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Abstract.9

Increased atmospheric concentrations of carbon dioxide (CO2) will benefit the yield of most crops. Two10

free Air CO2 Enrichment (FACE) meta–analyses have shown increases in yield of between 0 and 73% for11

C3 crops. Despite this large range, few crop modelling studies quantify the uncertainty inherent in the12

parameterisation of crop growth and development. We present a novel perturbed–parameter method of13

crop model simulation, which uses some constraints from observations, that does this. The model used14

is the groundnut (i.e. peanut; Arachis hypogaea L.) version of the General Large–Area Model for annual15

crops (GLAM). The conclusions are of relevance to C3 crops in general.16

The increases in yield simulated by GLAM for doubled CO2 were between 16 and 62%. The difference17

in mean percentage increase between well–watered and water–stressed simulations was 6.8. These results18

were compared to FACE and controlled environment studies, and to sensitivity tests on two other crop19

models of differing levels of complexity: CROPGRO, and the groundnut model of Hammer et al. (1995).20

The relationship between CO2 and water stress in the experiments and in the models was examined.21

From a physiological perspective, water–stressed crops are expected to show greater CO2 stimulation22

than well–watered crops. This expectation has been cited in literature. However, this result is not seen23

consistently in either the FACE studies or in the crop models. In contrast, leaf–level models of assimilation24

do consistently show this result. An analysis of the evidence from these models and from the data suggests25

that scale (canopy versus leaf), model calibration, and model complexity are factors in determining the26

sign and magnitude of the interaction between CO2 and water stress.27

We conclude from our study that the statement that ’water–stressed crops show greater CO2 stimulation28

than well–watered crops’ cannot be held to be universally true. We also conclude, preliminarily, that29

the relationship between water stress and assimilation varies with scale. Accordingly, we provide some30

suggestions on how studies of a similar nature, using crop models of a range of complexity, could contribute31

further to understanding the roles of model calibration, model complexity and scale.32

Keywords: Crop model, climate change, carbon dioxide, water stress, spatial scale33
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2 Challinor and Wheeler

1. Introduction34

Atmospheric concentrations of carbon dioxide are now substantially higher than they have35

been for hundreds of thousands of years (Siegenthaler et al., 2005) and they will continue36

to rise over the coming decades. Efforts to understand the impact of elevated CO2 on37

annual crops are crucial to quantifying likely future food production. Studies of climate38

change routinely use single– or multi– model ensembles in order to quantify uncertainty in39

simulations (e.g. Murphy et al., 2004). These studies vary the equations and/or parameters40

that are used to predict climate, in order to produce an ensemble of output values rather41

than a single set. The current study applies these methods to the prediction of the impact42

of elevated CO2 on crops, by varying the crop model parameters and hence producing an43

ensemble of simulations that sample uncertainty. This is not something that is commonly44

done in crop modelling studies (Challinor et al., 2005a).45

Elevated CO2 increases the rate of photosynthesis, decreases water use and can change46

leaf area index (LAI), above– and below– ground biomass, specific leaf area (SLA), radi-47

ation use efficiency (RUE) and harvest index (see e.g. Tubiello and Ewert, 2002). Table I48

illustrates some of these changes. In C4 crops, the principle mechanism for increased yield49

under elevated CO2 is reduced water use. In C3 crops, both assimilation and water use50

are beneficially modified and increases in water use efficiency and yield can be mediated51

principally through the former (e.g. Clifford et al., 1993), the latter (e.g. Hartwell Allen.52

et al., 1996), or both.53

Tubiello and Ewert (2002) and Ewert et al. (2002) present comparative reviews of54

the modelling methods used to simulate the impacts of elevated CO2 on the growth and55

development of a C3 crop (wheat). One interesting issue that emerges is the difference56

in CO2 stimulation between well–watered and water–stressed crops. From a physiological57

perspective, one would expect greater stimulation for stressed crops (see e.g. IPCC, 2001)58

and this effect can be seen in the measurement of daily integrated carbon assimilation59

(Bernacchi et al., 2006). Tubiello and Ewert (2002) show that many crop models capture60

this differential response. However, whilst some measurements of more integrated quanti-61

ties such as biomass and yield show the same response (Kimball et al., 2002), some show62

greater CO2–stimulation for non–stressed crops (Ainsworth and Long, 2005).63
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Consensus on the likely magnitude of the impact of elevated CO2 on crops will only64

be achieved through ongoing dialogue between simulation and experimentation. Recent65

meta–analyses of free air CO2 enrichment (FACE) experiments have indicated that the66

magnitude of CO2–stimulation may be lower than previously thought (Long et al., 2005).67

It has been suggested that crop models are more likely to reproduce chamber–derived68

levels of CO2 stimulation than the rather lower levels suggested by these more recent69

FACE studies (Long et al., 2006). However, Tubiello et al. (2007a) present evidence that70

crop simulation results are consistent with FACE studies.71

The methods used in the current study provide a way of using observational constraints72

within a modelling framework, in order to make maximum use of the available information73

and so increase confidence in the results. The implications of this are discussed further in74

section 5. The study builds on the work of Challinor et al. (2005a), where it was shown75

that transpiration efficiency is a key source of uncertainty in predicting yields under future76

climates. That study also showed that uncertainty in climate simulation is an important77

component of uncertainty in yield variability. For the simulation of mean yields, however,78

climate model uncertainty did not act systematically across space, whilst uncertainty in79

the crop model did. Hence crop model uncertainty is particularly important in assessing80

mean yields. The current study focusses on this issue: the impact of crop model uncertainty81

on mean yields.82

This study has three principal objectives: (i) to produce a validated ensemble of pa-83

rameter sets for the General Large–Area Model for annual crops (GLAM) for exploring84

uncertainty in doubled CO2 environments; (ii) to use these parameter sets to produce an85

ensemble of crop yields with which to assess the uncertainty associated with the response86

of a crop to elevated CO2; (iii) to use these yield ensembles, together with sensitivity87

studies performed on two other crop models (CROPGRO: Boote and Jones, 1998; and the88

groundnut model of Hammer et al., 1995) and published crop measurements to assess the89

relationship between water stress and CO2 stimulation. In particular we ask with what90

level of generality and conviction we should believe that “Relative enhancement of growth91

owing to CO2 enrichment might be greater under drought conditions than in wet soil92

because photosynthesis would be operating in a more CO2– sensitive region of the CO293

response curve” (IPCC, 2001).94
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4 Challinor and Wheeler

2. Methods95

2.1. Crop model description96

GLAM is a process–based model designed for use with daily time series of regional–97

scale (≈10–300 km) weather data, which is usually taken from climate models. Three98

soil hydrological parameters are required: the drained upper limit, saturated limit (i.e.99

field capacity) and lower limit. Data on the planting window are also required, since the100

simulated planting date is the first day within the planting window when soil moisture101

exceeds a specified fraction (50%) of the available soil water at the drained upper limit.102

