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Abstract: We present a review of recent developments in THz coherent 

systems based on photonic local oscillators. We show that such techniques 

can enable the creation of highly coherent, thus highly sensitive, systems for 

frequencies ranging from 100 GHz to 5 THz, within an energy efficient 

integrated platform. We suggest that such systems could enable the THz 

spectrum to realize its full applications potential. To demonstrate how 

photonics-enabled THz systems can be realized, we review the performance 

of key components, show recent demonstrations of integrated platforms, 

and give examples of applications. 
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1. Introduction 

The terahertz (THz) frequency region of the electromagnetic spectrum (0.1 THz � 10 THz) 

has shown enormous potential for a broad range of applications from health care to security, 

with communications, high resolution imaging (e.g. in the medical and pharmaceutical 

sectors), spectroscopic materials analysis and atmospheric sensing of special importance [1]. 

However, to date, realization of this potential has been severely constrained by the 

technologies available for the generation and detection of THz signals, which are limited in 

terms of cost, compactness, energy consumption and room temperature operation. The most 
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widely available commercial systems are based on broadband THz generation using short 

pulse (fs) near-infrared lasers and photoconductive detector technology resulting in large, 

power hungry (kW) systems that have nonetheless helped in demonstrating the potential of 

THz radiation for spectroscopy and high resolution 3D imaging, thanks to the time 

discrimination enabled by the short pulse system. However the realisation of the full potential 

of the THz part of the electromagnetic spectrum will require the use of more agile sources in 

combination with coherent techniques. As a comparable example, the development of the 

radio frequency (RF) and microwave spectrum was made possible by the compactness, 

precision, spectral efficiency and sensitivity enabled by coherent techniques. In recent years 

coherent technology has also found renewed application in optical communication systems, 

where it permits the increase in spectral efficiency required to accommodate the rapid growth 

in internet traffic within the limited optical bandwidth available with current optical 

amplifiers [2]. 

We assert that the introduction of coherent photonic technology, based on that used for 

optical communications, into THz systems will unlock the potential of this part of the 

frequency spectrum for both scientific and commercial applications. Such a development has, 

however, long been prevented by the lack of cheap, compact, spectrally pure and power 

efficient continuous wave sources. Semiconductor electronic sources above 300 GHz 

currently offer only very low (few ȝW) output powers, the current room temperature 

operation record being 86 ȝW at 479 GHz from a third-harmonic mode InP Gunn effect 

device with a power consumption of up to 20 W [3], although lower frequency sources 

followed by diode multipliers have achieved 1 mW output power at 625 GHz [4]. 

By contrast, the use of photonic technologies would enable the creation of compact, 

optical fibre interfaced, coherent continuous wave (CW) THz sources, on-chip sensors and 

receivers, offering unprecedentedly narrow linewidth and concommitantly improved detection 

sensitivity, with power consumption below 1 W, two orders of magnitude lower than current 

electronic solutions. Photonic THz sources are based around component technologies such as 

waveguide Uni-Travelling Carrier Photo-Diodes (UTC-PDs), providing world record, room 

temperature, CW output powers at THz frequencies [5, 6] and Quantum Cascade Lasers 

(QCLs) capable of CW output powers of >100 mW [7]. In order to achieve the required 

coherence these elements must be driven by a photonic heterodyne generator used as the 

common local oscillator [8]. For reception, detectors can be driven by a similar photonic local 

oscillator, providing the required coherence for the system, and thus enabling high sensitivity 

detection. In this paper we will describe in detail the concept of the system as well as its 

expected performance. We will also show the recent progress made for each of the 

components to permit the agility, signal power and detection sensitivity that are necessary for 

system realisation. Finally, we will discuss a few examples of applications and give some 

recent results demonstrating that the system philosophy presented in the paper has the 

potential to enable major growth in THz applications. 

2. System description 

The basic philosophy of the system is shown in Fig. 1. At the heart of the system, a high-

purity photonic local oscillator based on optical comb generation and locking of two slave 

lasers generates an optical heterodyne signal at frequencies ranging from 100 GHz to 5 THz. 

Such a source enables heterodyne linewidths of considerably less than 10 Hz [8]. The 

heterodyne signal can then be detected directly in an UTC-PD or an InP-based 

photoconductive switch [9] to generate a high purity THz signal. Such a system will also 

enable linewidths five orders of magnitude smaller than the heterodyne systems that have 

already been used successfully for spectroscopy [10], thus enabling a system with a 50 dB 

higher signal-to-noise ratio (SNR) if using the lowest possible detection bandwidth. 

