residuals e() in the identification process. Let
P, represent the full submodel set of subsystem i which is partitioned into

P;=[P,P, ] . (83)
where each column in P, is a monomial function of the input-output data only and
each column in P, is a monomial function of the prediction errors and the input-output
data. P, may therefore be referred to as the full i’th sub-process model and P, the full
i’th sub-noise model. A subset P,; of P; is similarly represented as

Pi=[P, P, ] (84)
Referring to Fig.1, a general iterative scheme using the orthogonal algorithms of
Section 4 can be described as follows.

Initially the i’th estimator selects columns of P, from P,. The selection is
terminated after M, columns have been selected and the condition

M,

1- 21: lerr]; < pp, (85)
is satisfied ;here pp, is the tolerance for the i’th sub-process model. The initial
submodel parameter estimate 8% (containing only M, elements) can be computed and
then sent to the coordinator. Based on 6F i=1,..,m, the coordinator can generate the
initial prediction error sequence {e!(s)}.

At the k’th iteration (k21) each estimator receives {e*()} from the coordinator.

This allows the i’th estimator to form P{ and to select columns from P$. Assume that
after M* more columns have been added to P, the condition
M, ML
1- ¥ ler)i<pn (86)
=l
is satisfied, where p, (<p,) is the tolerance for the i’th sub-noise model, the selection

rocedure is stopped, 8% (containing M, +M®* elements) is computed and sent to the
P P & MptMn, P

coordinator.

Previous experience involving the CGS orthogonal algorithm has shown that
typically 4 to 6 iterations are usually adequate. Since the MGS and Householder
transformation algorithms are numerically more accurate than the CGS algorithm, 4 to

6 iterations should also be adequate for the iterative schemes using these two methods.
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Notice that the selection of the process and noise model parameters is decoupled.
However there is no particular reason why the process model terms should be selected
first and the noise model terms selected later other than that this way is convenient for
updating {e(n}. For SISO systems, an additional stage may be added to the above
scheme: After a reasonable {e(} has been obtained, we may reselect process and noise
model terms together from P and stop the procedure when AIC(4) is minimized. It is
also possible to terminate the iterative scheme using AIC(¢) instead of the error-
reduction-ratio criterion for SISO systems. For example, the process model regression
is stopped when AIC(4) is minimized and, at each iteration, the noise model regression
is stopped when AIC(2) is minimized. Theoretical analysis (Leontaritis and Billings,
1987) and simulation studies (Leontaritis and Billings, 1987; Chen and Billings, 1988a)
indicate that AIC(2) often overestimates the number of necessary parameters. Ideally
we should treat the process and noise terms equally. When AIC(4) is used to terminate
the process model regression however we are in fact trying to fit a NARX model to
the system which may be better modelled by a NARMAX model and some
unnecessary process terms may be included in the initial stage. AIC(2) is therefore
deliberately used for the noise model regression at each iteration in order to avoid the

possibility of losing significant noise model terms. For multivariable systems AIC(s)
becomes

AIC($) = N log det C(8,) + M6 (87)
where

. N
C6,) =+ ZE0e (88)
=1

and M, is the number of all the subsystem parameters. It is difficult to apply this
criterion to terminate the above iterative scheme for multivariable systems because the
model structure determination is done in a decentralized way.

Computational aspects of different schemes obtained using different orthogonal
methods applied to the NARMAX model are now discussed.

CGS scheme

The CGS algorithm orthogonalizes one column at a time. This makes the iterative
CGS scheme a simple and natural extension of the forward-regression orthogonal
procedure of Subsection 4.1. After the initial stage, W, contains M, orthogonal

columns and the first M, . columns of A; have been computed. At the k’th iteration, the

i’th estimator simply computes M, +1,..M, +M§  columns of A, and selects
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corresponding columns of W,; from P{ successively just as the M, +1,...M, +M stages

of the forward-regression orthogonal procedure of Subsection 4.1.

MGS scheme

For the i’th estimator, when P{ has been formed at the k’th iteration, each column
of P{ must be made orthogonal to the ’th, i=l,..M,, column of W, and the

™
corresponding o;’s must be computed first. z o

must also be restored at the beginning
of each iteration. After these operations, the rest of the k’th iteration is as the
M, +1,...M, +M;, stages of the forward-regression orthogonal procedure of Subsection

4.2.