A schematic of the model is presented in figure 1. The model is of intermediate complex-103

ity — less complex than point–based models such as CROPGRO and more complex than,104

for example, the crop coefficient method of Doorenbos and Kassam (1979). It is based on105

the finding that, at least for groundnut in India, there is a relationship between crop yield106

and climate at the regional scale (Challinor et al., 2003). The model therefore assumes that107

sub–grid variability in weather, soils and management practices do not play a major role in108

determining yield at the grid scale. Hence sub–grid heterogeneity is not parameterised in109

the model. Further assumptions made by the model are also based on observed processes110

and quantities. These are described in sections 2.1.1–2.1.3, with a particular emphasis on111

the parameterisations that are affected by elevated CO2.112

The present study focusses on the groundnut (i.e. peanut; Arachis hypogaea L.) crop in113

India, for which extensive evaluation of GLAM has been carried out (Challinor et al., 2006,114

2007, 2005b, 2005c, 2004). The processes included in the simulations under doubled CO2115

are: changes in assimilation rates, water use and SLA. No changes to the harvest index are116

simulated, since no consistent response emerged from the data (table I). Fertilisers may117

be needed in order to take full advantage of CO2 stimulation (e.g. Kimball et al., Reilly118

and Schimmelpfennig, 2002, 1999). Since GLAM does not simulate nutrients directly —119

but rather through a yield gap parameter — the simulations in the study do not explicitly120

include this interaction. However, in order to capture uncertainty, high and low estimates121

of the increase in transpiration efficiency are used, and variation in nutrients contributes122

to this uncertainty.123

For the current study, three changes were made to the original GLAM formulation124

(Challinor et al., 2004). The first of these is that the impact of water stress during flowering125
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was simulated, after Challinor et al. (2006). The second change to the model relates to126

the parameterisation of assimilation, which is described in section 2.1.2. The third change,127

which is described in section 2.1.3, improves the consistency between biomass and LAI.128

The resulting improvements to the model skill are evaluated in section 3.1.129

2.1.1. Water use130

GLAM has a full soil water balance, with daily simulation of runoff, drainage, infiltration131

and uptake through growing roots. The model is therefore capable of simulating the impact132

of the timing of rainfall on yield. For example, in Challinor et al. (2004) two simulations133

with very similar rainfall totals (394 and 389 mm), but different distributions within the134

season, produced different yields (1059 and 854 kg ha−1); this was reflected in observations135

(1360 and 901 kg ha−1).136

LAI growth in GLAM is limited by a parameterisation of soil water stress based on137

the availability of water relative to potential (energy–limited) transpiration. LAI is in turn138

used to determine the physiologically–limited transpiration. Actual transpiration is then139

the smaller of three values: energy–limited, water–limited and physiologically–limited. Of140

these, only the latter is affected directly by elevated CO2. The physiologically–limited141

transpiration, T p
Tpot, is affected by LAI (L) only when LAI is below a critical value (LCR):142

T p
Tpot =











TTmax

(

L
LCR

)

L < LCR

TTmax L ≥ LCR

(1)

This equation is based on the data of (Azam-Ali, 1984). The physiologically–limited143

maximum transpiration, TTmax, will fall with rising CO2, as stomata partially shut. Whilst144

TTmax is not usually measured directly, it is strongly related to water use. Reducing145

water use in this way, rather than altering the Priestley–Taylor coefficient, means that146

the reduction in water use is physiologically, rather than energetically, constrained. It also147

means that only transpiration, and not evaporation, is altered (see discussion in Tubiello148

and Ewert, 2002). The reduction in TTmax for the current study was determined by tuning149

TTmax to give plausible changes in transpiration (section 2.3.2).150

2.1.2. Assimilation151

Biomass is determined as the product of a normalised transpiration efficiency (ETN ), with152

units of g kg−1, and transpiration. ETN is given by153
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6 Challinor and Wheeler

ETN = min(
ET

V
,ETN,max) (2)

where V is the vapour pressure deficit (VPD, measured in kPa) and ET is the tran-154

spiration efficiency in Pa (i.e. kPa × g kg−1). ET is often found to vary little across155

a range of environments, for a given crop variety at constant nutrient and CO2 levels156

(Chapman et al., 1993). Since field estimates of ET are rarely made at very low VPD,157

GLAM employs a maximum normalised transpiration efficiency, ETN,max, to avoid very158

high value of transpiration efficiency at low VPD.159

The use of a transpiration efficiency to determine biomass makes GLAM primarily a160

water–driven model. However, since solar radiation is used to calculate potential tran-161

spiration rates, it is possible to assess the response of the model to radiation. Such an162

internal consistency check was performed by Challinor et al. (2004), who found observed163

and simulated values of radiation use efficiency to be in broad agreement.164

In the original GLAM formulation (Challinor et al., 2004), ET and ETN,max were165

independent parameters that took unique calibrated values. In the current study, more166

than one set of parameter values is used (see section 2.3). It is therefore important that167

these variables are co–varied, in order to ensure consistency. With one exception (see168

section 2.3.1), this was achieved for simulations under baseline (1966–1989) concentrations169

of CO2 by applying170

ETN,max = ET

Ec
TN,max

Ec
T

(3)

where superscript c indicates the calibrated values of Challinor et al. (2004): E c
TN,max=3171

g kg−1 and Ec
T =1.4 Pa. Under elevated CO2, ET increases and ETN,max may also change.172

Consistency between ET and ETN,max under elevated CO2 was achieved by applying173

ETN,max = (1 − Tfac)Ec
TN,max + Tfac ET

Ec
TN,max

Ec
T

(4)

where Tfac is a new variable introduced for this study. It is used for elevated CO2 only174

and takes values between 0 and 1. For Tfac=0, ETN,max is unchanged from its baseline175

value, so that at low VPD there is no CO2 stimulation. For Tfac=1, ETN,max increases176

by the same fraction as ET . Tfac exerts no control on assimilation at high VPD: for177

VPD> ET /ETN,max (see equation 2), the increase in ET (between baseline and elevated178

CO2 values) is the sole determinant of changes in assimilation. Hence Tfac controls the179
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differential response of assimilation to elevated CO2 across low and high humidity envi-180

ronments. It is the value of Tfac, together with the increase in ET , that determines the181

impact of elevated CO2 on normalised transpiration efficiency, ETN . Figure 2 illustrates182

this relationship. ETN , together with transpiration, determines biomass and, though a183

harvest index equation, yield.184

2.1.3. Specific leaf area185

The original GLAM formulation simulates biomass and LAI independently, as described186

above. Specific leaf area (SLA = LAI divided by above–ground biomass) is then calculated187

as an output variable. The resulting end–of–season values of SLA for simulations in recent188

climates are usually realistic (Challinor et al., 2004), although in water–stressed environ-189

ments very high values can sometimes occur. Because of this, and given the number of190

changed parameters in the current study, and the introduction of parameters to represent191

the crop response to elevated CO2, an internal control of SLA was added for this study.192

This also presented an opportunity to reduce the unrealistically high values of SLA that193

occurred in the first few days of most simulations.194

This control on SLA was implemented by imposing a maximum SLA, Smax. This max-195

imum value is used to modify the calculated values of either biomass or LAI. For the first196

ND days after emergence biomass is increased if necessary, to ensure that SLA≤ Smax.197