For frequencies above 2 THz, where, despite the enhanced detection sensitivity, the power 

emitted (tens of nW) will come close to the noise floor, we propose to use QCLs as emitters 
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as they are able to offer much higher powers (mW). QCLs can then be locked to the 

heterodyne generator by an approach similar to that described in [11] or [12], enabling the 

same coherence as with the photodetection approach together with the enhanced detection 

described previously. 

Such a system is highly dependent on the performance of each of its components. This is 

reviewed in the next section and the effect on overall system performance described. 

 

Fig. 1. Schematic of the THz coherent system including the local oscillator, emitter and 

receiver. 

3. Current component performance 

The first essential component for the photonic oscillator system is an optical frequency comb 

generator (OFCG) used as phase reference. Several techniques have been developed over 

recent years and compact sources are now available [13�16], either fiber or semiconductor 

based. For example, a system based on the fiber recirculating loop can offer over a hundred 

highly coherent lines, which are equally spaced in frequency, as determined by an external 

synthesizer. Figure 2 shows optical spectra of an OFCG and two semiconductor lasers for 

selection of two comb lines (spaced by the frequency of interest). The comb optical lines are 

defined within a 7dB power envelope across 2 THz range and could be further amplified if 

necessary. 

 

Fig. 2. Optical spectrum of the OFCG (in blue) and the 800 GHz heterodyne signal between 

two tuneable lasers (in red). 

The best performing OFCG of that type, as proposed in [17], should offer up to 10 THz in 

span, using parametric methods, with several mW of total output power, while short pulse 
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mode locked lasers have achieved similar performances. Compact sources have achieved up 

to 2 THz span [13] with similar power. Current performance is therefore close to what will be 

needed for the system, as only a few mW will be required to lock the slave lasers and a span 

of 5THz will be sufficient to access most applications. 

The second important part of the system is the dual-laser locked filter, whose principal 

function is to select and amplify the comb lines of interest. This can be realized using methods 

such as optical injection, optical phase lock loops (OPLL) and optical injection phase lock 

loops (OIPLL) [18�20]. Figure 3 presents the block diagram of the heterodyne OPLL system 

and the operating principle is broadly discussed in [21, 22]. 

 

Fig. 3. Schematic of the integrated photonic heterodyne OPLL THz source. Red lines 

correspond to optical components. Green lines correspond to electrical paths and components. 

Recent work in the development of dual laser sources has seen great progress. Integrated 

sources with tuning up to a 2 THz frequency difference have been demonstrated [23], while 

tuneable lasers with tuning ranges of more than 5 THz are already available [24]. The 

semiconductor lasers offer an important advantage in terms of device lifetime, compactness 

and efficiency. On the other hand, they have a less coherent output, with linewidth in the 

lower MHz range. To phase lock the source successfully with such a large linewidth, 

individual components incorporated in the OPLL must have bandwidth in the range of 

hundreds of MHz. Consequently, this requires the error signal to be fed back around the loop 

with delays on a nanosecond timescale to achieve locking. To ensure superior loop 

performance, the trade off between laser linewidth or loop bandwidth and inversely 

proportional loop propagation delay must be satisfied. The OPLL with nanosecond 

propagation delay remains highly challenging and can be realized only thanks to a compact 

high-speed electronic circuit and monolithically integrated photonics. Despite difficulties, 

recent developments have shown great progress in achieving integrated phase lock loop 

circuits such as in [25] and [21]. 

The photonic local oscillator based on OPLL enables heterodyne linewidth of less than 10 

Hz and phase noise performance better than −80 dBc/Hz at 10 kHz offset across the frequency 

range, as shown in Fig. 4(a) and 4(b) respectively. Dual laser locked sources have shown 

discrete tuning over a range of more than 1 THz with continuous tuning with an offset of 2 to 

6 GHz at both sides of the comb line of interest [22, 26]. 

#193913 - $15.00 USD Received 16 Jul 2013; revised 11 Sep 2013; accepted 11 Sep 2013; published 23 Sep 2013

(C) 2013 OSA 23 September 2013 | Vol. 21,  No. 19 | DOI:10.1364/OE.21.022988 | OPTICS EXPRESS  22993



 

Fig. 4. (a) Beat note spectra at 2.5 GHz (RBW = 100 kHz, VBW = 10 kHz); (b) phase noise 

measurement of the phase locked heterodyne signal at 2.5 GHz, 14.5 GHz and 21.5 GHz. 