Householder transformation scheme

For the i’th estimator, the initial stage consists of applying the forward-regression
orthogonal procedure of Subsection 4.3 to '

[ Ppl-:y:' ] (89)
where y=(1),...y,(\N))T. After M, . Householder orthogonal matrices have been applied to
the matrix of eqn.(89) it is transformed to

R
MFn' o™, ) ]

eyl (90)

These M, orthogonal transformations must be preseved (e.g. stored in the space below

the diagonal of Ry, ).

At the K’th iteration, when P{ has been formed, the i’th, T=1,...Mpn,, Householder
transformations must be applied to P$ successively. Denoting the resulting matrix as
PY, the rest of the k’th iteration is as the M, +1,...M, +M( stages of the forward-

regression orthogonal procedure of Subsection 4.3 applied to the matrix

1

6. Simulation study

The main purpose of this simulation study was to compare the performance of the
three algorithms and only SISO examples will be used. Some multivariable examples
using the CGS scheme can be found in (Billings, Chen and Korenberg, 1988). The

program is written on a Sun 3/50 workstation and all calculations are carried out in
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single precision.

Example 1. The data was collected from a large pilot scale liquid level system where
the input was a zero mean Gaussian signal. A description of this process is given in

(Billings and Voon, 1986). The inputs and outputs of the system are illustrated in
Fig.2.

A polynomial NARX model (=n=n=3 and n=0) was used to fit the data. The full
model set consisted of 84 terms. The results obtained by applying the forward-
regression variants of CGS, MGS and Householder transformation (HT) algorithms are

given in TABLEs 1 to 3 respectively. As expected these three algorithms all produced
the same model.

Example 2. This is a simulated system. The data was generated by

¥(t) = 0.5y(t-1) + u(-2) + 0.1u2(t—1) + 0.5e(r-1) + 0.2u(r-1)e(t-2) + e(r)
where the system noise e(r) was a Gaussian white sequence with mean zero and
variance 0.04 and the system input u(f) was an independent sequence of uniform

distribution with mean-zero and variance 1.0. The inputs and outputs of the system

are shown in Fig.3.

A polynomial NARMAX model with I=n=n~n=2 was used to fit the data. The
full model set contained 28 terms. Using the iterative scheme discussed in Section 5,
that is selecting process model terms first and then entering an iterative loop to select
the noise model terms, the CGS, MGS and HT algorithms all gave the correct final
model, and this can be seen from TABLEs 4 to 6 where p,=0.034, p,=0.026 and five

iterations (computing the residual sequence 5 times) were involved.

As mentioned in Section 5, other iterative strategies can also be employed. The
following procedure was also tested on Example 2. First use AIC(4) to terminate the
process model regression and use this to produce the initial residual sequence {e“(s)}
and noise model set P{. Next use AIC(2) to terminate the noise model regression.
Having obtained {e(:)} k22 then select the process and noise model terms together
from the full model set or the model set obtained from the previous iteration. Each of
such regressions are terminated when AIC(4) is minimized. When the model set
contains the noise terms, to compute the exact AIC(¢) value each time a term is
selected would require the computation of all the selected parameter values 6; and the
recalculation of the residual sequence. This can be avoided by computing the
approximate AIC(¢) value using the approximate variance of the residuals. For a model
of M, terms, if the residual sequence is approximated by
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MJ
E =Z- Zg,-w,- (92)
=l
then the approximate variance of the residuals is readily given by
M.I‘
oi(l - Ylerr]) (93)
=1
where
o= %@D K 94)

Notice that for polynomial NARX models eqn.(92) gives the exact residual sequence
and eqn.(93) the exact variance of the residuals. Using this procedure and involving
only two iterations (k=2), the CGS, MGS and HT algorithms produced the models
shown in TABLEs 7 to 9 respectively.

7. Conclusions

Several orthogonal forwad-regression estimators have been derived for the
identification of polynomial NARMAX systems by modifying and augmenting some
well-known orthogonal least squares methods. It has been shown that these estimators
efficiently combine structure determination with parameter estimation to provide very
powerful procedures for identifying parsimonious models of structure-unknown
systems. The application to both simulated and real data has been demonstrated.