From day ND + 1 until the growth stage when LAI stops increasing, Smax is imposed by198

limiting increases to LAI. Once the LAI has levelled off, both biomass and LAI are allowed199

to evolve freely. Since biomass generally increases over this period, SLA tends to fall, as200

is seen in observations (Hunt, 1990)201

Sensitivity analysis revealed that the model is relatively insensitive to the choice of ND,202

within the range 5–10 days. The lowest of these values was chosen, in order to ensure the203

least possible interference with the model calculation of biomass, which is calculated using a204

more independently–measurable crop–specific parameterisation than LAI. Under current–205

climate (baseline) conditions, Smax was given the value of 300 cm2g−1, a typical value for206

groundnut (Banterng et al., 2003). In a doubled–CO2 environment SLA is expected to fall207

(White and Montes-R., 2005; Kimball et al., 2002; Ainsworth and Long, 2005), and Smax208

can be reduced accordingly.209
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8 Challinor and Wheeler

2.2. Crop model inputs210

The input weather data for the crop model came from the PRECIS regional climate model211

(http://precis.metoffice.com/) simulation of baseline (1961–1990) climate, on a 0.44◦ grid,212

carried out by IITM (2004). This simulation was also used by Challinor et al. (2007,213

2006). The simulation of climate shows good representation of maximum temperature214

during the monsoon, and some over-estimation of the monsoon rainfall over central India215

(IITM, 2004). Similarly, Bhaskaran et al. (1996) found that precipitation over land during216

the Indian summer monsoon was 20% greater in the Hadley Centre RCM of the time,217

than in the corresponding GCM, due to the stronger vertical motions arising from finer218

horizontal resolution. Further discussion of the impact of increased horizontal resolution219

on the simulation of the Asian summer monsoon can be found in Martin (1999) and220

Stephenson et al. (1998). Rainfall in southeast India, and in some parts of northeast India,221

is underestimated in the PRECIS simulations. Further details on the performance of the222

baseline climate simulation, together with a more detailed description of the simulations223

themselves, can be found in IITM (2004). Two further sets of input data are required to224

run the model (see section 2.1). The soils data used here is that of (FAO/Unesco, 1974)225

and the data on planting windows is from (Reddy, 1988)226

The groundnut yield data for calibration of the crop model are from the district–level227

database of agricultural returns compiled by the International Crops Research Institute228

for the Semi-Arid Tropics (ICRISAT), Patancheru, India. The time series of pod yield,229

for the period 1966 to 1989, for each individual district was linearly detrended to 1966230

levels in order to remove the influence of improved varieties and management methods.231

Each grid cell was assigned uniquely to a district according to the location of its centre.232

The yield data combine both the monsoon (rainfed) season and winter (irrigated) season.233

Figure 3 presents the mean and coefficient of variation of the yield data. Challinor et al.234

(2003, 2004) have more discussion on these data.235

2.3. An ensemble of crop yields236

The input data described above was used together with GLAM to produce an ensemble of237

crop yields. Each ensemble member was driven with the same weather, soils and planting238

data, but had one or more parameter values which differed from those of the other ensemble239
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members. The parameters varied are described in the following sections, and summarised240

in table II. In the baseline simulations, key parameters determining the response of the241

crop to CO2 were varied. In the simulations under elevated CO2, every parameter that is242

influenced by CO2 was either varied, or else tested to see if variation was required in order243

for observed CO2 responses to be seen.244

2.3.1. Baseline simulations245

Four baseline simulations were performed. These differed in the values of those parameters246

that are important sources of uncertainty in estimating the response of yield to doubled247

CO2. Specifically, the transpiration and transpiration efficiency of the crop were both248

varied. In naming the simulations, and referring to transpiration efficiency in general, the249

abbreviation TE will be used to denote either form of transpiration efficiency: the conserved250

quantity ET , or the VPD–dependent quantity ETN (see equation 2). The context (i.e.251

reference, or not, to a dependence on VPD) and/or the use of the original mathematical252

symbols, will ensure clarity.253

The Control simulation used the parameter set of Challinor et al. (2004), which corre-254

sponds broadly to the TMV2 variety. The High Baseline TE simulation used a higher value255

of ET . This choice was made because the Control value of ET is at the lower end of the256

observed range, and baseline TE has been identified as an important contributor to uncer-257

tainty in yield under future climates (Challinor et al., 2005a). The Reduced Physiological258

Transpiration Limitation simulation used an increased value of the physiologically–limited259

maximum transpiration, TTmax in equation 1. Since this parameter is not well-constrained260

under baseline CO2 concentration, and since it is also used to reduce transpiration in261

the doubled CO2 simulations, it is an important source of uncertainty. The final baseline262

simulation, the Reduced VPD–TE Interaction simulation, used a relationship between TE263

and vapour pressure deficit that is less sensitive to differences in VPD. Specifically, this264

simulation maintained, for baseline CO2 concentration, a constant ETN over a larger range265

of VPD (0–1.1 kPa) than is the case for the other simulations (0–0.5 kPa see figure 2). This266

was achieved by altering ETN,max in equation 2, instead of applying equation 3 (which267

was used for all other simulations). This change alters assimilation rates, and in particular268

the difference in assimilation between well–watered and water–stressed environments. It is269

therefore a potentially important source of uncertainty.270
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10 Challinor and Wheeler

Each of these baseline simulations was individually calibrated, using a spatially–variable271

yield gap parameter (YGP). This parameter was varied across the range 0.05–1 in steps of272

0.05. YGP multiplies the potential maximum rate of change of leaf area index in order to273

give a value that is limited by non-climatic factors such as pests, diseases and nutrients. The274

calibrated value of YGP is that value which minimises the difference between observed and275

simulated yields. A calibrated value of YGP was obtained for each unique input weather276

time series, so that in practise YGP can also act to correct bias in the input weather data.277

The calibration process is described in more detail in Challinor et al. (2007).278

2.3.2. Simulations under elevated CO2279

The impact of doubled CO2 was simulated by increasing ET and reducing the physiologically–280

limited maximum transpiration, TTmax. Since these quantities are measurable, this has281

the advantage of constraining the model with observations. The reduction in TTmax was282

derived by examining the changes in transpiration as TTmax was varied. A reduction of283

17% in TTmax gave a decrease in transpiration of up to 10% in the Reduced Physiological284

Transpiration Limitation simulation, and 15% in the Control simulation. This is in broad285

agreement with measured values (table I). In order to capture uncertainty, two values of286

the percentage increase in ET under elevated CO2 (TE FRAC) were used (24% and 40%).287

These values are based on the measurements of Stronach et al. (1994) and Clifford et al.288

(2000). They follow Challinor et al. (2005a), except that the upper value was reduced in289

order to reflect the recent result that CO2 stimulation in the field may be lower than that290

observed in controlled environments (Long et al., 2005).291

The relationship between VPD and TE under doubled CO2 was also altered in some of292

the simulations, by using the new variable Tfac (equation 4). Low values result in low CO2293

stimulation at low VPD. A value in the range 0.3–0.5 was suggested by examining low–294

VPD response of assimilation and net primary productivity in the land surface scheme of295

a general circulation model (MOSES; Cox et al., 1999). Thus 0.4 was chosen as one of the296

values of Tfac. The other value chosen was zero, as this encourages a differential response297

to CO2 between well–watered (low VPD) and water–stressed (high VPD) environments298