Integrating the high-speed photodetector used for THz generation with the dual laser 

source is an important goal, as it avoids fiber coupling between separate modules, simplifying 

fabrication and reducing cost. However, it is technically challenging, as the epitaxial 

structures required for the laser and photodetector sections are significantly different. We 

have recently integrated dual laser sources with UTC-PDs achieving emission at frequencies 

exceeding 60 GHz [27] as shown in Fig. 5, which also emphasizes the importance of the 

correct selection of substrate doping. For the results shown in Fig. 5, the maximum frequency 

was limited by the measurement probe, but discrete photodetectors with the same structure 

exhibited bandwidths up to 170 GHz [28]. 

  

Fig. 5. Relative output power from an integrated UTC PD with dual DFB lasers at different 

frequencies [27] SI: Semi Insulating; N: N doped. 

Conversion of the photocurrent in photodiodes into free-space THz radiation is typically 

realized by integrating the UTC-PDs with a planar antenna, such as a dipole, bow-tie, spiral or 

log-periodic antenna, and a silicon lens. In order to exploit the tuneability of photonic THz 

sources, the integrated THz antenna must have a wide bandwidth, both in terms of the 

efficiency of energy coupling from the driving source and in terms of the radiation pattern and 

radiation efficiency. Assessment of the reflection coefficient between the driving source 
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(typically a UTC-PD) and the antenna is complex and needs to be carried out case by case 

depending on the source employed. Conversely, the radiation pattern and radiation efficiency 

are intrinsic properties of antennas and can be evaluated independently from the source. 

Emission pattern and radiation efficiency of planar THz antennas tend to change 

dramatically over the frequency range of UTC-PDs. Therefore silicon lenses are typically 

employed to improve the beam shape and radiation efficiency. Figure 6 illustrates the effect of 

the silicon lens attached to the antenna substrate on the radiation pattern. When the lens is not 

present, the substrate modes and reflections occurring within the substrate cause the emission 

pattern to change almost unpredictably as a function of frequency. The integration of the lens 

provides good and broadband focusing properties that produce several dBi in directivity over 

a wide frequency range. Figure 7 shows the radiation efficiency (in dB) calculated in the 

conical solid angle centered on the axis origin and defined by an angle of 30 degrees with 

respect to the z negative semi axis (which corresponds to the optical axis of the lens); above 

about 0.250 THz, the radiation efficiency of the system with lens is greater than or at least 

equal to the maximum radiation efficiency of the system without lens at 0.5 THz. The peak of 

the radiation efficiency without lens occurring at 0.5 THz is probably due to a fortunate 

favorable recombination of the reflections within the substrate and the antenna response. The 

fact that the radiation efficiency with the lens tends on average to improve as the frequency 

increases can be explained considering that THz lenses are usually designed and optimized 

using ray optics (geometrical optics); the ray optics approximation becomes more accurate as 

the frequency goes up (smaller wavelength) therefore the lens design and optimization is more 

accurate at higher frequencies. The chip-lens configuration that we have simulated can be 

considered as a collimating hemisphere design where the distance from the emitter to the tip 

of the lens is about 1.4 times the lens radius [29]. 

Antennas are also used for detection of THz radiation. To improve the detection 

efficiency, the antenna is used to couple the incoming THz wave to the small area of the 

photodiode, the active area of which is significantly smaller than the wavelength. As in the 

case of THz emitters, the antenna design affects the conversion efficiency. In addition to 

numerical modelling, the antenna performance can be evaluated experimentally using near-

field THz imaging [30, 31]. 

For the emitters, UTC-PDs have already shown record-breaking figures of merit for 

conversion of light to THz signals up to 1.6 THz [32]. As shown in Fig. 8, the figure of merit 

remains high across the range. The integrated double laser/UTC-PD sources described above 

have shown potential for use in a simple emitter chip [27], while UTC-PD devices from the 

chip were tested as stand-alone detectors, showing a 3dB bandwidth of >100 GHz [33]. 