Whilst the iterative CGS scheme is easier to implement on a microcomputer and
its coding is simpler experience has shown that the iterative MGS and HT schemes
work faster. The first (off-line) version of Givens method discussed in Subsection 3.2
can also be used to develop a similar model structure selection routine but it will

require more computations compared with the three routines discussed in this paper.
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TABLE 1. Selected model of Example 1 (using CGS and ERR criterion)

BT w

terms estimates [err]’s standard deviations
1) 0.80916E+0 0.97444E+0 0.47816E-1
u(t-1) 0.41813E+0 0.14158E-1 0.15593E-1
u(-2) -0.10762E+0 0.26158E-2 0.16974E-1
YE=2)p(t-3)u(1-2) -0.36722E+0 0.12047E-2 0.53508E-1
y(t=1u(t-1) -0.33901E+0 0.18040E-2 0.27629E-1
Y(-2)y(=3)u(t-3) 0.14530E+0 0.31312E-3 0.20979E-1
u(t-1)u2(1-2) -0.16590E+0 0.17932E-3 0.43352E-1
Yr-1)u(t-2) 0.16459E+0 0.73725E-4 0.31417E-1
Y(=2)y(t-3) -0.39164E-1 0.90227E-4 0.60504E-2
y(t-1)y(t-2) -0.58358E-1 0.18795E-3 0.10442E-1
y(=2) 0.16186E+0 0.12685E-3 0.46291E-1
YA(=3)u(t-2) 0.13916E+0 0.64359E-4 0.54245E-1

tolerance p = 0.0048, variance of residuals o2 = 0.18585E-2,
residual variance and output variance ratio = 0.47429E-2

TABLE 2. Selected model of Example 1 (using MGS and ERR criterion)

terms estimates [err]]’s standard deviations
y(1-1) 0.80914E+0 0.97444E+0 0.47816E-1
u(t-1) 0.41814E+0 0.14158E-1 0.15593E-1
u(1-2) -0.10761E+0 0.26158E-2 0.16974E-1
Y(-2)y(t-3)u(1-2) -0.36721E+0 0.12047E-2 0.53508E-1
y(=1u(-1) -0.33901E+0 0.18039E-2 0.27630E-1
Y(t=2)y(t-3)u(t-3) 0.14528E+0 0.31304E-3 0.20979E-1
u(t—-1)u*(1-2) -0.16590E+0 0.17933E-3 0.43352E-1
y(=1u(@-2) 0.16457E+0 0.73714E-4 0.31417E-1
YA(=2)y(-3) -0.39161E-1 0.90206E-4 0.60505E-2
Y(e-1)y(t=2) -0.58353E-1 0.18788E-3 0.10443E-1
¥(=2) 0.16188E+0 0.12688E-3 0.46291E-1
Y(t=3)u(t-2) 0.13916E+0 0.64358E-4 0.54245E-1

tolerance p = 0.0048, variance of residuals o2 = 0.18585E-2
residual variance and output variance ratio = 0.47429E-2



TABLE 3. Selected model of Example 1 (using HT and ERR criterion)
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terms estimates [err]’s standard deviations
y(t-1) 0.80914E+0 0.97444E+0 0.47816E-1
u(t-1) 0.41814E+0 0.14158E-1 0.15593E-1
u(t-2) -0.10761E+0 0.26158E-2 0.16974E-1
Y(E-2)y(+-3)u(t-2) -0.36721E+0 0.12047E-2 0.53508E-1
y(-Du(-1) -0.33901E+0 0.18039E-2. 0.27630E-1
Y(E=2)¥(t-3)u(t-3) 0.14528E+0 0.31308E-3 0.20979E-1
u(t-1)u(1-2) -0.16590E+0 0.17933E-3 0.43352E-1
Y(-1)u(t-2) 0.16457E+0 0.73714E-4 0.31417E-1
Y(t-2)y(1-3) -0.39161E-1 0.90200E-4 0.60505E-2
We-1)y(-2) -0.58353E-1 0.18792E-3 0.10443E-1
y(1-2) 0.16188E+0 0.12687E-3 0.46291E-1
Y(1-3)u(1-2) 0.13916E+0 0.64364E-4 0.54245E-1

tolerance p = 0.0048, variance of residuals o2 = 0.18585E—2
residual variance and output variance ratio = 0.47429E-2