(see section 2.1.2). It follows from equations 2 and 4that under elevated CO2, ETN remains299

constant for VPD greater than 0.5 (Tfac = 0), 0.55 (Tfac = 0.4, TE FRAC=24%), or 0.58300

(Tfac = 0.4, TE FRAC=40%) kPa. For the Reduced VPD–TE Interaction simulations,301
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a value of 0.1 was chosen for Tfac, since when 0 or 0.4 were used, unrealistic changes in302

TE resulted. Under elevated CO2 in the Reduced VPD–TE Interaction simulations, ETN303

remains constant for VPD greater than 0.89 (TE FRAC=24%) or 0.99 (TE FRAC=40%)304

kPa.305

The final parameter change for doubled CO2 adjusts the relationship between biomass306

and LAI. Since a reduction in SLA may be expected under elevated CO2, the maximum307

SLA (Smax; see section 2.1.3) was reduced, by a percentage S FRAC, in some simulations.308

Note, however, that it is not only these simulations that result in a reduction in SLA.309

S FRAC was chosen to be 10%, which is in the centre of the range suggested by table I.310

Whether or not Smax is reduced, it can exert a control over LAI for the period from311

ND +1 until LAI stops increasing (see section 2.1.3). The maximum LAI increases linearly312

with biomass, with a constant of proportionality Smax. Hence transpiration efficiency313

drives biomass and Smax regulates the response of LAI to that change. Since transpiration314

efficiency increases under elevated CO2, this mechanism allows LAI to increase in response315

CO2. The second effect of CO2 on LAI is mediated through the potential for reduced water316

stress (i.e. the reduction in TTmax), which also tends to increase LAI.317

The baseline and doubled CO2 simulations are summarised in table III. Every possi-318

ble combination of simulations was performed. For each baseline simulation, there is a319

maximum of 23 = 8 elevated CO2 simulations (two values each of TE FRAC, Tfac and320

S FRAC). Since the Reduced VPD–TE Interaction parameter set had its own value of321

Tfac, that parameter was not varied, leaving that baseline simulation with 4 associated322

doubled CO2 simulations. This resulted in a total of (3 ∗ 8) + (1 ∗ 4) = 28 doubled CO2323

simulations. Since all simulations used the same input climate, any differences in yield are324

due to the crop model parameters representing doubled CO2.325

2.4. Selection of ensemble members326

Observed ranges of yield, SLA and LAI were used as criteria to select simulations for further327

analysis. The observations used were the full ranges from table I, with one modification:328

the range of yield values, which is relatively large, was reduced by replacing the five–fold329

yield increase observed by Clifford et al. (1993) with the maximum associated dry matter330

increase (128%). This upper limit, which was not approached by the GLAM output, is still331

quite high, especially considering the lower changes in yield seen in FACE studies. Values332
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12 Challinor and Wheeler

of yield change from FACE studies were not used directly. Instead, the use of FACE yield333

data (which does not include groundnut) for C3 crops was reserved as an independent334

test of simulated crop yield (section 3.3). The crop model outputs used for the comparison335

were the thirty–year mean values of yield, SLA and LAI. The criterion applied in each336

case was that at least 90% of the simulated values from all (787) grid cells lie within the337

ranges from observations.338

2.5. Sensitivity analysis339

Sensitivity analyses were performed with two further crop simulation models, in order340

to compare the response of these models under doubled CO2 to that of GLAM. The341

two models used were CROPGRO (Boote and Jones, 1998) and the groundnut model342

of Hammer et al. (1995). This second model, referred to from here onwards as QNUT,343

formed the base for the development of the legume model template in APSIM (Wang344

et al., 2002). CROPGRO and QNUT were not calibrated to reproduce observed yields.345

Instead, standard parameter values were used where possible in order to ensure that the346

model was being used within operational limits. This avoids over–tuning of the model347

(obtaining the correct yield for potentially the wrong reason), which would be an area of348

particular concern since neither QNUT not CROPGRO were designed to operate at the349

spatial scale of the observed yields. The parameter set used for the QNUT model was that350

of Virginia Bunch, with one modification: the thermal requirement was reduced in order351

to give the crop a duration of around 140–150 days, closer to the observed and simulated352

values for India (Challinor et al., 2003, 2004). The parameter set used for the CROPGRO353

simulations was the TMV2 parameter set calibrated for use in India by Kakani (2001).354

Weather inputs for the two crop models came from the PRECIS simulations (section 2.2)355

of the regions shown in figure 4, each of which has between 23 and 25 grid cells. The crop356

was sown on the same day as in the GLAM simulations. The final yield from all simulations357

within each region were averaged in order to produce a value for each region under the358

baseline and doubled CO2 environments.359

It is possible that calibrated results would produce a different response to that presented360

here. However, all results are normalised by baseline yields, in order to minimise calibration361

bias. For the CROPGRO model, some attempt to examine a range of calibrations was362

made: two values (High and Low: 0.82 and 0.22) of the soil fertility factor (SLPF) were363
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used. Within CROPGRO a further variation was introduced: simulations were performed364

using both the canopy– and leaf– level photosynthesis modules. All four combinations of365

these two options were carried out. Comparison with FACE yields from the literature adds366

further data to this assessment, as well as indicating the general level of agreement between367

the GLAM simulations and observations. Since FACE studies have not been conducted368

with groundnut, C3 crops were used for this comparison.369

3. Results370

3.1. Crop yield ensemble in the baseline climate371

Calibrated values of YGP were in the range 0.05–1 for the Control and the Reduced Physi-372

ological Transpiration Limitation simulations. For the other two baseline simulations, YGP373

was in the range 0.10–1.0. Figure 5 shows the level of agreement between the simulated374

and observed mean yields for two of the simulations: the Control simulation, and the least375

accurate, overall, of the other three 1*CO2 simulations (High Baseline TE). The Control376

simulation is an improvement on the simulations using the earlier version of GLAM (v1.0)377

with the same parameter set (Challinor et al., 2007): root mean square error assuming378

perfect correlation (see Challinor et al., 2007) in the new simulations is lower in 576 out379

of 787 grid cells. In a number of grid cells across central India there are improvements in380

the simulation of mean yield. The errors in mean yield in the southern part of India are381

common to all four baseline simulations and may in part be due to errors in the input382

rainfall (Challinor et al., 2007, 2005c). In southern and north–western parts, the standard383

deviation of yield is lower, and closer to observations, in the new simulations than in384

those GLAM v1.0 (not shown). In many parts of central and eastern India, the standard385

deviation increases, again bringing closer agreement with observations (not shown).386

Four regions were analysed in more detail. These were chosen for both geographical and387

climatic variation, in particular variation in water stress. Figure 4 is a map of the mean sim-388

ulated levels of crop water stress across India for the Control simulation, showing also the389

location of the four chosen regions: north–west (NW), the north–western part of Gujarat390