Comparing the UTC-PD with other photodetectors used as photomixers, as shown in Fig. 9, it 

is evident that UTC-PDs offer the highest power emission performance below 100 GHz, 

while further analysis shows that higher power extraction has also been achieved at THz 

frequency [6, 30�38]. They are therefore attractive THz sources for systems applications. 
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Fig. 6. Directivity in dBi. The bow-tie antenna is 600 µm long and has a 60° angle. The InP 

substrate is 400 µm thick. The silicon lens has a 2 mm diameter. 

 

Fig. 7. Radiation efficiency in dB calculated in the conical solid angle centered on the axis 

origin and defined by an angle of 30° with respect to the z negative semi axis. 
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Fig. 8. Figure of merit of UTC-PD emitters from 100 GHz to 1.6 THz. 

 

Fig. 9. Recent examples of record output power as a function of frequency for UTC-PDs 

compared to other photodetectors [6, 32�37]. 

Meanwhile progress on QCL sources has been considerable over the past ten years and 

power output is now >100 mW [7], with emission frequencies ranging between 1 and 5 THz 

having been demonstrated [39]. Central to these advances has been the design and 

engineering of a range of active region schemes, most notably the bound-to-continuum (BTC) 

[40] and resonant-phonon (RP) [41, 42] designs. The latter exploits fast electron�optical-

phonon scattering to depopulate the lower lasing level � an approach that enables a population 

inversion to be maintained up to high operating temperatures, at which thermal backfilling 

[43] of the lower lasing state prevents operation of alternative active region schemes. As such 

the temperature of operation of QCL devices has increased to approaching 200K [44]. 

Nevertheless, owing to the requirement to drop > 36 meV (the LO phonon energy in GaAs) 

across each individual module of the RP structure, large applied biases are required at 

threshold. This leads to large electrical power dissipation in RP QCLs, making continuous 

wave operation challenging. The BTC design, which typically exhibits low threshold current 

densities, is therefore most frequently employed for applications requiring continuous wave 

operation. Lasers based on such a design have also recently been shown to exhibit intrinsic 

linewidth values approaching the quantum limit [45], and as such are well-suited to the 
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development of coherent systems. Tuneable QCL devices have been demonstrated using a 

range of approaches [46] together with electronic control using multi-contact lasers [47]. 

Devices for coherent THz detection have also shown significant progress in recent years. 

Both Schottky mixer and LT-GaAs photoconductors are enabling good performance over 

different parts of the frequency range. For compatibility with the photonic components 

emitting at a wavelength of 1.5 µm, implanted InGaAs switches [48] and quantum well based 

switches [9] show great promise to be used as a detector in the system. Similarly, considering 

the integration potential, recent results on optically pumped mixing in UTC-PDs offer an 

interesting solution, despite their current relatively high conversion loss [49]. 

4. Demonstration 

As mentioned in the introduction, a number of applications have been envisaged for THz 

technology. In this section we concentrate on a few examples where the development of the 

proposed system would help realize the potential of the THz spectrum. 

First, one can look at wireless communication where current technology at lower carrier 

frequencies is limited by the available licensed bandwidth. However, in the unlicensed 

spectrum above 300 GHz the bandwidth available would easily allow for a transmission rate 

of more than 10 Gb/s. Recent results for THz wireless links employing photonic carrier 

generation at frequencies ranging from 200 GHz to 400 GHz have indeed demonstrated the 

possibility of transmitting wireless data at more than 1 Gb/s. Above 250 GHz, detection has 

been limited to incoherent envelope detection using Schottky barrier diode (SBD) detectors 

[50�52], but the demonstration of data transmission at up to 28 Gb/s [52] clearly shows the 

potential for high bandwidth wireless transmission at these carrier frequencies, although, due 

to transmission impairments and the low signal powers available, a compromise will need to 

be found between carrier frequency and spectral efficiency. 