TABLE 4. Selected model of Example 2 (using CGS and ERR criterion)

terms estimates [err);’s standard deviations
u(t-2) 0.10032E+1 0.67047E+0 0.89932E-2
¥t-1) 0.50276E+0 0.28735E+0 0.73754E-2
u(r-1) 0.91139E-1 0.85640E-2 0.68862E-2
e(t-1) 0.54833E+0 0.69294E-2 0.45770E-1
u(t—1)e(-2) 0.23770E+0 0.16084E-2 0.42268E-1

variance of residuals o? = 0.41436E-1

residual variance and output variance ratio = 0.25072E-1

TABLE 5. Selected model of Example 2 (using MGS and ERR criterion)

terms estimates [err]’s standard deviations
u(1-2) 0.10032E+1 0.67047E+0 0.89932E-2
y(t-1) 0.50276E+0 0.28735E+0 0.73754E-2
u¥(r-1) 0.91139E-1 0.85640E-2 0.68862E-2
e(-1) 0.54833E+0 0.69294E-2 0.45770E-1
u(t—1)e(t-2) 0.23770E+0 0.16084E-2 0.42268E-1

variance of residuals o2 = 0.41436E-1

residual variance and output variance ratio = 0.25072E-1



TABLE 6. Selected model of Example 2 (using HT and ERR criterion)

terms estimates [err],’s standard deviations
u(-2) 0.10032E+1 0.67047E+0 0.89932E-2
y(t-1) 0.50276E+0 0.28735E+0 0.73754E-2
w(1-1) 0.91139E-1 0.85640E-2 0.68862E-2
e(-1) 0.54834E+0 0.69294E-2 0.45770E-1
u(t-1)e(1-2) 0.23770E+0 0.16084E-2 0.42268E-1

variance of residuals o2 = 0.41436E-1

residual variance and output variance ratio = 0.25072E-1

TABLE 7. Selected model of Example 2 (using CGS and AIC criterion)

terms estimates [err];’s standard deviations
u(t-2) 0.10034E+1 0.67047E+0 0.90317E-2
¥e-1) 0.50355E+0 0.28735E+0 0.74037E-2
uw*(t-1) 0.89880E-1 0.85640E-2 0.69221E-2
e(t-1) 0.51440E+0 0.65584E-2 0.44959E-1
u(t-1)e(t-2) 0.20321E+0 0.12277E-2 0.41518E-1

variance of residuals o2 = 0.41754E-1

residual variance and output variance ratio = 0.25265E-1

TABLE 8. Selected model of Example 2 (using MGS and AIC criterion)

terms estimates [err],’s standard deviations
u(1-2) 0.10034E+1 0.67047E+0 0.90317E-2
y(-1) 0.50355E+0 0.28735E+0 0.74037E-2
w*(1-1) 0.89880E-1 0.85640E-2 0.69221E-2
e(-1) 0.51440E+0 0.65584E-2 0.44959E-1
u(t—1)e(t-2) 0.20321E+0 0.12277E-2 0.41518E-1

variance of residuals o2 = 0.41754E-1

residual variance and output variance ratio = 0.25265E-1

TABLE 9. Selected model of Example 2 (using HT and AIC criterion)

terms estimates " [err],’s standard deviations
u(t-2) 0.10034E+1 0.67047E+0 0.90317E-2
y(e-1) 0.50355E+0 0.28735E+0 0.74037E-2
w(r-1) 0.89880E-1 0.85640E-2 0.69221E-2
e(t-1) 0.51440E+0 0.65584E-2 0.44959E-1
u(t-1)e(t-2) 0.20321E+0 0.12277E-2 0.41518E-1

variance of residuals o? = 0.41754E-1

residual variance and output variance ratio = 0.25265E-1
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Fig.1. Iterative scheme for the polynomial NARMAX model
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Fig.2. Inputs and outputs of Example 1
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