(GJ), a region in central India (CE) and part of the southern peninsula (SP). Simulated391

water stress is particularly high in SP (which has a mean transpiration deficit, relative to392
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the potential, of 66% in the Control simulation), leading to the errors in simulated yields393

cited above. There is also water stress in NW (mean transpiration deficit in the Control394

simulation of 44%), where the model is more accurate (figure 5). The other two regions395

show very little water stress. However, note that the simulated rainfall in GJ is higher396

than that observed: over 50cm during the simulated crop season, which is approximately397

the observed June–Dec seasonal total (Challinor et al., 2003). Whilst the pattern of water398

stress remains the same across the simulations (not shown) there is some variability in the399

magnitude. However, this variability is less than the inter-annual standard deviation.400

The four baseline simulations are compared in figure 6. Comparisons with observations401

are of limited used, since the observed yields are on a district scale, and there are only four402

(GJ) or six (CE) districts in each region. However, in both cases the range of within–region403

variability is represented well. In GJ, three of the four baseline simulations are very similar.404

The High TE simulation extends the range of mean yields in both directions. In contrast,405

in CE only one of the simulations (Reduced Physiological Transpiration Limitation) is406

similar — in this case very similar — to the control. This may be because compared to407

CE, yield in GJ is more constrained by climate, particularly via VPD (not shown).408

3.2. Crop yield ensemble under doubled CO2409

Of the 28 crop simulations under doubled CO2, 18 passed the criteria described in section410

2.4. Most of these (12) had the decreased maximum SLA parameter value. All except411

for one of the High Baseline TE simulations without the SLA decrease failed to pass the412

criteria, due to high LAI. This section analyses the the 18 ensemble members in terms of413

their differential response to CO2 between well–watered and water–stressed environments.414

Absolute measures of the impact of CO2 stimulation on yield for the two environments415

are presented, together with those from the other two crop models and results from FACE416

experiments, in section 3.3.417

A different response to CO2 between well–watered and water–stressed environments418

was seen in both the simulations with no TE increase at low–VPD (Tfac=0) and those419

with (Tfac=0.4). This can be shown using the yields averaged over all ensemble members,420

all years and all grid cells within two pairs of regions: well–watered (GJ plus CE) and421

water–stressed (NW plus SP). To quantify the differential response, we define Ydif as the422

percentage change in average yield in the well–watered environment minus the percentage423
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change in average yield in the water–stressed environment. The simulations with no TE424

increase at low–VPD have Ydif=4.3. The same figure for the simulations with a TE increase425

at low–VPD is, as expected, higher (9.1). These simulations especially favoured well–426

watered conditions when parameters conducive to higher LAI were used: the simulations427

with no decrease in SLA had Ydif = 13%. Using individual ensemble members, rather than428

averages, Ydif is positive in all 18 cases. If ensemble averages over single regions are used429

to calculate Ydif , so that there are four results (GJ minus NW, GJ minus SP, etc) then,430

again, all of these numbers are positive. Hence using this metric, the GLAM simulations431

show greater stimulation in well–watered than in stressed environments. Note, however,432

that if individual ensemble members from single regions are used to calculate Ydif then433

the result is slightly less clear: 0, 2, 4 or 8 of the eighteen ensemble members favour the434

water–stressed regions SP or NW.435

Table IV illustrates the reason for the well–watered regions having greater CO2 stimu-436

lation than NW and SP: LAI increases under doubled CO2 in all of the simulations, hence437

increasing light capture and, potentially, transpiration. Since only the well–watered regions438

have enough water to substantially increase transpiration, these show greater increases in439

yield under doubled CO2. The SP region showed the lowest increases in LAI. Most of440

the simulations in SP show decreased water use under elevated CO2, and all simulations441

showed a decrease in water stress: the change in the fraction of potential transpiration442

realised, averaged across time and space, ranged across ensemble members from 2.9 to443

10%. Of the 7 simulations that showed increased water use, 6 used Reduced Physiological444

Transpiration Limitation parameters — i.e. the simulations where the absolute reduction445

in transpiration due to stomatal closure is smallest. In NW, the increase in water use in446

these 6 simulations resulted in increases in LAI that in turn resulted in an increase in447

average water stress.448

3.3. Sensitivity analysis and synthesis of results449

The differential response to CO2 between well–watered and water–stressed environments is450

shown for the GLAM results and for the sensitivity analysis results from the two other crop451

models (section 2.5) in figure 7. Also shown are the yield changes for C3 crops from two452

FACE meta–analyses. Whilst the ranges are large, it is worth noting that, using the average453

response, the two FACE results do not agree on whether droughted or non–stressed crops454
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will benefit most from elevated CO2. However, FACE2 (Ainsworth and Long, 2005) does455

show reduced benefit under ’wet conditions’. This highlights an important issue in making456

this kind of comparison: meta–analyses necessarily simplify the data so that information,457

in this case regarding exact levels of water stress, is lost.458

The well–watered GLAM simulations are within the range suggested by the FACE459

studies, as are most, but not all, of the water–stressed simulations. When all the GLAM460

simulations are taken together, the difference between the well–watered and water–stressed461

regions is positive and very small. The QNUT model showed a similar response to GLAM,462

with the water–stressed regions having larger increases in yield than the well–watered463

regions. Three of the four CROPGRO configurations show the opposite response.464

In all cases the CROPGRO simulations with canopy–level photosynthesis calculations465

resulted in higher stimulation than the leaf–level simulations, and the difference between466

well–watered (GJ plus CE) and water–stressed simulations (NW plus SP) was less. Sim-467

ilarly, in all cases increased soil fertility (High–SLPF) was associated with smaller dif-468

ferences between well–watered and water–stressed simulations. The same effect can be469

seen, for example, in the yield results presented by Kimball et al. (2002). Given these470

results, it is not surprising that the one CROPGRO configuration that did not result in471

greater stimulation under water–stress is the the High–SLPF simulation with canopy–472

level photosynthesis. This highlights the importance of model calibration, since different473

conclusions would be reached in this case for the two different values of SLPF.474

4. Discussion475

4.1. Yield, LAI and water use476

The GLAM results, which were selected for SLA and LAI from FACE and chamber477

studies, and yields from chamber studies, show broad agreement with the yields of C3478

crops from FACE studies. This can be seen in figure 7, which shows that the increases in479

yield simulated by GLAM for doubled CO2 were between 16 and 62%, and those of the480

FACE studies were between 0 and 73%.481

For all GLAM simulations, LAI increased under doubled CO2, by a similar range to482

that found in FACE studies (cf tables I and IV). As a result, water use mostly remained483
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the same or increased. Similar results, where increases in LAI cause transpiration increases484

that compensate for partial stomatal closure, have been suggested (Field et al., 1995) and485

reported (Goudriaan and Unsworth, 1990) in the literature. For some of the simulations in486

water–stressed regions, transpiration decreased, by up to 4.6%. This is a similar amount487

to that seen in FACE studies, (table I) but less than the decrease of 14% reported by488

Clifford et al. (1995) (see table I). This may be because typical values of LAI in the field,489

and those of the GLAM simulations, are considerably lower than those of Clifford et al.490

(1995). At lower LAI, transpiration is more sensitive to increases in LAI (equation 1). This491

means that in the GLAM simulations presented here, water storage in the soil may not be492

prolonged under elevated CO2 in the same way as it is for crops with higher LAI.493