The coherent system we propose enables the application of classical coherent radio 

modulation techniques that allow for higher sensitivity and the use of more spectrally efficient 

modulation formats. Heterodyne detection of a photonically generated 1 Gb/s on-off keying 

(OOK) modulated signal at 200 GHz has been demonstrated, using a subharmonic SBD mixer 

for down conversion, and envelope detection of the intermediate frequency (IF) signal [53]. In 

a similar experiment to demonstrate the key elements of our proposed approach, we used a 

real-time oscilloscope (RTO) to record samples of the IF signal, and offline processing 

enabling envelope [54] and synchronous detection to be emulated (Fig. 10). Recently, a 

wireless link using a photonic heterodyne transmitter operating at a carrier frequency of 237.5 

GHz has been demonstrated with QPSK, 8PSK and 16QAM modulation formats at 25 Gbaud, 

giving up to 100 Gb/s data transmission rates [55]. A monolithic microwave IC (MMIC) I/Q 

receiver was used to down convert to baseband, followed by analogue-to-digital conversion 

using a RTO and offline digital signal processing similar to that used in coherent optical 

receivers. These demonstrations of coherent detection of wireless communications at THz 

frequencies all employed electronic local oscillators (LOs) generated by frequency 

multiplication of an RF signal, but in the future the LO could be generated photonically, 

especially if efficient optoelectronic mixers can be developed. However, the benefits of 

photonic-enabled THz wireless communications will need to be evaluated in comparison to a 

fully electronic approach. Already, both transmitter and receiver MMICs supporting data rates 

up to 20 Gb/s and operating at 220 GHz have been demonstrated [56], while 2.5 Gb/s 

transmission at 625 GHz has been achieved using electronic frequency multiplication [4]. 
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Fig. 10. Demonstration of wireless transmission of 1 Gb/s OOK data at 200 GHz [54]: (a) 

experimental arrangement; (b) BER results for offline processing emulating envelope and 

synchronous detection. 

A second application would be the development of a simple imaging system based most 

likely on the QCL source as it offers more power. In this application the coherence of the 

signal allows the use of interferometric techniques, enabling phase-sensitive and 3D imaging. 

Recent work on QCL coherent imaging, as illustrated in Fig. 11, has shown encouraging 

results in imaging different reflective elements [57], showing clear interferometric fringes 

indicating changes in depth. The experimental system was based on the coherence of the QCL 

which is typically 5 orders of magnitude worse than the system proposed. In this application 

an enhanced coherence will allow for better fringe definition and higher resolution as well as 

higher sensitivity, enabling longer distances for imaging. Indeed, imaging has previously been 

demonstrated, using this approach, at round-trip distances exceeding 20m through air [58]. 

 

Fig. 11. Coherent imaging of a set of objects using a coherent QCL based system [57, 58]. 

Finally, we would also like to discuss the potential of THz techniques for the measurement 

and manipulation of quantum states. Typically, microwave measurement and manipulation of 

quantum states has been achieved using multiple controlled pump pulses and coherent re-

emission, which is monitored as a function of pulse length, arrival times, and amplitudes [59]. 

However, because of the lack of appropriate sources, very few experiments of this type have 

been performed in the THz regime, though recent experiments using a free electron laser and 

high frequency microwave sources have demonstrated the potential of THz radiation for 
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quantum control and measurement, with results already achieved for the Rydberg states of 

Si:P [60]. 

The use of a small source which can be inserted directly into a dilution refrigerator will 

allow the study of transitions between electron interaction induced states such as those 

observed in the Coulomb Blockade regime. Other aspects of the interaction which we can 

study include the transition between a single line of electrons and two separate rows which 

form a many body ground state [61]. 

Using the coherent THz system we envisage, there is potential for introducing a compact 

lab-on-chip THz system that will enable control using optical communications-based 

modulation techniques, offering unprecedented opportunities to study a far wider range of 

coherent electronic and lattice excitations. 

6. Discussion 

We have described an approach to the development of a coherent THz system technology, 

underpinned by photonic components, that would enable access to most applications for 

frequencies ranging from 100 GHz to 5 THz. Reviewing recent developments in device 

technology we have shown that the photonic sources necessary to generate a tuneable local 

oscillator are becoming available, while photonic THz emitter technology has already reached 

an encouraging state of development, with both UTC-PDs and QCLs offering good 

performance. We have shown the potential of coherent THz systems to achieve 5 orders of 

magnitude enhancement in sensitivity and 2 orders of magnitude enhancement in energy 

consumption relative to pulsed sources, while offering good potential for integration. We have 

also discussed potential applications for such systems, as well as the potential improvements 

they enable, allowing for over 100 Gb/s wireless transmission, compact 3D imaging and 

quantum state manipulation with a lab-on-chip system. 
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