In contrast to the GLAM results, FACE studies of wheat under well–watered conditions494

have shown that water use falls under elevated CO2 (e.g. by 3.3 to 6.7% in the meta–495

analysis of Kimball et al., 2002). Hence increases in LAI do not compensate for stomatal496

closure under these conditions. This may again be due to higher LAI. In contrast, under497

stressed conditions, Kimball et al. (2002) reported that water use may increase or decrease498

(−2.2 to +4.5%). Differences in the sign of this change across experiments may be due to499

differences in the timing of application of water during the growing season. The timing in500

the model simulations is not the same as the timing in the FACE experiments.501

4.2. Interaction between water stress and assimilation502

The interaction between water stress and assimilation in this study differed between models503

(sections 3.2 and 3.3). In the GLAM results, no greater stimulation of stressed crops504

was seen, despite the mechanism for such a result being included in the model. QNUT505

behaved in a similar fashion. This is a particularly noteworthy result since the difference in506

absolute yield increases between well–watered crops and stressed crops is even larger than507

their percentage counterparts. CROPGRO, however, which simulates leaf–level processes,508

showed the converse result. Furthermore, when the canopy–level photosynthesis module509

within CROPGRO was used, the magnitude of this response was reduced.510

In order to understand the reason for these differences, a little more analysis is required.511

Figure 8 shows the relationship between yield and incident radiation in simulations of512

irrigated crops using canopy– and leaf– level photosynthesis in the CROPGRO model.513

Both CO2 concentration and the choice of photosynthesis module have an effect on this514
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relationship. However, the choice of photosynthesis module did not result in a larger515

percentage difference, between baseline and elevated CO2, in either the slope or the value516

of yield at high (20.7 MJ day−1) radiation. The lack of a difference between photosynthesis517

modules when water is not limiting suggests that it is the response to elevated CO2 under518

water stress that is responsible for the contrasting behaviour of these modules.519

To examine this possibility, we need only examine the absolute yields from the simula-520

tions under water stress under baseline CO2 concentrations: the mean yields from NW and521

SP are smaller with the leaf–level photosynthesis (783 and 694 kg ha−1, respectively) than522

with the canopy–level photosynthesis (862 and 752 kg ha−1, respectively). Smaller yields523

are more likely to produce larger percentage differences, especially since both photosyn-524

thesis modules produce absolute differences in yield (elevated minus baseline CO2) that525

are greater for well–watered crops than for water–stressed crops. This again highlights the526

importance of calibration: simulations of future changes in yield are reliable only if the527

crop model reproduces accurately yields in the baseline environment. In the current study,528

this has only been attempted with GLAM.529

Does the issue of calibration alone explain the differences between GLAM and CROP-530

GRO? Model formulation is likely to play a role, especially since the water–stressed baseline531

yields in GLAM are lower than those in DSSAT, making GLAM prone to larger percentage532

changes under elevated CO2. GLAM uses normalised transpiration efficiency to convert533

water to biomass. The relationship between transpiration and biomass * VPD is linear534

(equation 2). The only interactions between water stress and assimilation are those that535

are determined by enforced changes in model parameters between baseline and elevated536

CO2. These have either been empirically fitted (physiologically–limited maximum tran-537

spiration) or else a range of plausible values has been used (relationship between VPD538

and TE; changes in SLA). This is substantially different from simulating assimilation at539

the leaf or canopy levels. QNUT also uses a linear relationship to determine biomass —540

in this case a radiation use efficiency. Hence differences between the models in the level541

of organisation at which biomass accumulation is simulated, and subsequently scaled up542

to produce field–scale biomass and yield, may be one of the reasons for the differences in543

model behaviour between CROPGRO and the other two models. Similarly, the differences544

between the two sets of CROPGRO simulations may be due to differences between the545

simulation of photosynthesis directly at the canopy–level and simulation at the leaf–level546
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with subsequent upscaling being done elsewhere in the model. Ultimately, the reasons547

for the differences between these models can only be determined using fully–calibrated548

CROPGRO and QNUT simulations, based on yield data at the appropriate spatial scale,549

and with adequate sampling of uncertainty.550

4.3. Levels of complexity in crop modelling551

The above analysis suggests that differences between model output may be due to differ-552

ences in the calibration of the model and/or in the level of complexity of the model itself.553

Since models of differing complexity have produced different results, it seems logical to554

ask whether or not this is due simply to insufficient complexity in some of the models. In555

other words, is complexity a prerequisite for quantifying the impact of elevated CO2 and556

its interaction with water stress? Tubiello and Ewert (2002), in their review of available557

models, find that it is not. Given that a range of approaches is feasible, what are the558

advantages and disadvantages of complexity in modelling?559

Quantities such as yield integrate a number of non–linear processes. In the current560

study, observations of yield, SLA and LAI were used to constrain the GLAM model.561

The model also contains other parameters that have been previously constrained with,562

or tested against, observations (e.g. water use, harvest index and transpiration efficiency;563

Challinor et al., 2004, 2005a). Thus a model of intermediate complexity such as GLAM564

has the advantage of having a large fraction of its parameters that can be linked directly565

to observations. Models that simulate crop growth at a more fundamental level have more566

parameters. These cannot always be linked directly to observations. This results in a567

greater likelihood that there are a number parameter sets that lead to the same baseline568

yields (c.f. Beven, 2006). These different parameter sets may not respond in the same way569

to elevated CO2. For this reason, crop models should be evaluated not only in terms of570

yield, but in terms of their skill in simulating other quantities and processes. The evaluation571

of skill in yield simulation then becomes a test of the interactions between these processes.572

These interactions are often complex and non–linear, leading some authors to conclude573

that the appropriate level of complexity for a model is one level — and no more — below574

the quantity of interest (Sinclair and Seligman, 2000).575

More complex models, then, are more difficult to constrain with observations than less576

complex models. This would suggest a preference for lower complexity (e.g. Brooks et al.,577
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2001), particularly when estimates over large areas are required (see Challinor et al., 2003).578

However, it is important to remember that more complex models may include processes and579

interactions that are, or become, a significant determinant of yield. Hence the difficulty580

in constraining complex models with observations should not be seen as a reason for581

avoidance. Rather, it is a reason to exercise caution in using crop model parameter sets582

outside the model domain in which they have been tested. Where parameters are uncertain,583

the impact of this uncertainty on yield should be estimated.584

4.4. Complexity and spatial scale585

Section 4.2 suggests that insufficient model complexity, and differences in model calibra-586

tion, are likely contributers to differences in model output. However, section 4.3 suggests587

that model complexity and accuracy are not necessarily directly related. Hence we consider588

now a third possible reason for model differences: since the complexity of a plant model589

is in general related to its spatial scale (Raupach and Finnigan, 1988), it is possible that590

the range of responses across some models reflects a real–world scaling issue.591

Certainly real scaling issues exist in biological and physical systems. Indeed, the question592

of how the impacts of elevated CO2 scale across leaf, canopy and regional scales is crucial for593

our predictions of the impacts of climate change on crops (Ewert, 2004), natural vegetation594

(El Maayar et al., 2006), and the hydrological cycle (Field et al., 1995). Of particular595

relevance to the current study, Medlyn et al. (2003) and Rosati and Dejong (2003) find596

that leaf–level photosynthesis may not scale up linearly to the regional or canopy scale.597

Long et al. (2004) provide a description of the response of assimilation at the leaf level.598

Using the Farquhar–von-Caemmerer–Berry photosynthesis model, the authors show how599

stomatal limitation on assimilation is reduced at high CO2. At the canopy level, Ewert600

(2004) found that simulated CO2 stimulation (ratio of canopy assimilation rate in doubled601

and ambient conditions) fell with increasing LAI. Since low LAI is associated with water602

stress, this suggests higher CO2 stimulation for stressed crops. However, the effect reported603

by Ewert (2004) is not large (≈27% stimulation at LAI=1, and ≈21% at LAI=10). The604

authors also found that measurements of CO2 stimulation (under 1.5*ambient conditions)605

of wheat biomass showed a small (statistically insignificant) difference between water–606

stressed and well-watered crops. Hence LAI (and water stress) exerted greater control607

over biomass than CO2 levels.608
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The character of the above results is summarised in figure 9, by using data from a range609

of studies. The figure shows measurements and simulations from the literature of assimi-610

lation at different values of water stress, measured through stomatal conductance, Palmer611

crop moisture index and LAI. All of these show a negative value of Ydif (the percentage612

change in yield in well–watered environments minus the percentage change in yield in the613

water–stressed environments). Crop model results for yield, from the current study and614

one other study, are also presented. Models with detailed simulation of photosynthesis615

tend to show negative Ydif and models with less detailed approaches show positive Ydif .616

Hence using both observations and simulations (predominantly the latter), a pattern has617

emerged: Ydif increases with increasing levels of biological organisation.618

Some of the differences in figure 9 are likely to be due to differences in model complexity619

(section 4.2). However, since some of the models examined in the current study operate620

on different spatial scales, these differences may be justified, rather than simply being621

the result of model error. Hence for at least some of the data in figure 9, the pattern622

of increasing Ydif with increasing levels of biological organisation could potentially be623

explained by differences between measures of assimilation at the leaf, field and large–area624

levels.625

To determine the likelihood of this, modelling and field work need to be carefully626

combined. In this study we have not compared field experiments to simulations on a627

one–to–one basis. We are therefore unable to discern whether it is model error, model628

calibration, or model spatial scale that is primarily responsible for the different behaviours629

seen in figure 9. Since the effect is small relative to the uncertainties (figure 7) such630

discernment may not be easy. Furthermore, difficulties are likely to be compounded by631

non–linear interactions between the level of soil nutrients, water stress and CO2 levels632

(section 3.3; Kimball et al., 2002, Ainsworth and Long, 2005). This effect is one of at least633

three which has not been simulated in detail in the current study. The second of these is634

downregulation or acclimation to elevated CO2, which are sometimes used interchangeably635

(El Maayar et al., 2006) and sometimes not (Long et al., 2004). This refers to a reduction636

in assimilation with increasing exposure to elevated CO2 conditions. For a discussion of637

short–term versus long–term impacts of CO2, see Morison (1998). Such effects could mean638

that the long–term increase in TE under elevated CO2 is lower than that used in this639

study. Increases in surface ozone (Long et al., 2005) are another mechanism by which TE640
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could be reduced. However, ozone and CO2 do not interact linearly and under elevated641

CO2 the reduction in assimilation due to high ozone can be small (Bernacchi et al., 2006).642

Notwithstanding the limitations above, could a carefully designed combination of mod-643

elling and field work determine the roles of model error, model calibration and model644

spatial scale? Since greater complexity leads to greater difficulty in applying observational645

constraints (section 4.3), and since complexity itself is likely to be a cause of model646

differences (section 4.2), it follows that such a task would not be trivial. Perhaps only by647

also examining theory can a complete picture emerge. For example, under well–watered648

conditions the response of plants to light differs with spatial scale: at the canopy level649

assimilation tends to respond linearly to radiation (e.g. Chen and Coughenour, 2004),650

whilst at the leaf scale the linear response can reach saturation (e.g. Rosati and Dejong,651

2003). This is a measurable effect, and models can be used to develop mechanistic expla-652

nations for it (Dewar et al., 1998). Canopy architecture is the obvious difference across653

these two spatial scales, and is likely to play a role in the different behaviour observed.654

Any crop has leaves with a distribution of ages and a distribution of light levels, and this655

is likely to smooth out the cutoff point where increases in incident radiation no longer656

produce increases in assimilation. The fact that linearity in the response of the crop to657

CO2 emerges more fully as time progresses (Medlyn et al., 2003) supports the hypothesis658

that different levels of organisation may produce different responses to elevated CO2 (since659

the crop has more time to integrate across a range of incident light levels).660

5. Conclusions661

This study has confirmed previous findings that complexity in modelling is not a prereq-662

uisite for capturing the impact of elevated CO2 on crops. However, as with any modelling663

approach, observations are needed to constrain model parameters. Additionally, in this664

study, the ensemble output was itself constrained with FACE data of SLA and LAI665

(although yields from FACE studies were not used as a constraint). Hence the model666

output presented here is partially tuned, rather than being an entirely independent result.667

Whilst there are valid reasons for wanting to avoid such partial tuning, it has the advantage668

of assimilating knowledge from experimental crop science into the modelling study. This669
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pragmatic approach is routinely used by meteorologists when creating (e.g. Kalnay et al.,670

1996) and using (e.g. Betts et al., 2003) reanalyses of atmospheric and oceanic fields.671

Results from the crop yield ensemble produced in this study estimate the uncertainty672

in yield associated with a doubling of CO2 to be similar to the magnitude of the effect673

(approximately 40%), in broad agreement with FACE studies (figure 7). Despite these674

uncertainties, some conclusions may be drawn regarding the relationship between water675

stress and CO2 stimulation. Firstly we find, in both models and observations, a low676

level of conviction and generality associated with the statement “Relative enhancement677

of growth owing to CO2 enrichment might be greater under drought conditions than in678

wet soil because photosynthesis would be operating in a more CO2– sensitive region of679

the CO2 response curve” (IPCC, 2001). This is an important conclusion, since the nature680

of the relationship between water stress and CO2 stimulation has implications for rainfed681

and irrigated agriculture (rainfed crops are more likely to experience water stress). If682

the relative CO2 enhancement of growth is less under drought conditions than in wet683

soils, this may place demands on irrigation water resources that are additional to those684

already identified (Tubiello et al., 2007b). For the potential benefits of elevated CO2 to685

be maximised, agronomic practice needs to adapt as CO2 rises — something that is not686

reflected in recent releases of at least some cultivars Ziska et al., 2004.687

The second conclusion is a preliminary one, drawn using results from a number of688

modelling and experimental studies of the mean response of crops to elevated CO2. These689

results suggest a relationship that is not preserved across spatial scale: on small spatial690

scales, and correspondingly low levels of organisation, water–stressed crops benefit more691

from elevated CO2, in terms of percentage changes in assimilation and yield, than well–692

watered crops. On larger spatial scales, yields suggest this relationship is weakened and693

even reversed. However, this study has shown that variations in spatial scale may not be694

the only reason for differences in the response of simulated crops to elevated CO2. Inap-695

propriate level of model complexity and insufficient model calibration may also play a role.696

Further studies using a range of models, with results interpreted in terms of fundamental697

theory and processes, would help to determine the relative contributions of these causes.698

Hence the methods used in the current study could be profitably applied to crop models699

of varying levels of complexity and spatial scale. Such studies would tell us how differences700
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across models in their scaling–up of assimilation and water use to yield (section 4.2) relate701

to real–world scaling issues (section 4.4).702

This work would present a number of challenges, some of which have been at least703

partially addressed in the literature. Only one–to–one comparisons between field data704

and simulations can determine whether or not a model is sufficiently complex to capture705

observations. Also, the models would need to be fully calibrated, preferably under both706

baseline and elevated CO2 concentrations. Calibration should be on yield and, if pos-707

sible, other quantities. Hence a significant amount of data for calibrating, and possibly708

constraining, the models would need to be available. For comparisons at large spatial709

scales, heterogeneity in weather and soils would need to be accounted for in one–to–one710

comparisons between data and models. If constraining data is used then techniques for its711

integration with the model (e.g. Chen and Coughenour, 2004) will also be needed. There712

are also challenges associated with fully representing parameter uncertainty. Sensitivity713

analyses can be used to identify key parameters (e.g. Makowski et al., 2006) and associated714

uncertainty. To ensure a minimum number of unconstrained parameters, some authors have715

systematically simplified complex models, in order to eliminate redundant parameters (e.g.716

Brooks et al., 2001).717

In conclusion, the ensemble approach to crop modelling, with or without constraints718

from observations, could be profitably applied to a range of crop models. By providing719

objectively–determined uncertainty ranges, and by sampling across different modelling720

approaches, such studies would increase confidence in our estimates of the impacts of721

elevated CO2 on crop yield.722
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Table I. Summary of observations of changes in crop growth under elevated CO2 relevant to the current study. Specific Leaf Area (SLA), Leaf Area Index (LAI), water use

(usually calculated as quantity of water applied minus the increase in soil water content over the season), Harvest Index (HI) and yield are presented. All groundnut studies

were conducted under 100% elevated CO2, whilst the Free air CO2 enrichment (FACE) studies used a range of CO2 concentrations, resulting in elevations of approximately

60 to 70%. Brackets give ranges. The Kadiri-3 experiments were conducted in glasshouses and the Georgia Red experiments were conducted in a growth chamber. Notes: 1

Dry matter increases were more modest: 115% (101 to 128).

Crop or species SLA LAI Water use HI Yield Ref.

FACE meta–analyses

C3 crops −8(−5 to −9)% +10 (−8 to +32) — — — Ainsworth and Long (2005)

C3 crops −20 to 0 ≈11% (−6 to 24%) −3 to +5% — — Kimball et al. (2002)

C3 crops −6(−4 to −8)% +7 (−1 to +16) — — — Long et al. (2004)

Groundnut in controlled environment

Kadiri-3 (irrig.) — ≈6% — 0.20→0.20 25% (14 to 38) Clifford et al. (1993)

Kadiri-3 (irrig. to 22 or 35 DAS) — ≈40% -14% 0.05→0.15 510% (365 to 720)1 Clifford et al., Clifford et al. (1993, 1995)

Georgia Red −15% Area/leaf:+18% — 24.5→29.1 ≈50% Stanciel et al. (2000)
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26 Challinor and Wheeler

Table II. Crop model parameters varied in order to create the ensemble of yield simulations. The first

of these relates to water use, the next four control assimilation and the last controls the limitation on

specific leaf area (SLA).

Parameter Units Reference Description

TTmax cm day−1 Eqn. 1 Physiologically–limited maximum transpiration

ET Pa Eqn. 2 Transpiration efficiency in Pa

ETN,max g kg−1 Eqns. 2 and 3 Max. normalised transpiration efficiency

TE FRAC — Eqn. 2 Increase in ET under elevated CO2

Tfac — Eqn. 4 Controls increase in ETN,max under elevated CO2

S FRAC — Sec. 2.1.3 Decrease in maximum SLA, Smax, under elevated CO2
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Table III. The simulations carried out. Four of the crop model parameter sets act on both the baseline and doubled CO2 simulations. A further three parameter

variations, each consisting of two options, affect only the simulations under doubled CO2. Percentages increases under doubled CO2 are measured with respect to

the control parameter value. All doubled–CO2 simulations used a value of TTmax that was 17% lower than the corresponding baseline value. Equation 3 was turned

off for the Reduced VPD–TE Interaction simulation in order to permit the lower value of ETN,max. Notes: 1 Tfac only affects crop simulation at elevated CO2.
2

This simulation also used the higher baseline value of ET (2.2 Pa).

Baseline and doubled CO2

Name Parameter changed Value Description

Standard Actual

Control — — — Standard parameter set

High Baseline TE ET 1.4 2.2 Baseline transpiration efficiency increased by 57%.

Reduced Physiological Transpiration Limitation TTmax 0.30 0.55 Physiologically–limited maximum transpiration increased by 83%

Reduced VPD–TE Interaction Tfac & ETN,max —1 & 3 0.1 & 2 ETN is constant over a larger range of VPD 2

Doubled CO2 only

Name Parameter changed Value 1 Value 2 Description

Small/Large TE Increase TE FRAC 24% 40% Increase in ET under 2*CO2

Reduced/Same SLA Limit S FRAC 10% 0% Do, or do not, reduce maximum SLA under 2*CO2

(No) TE Increase at Low–VPD Tfac 0 0.4 At low VPD, ETN does (not) increase under 2*CO2
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Table IV. Percentage changes between doubled CO2 and baseline values of

two crop characteristics. Means and ranges are across all 18 ensemble mem-

bers. SP and NW are water–stressed regions. GJ and CE are well–watered

regions.

. LAI Transpiration

Region Mean Median Range Mean Median Range

SP 14.0 15.1 6.9 – 21.9 1.9 -0.9 −4.6 – 6.1

NW 18.4 20.5 8.6 – 25.7 6.9 6.8 0.8 – 11.7

GJ 24.4 28.2 9.0 – 33.6 12.0 12.1 1.1 – 20.6

CE 19.5 19.6 6.0 – 32.3 11.6 12.3 3.7 – 19.9

Figure 1. Schematic representation of the GLAM model. d(HI)/dt denotes the rate of change of leaf area

index. YGP is the yield gap parameter. Prognostic variables, or groups of variables, are shown in rectangles.

Intermediate variables and constants are shown in ovals. The daily driving variables are shown outside the

model box.
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Figure 2. Relationship between normalised transpiration efficiency (ETN ) and vapour pressure deficit

(VPD) in the baseline environment (solid line) and in the elevated CO2 environment with an increase

of 24% in ET (dotted, dashed and dot–dashed lines). Tfac controls the response of ETN to VPD at low

VPD (see equation 4).
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Figure 3. Mean (kg ha−1) and coefficient of variation (CV) of observed groundnut yield in India, over the

period 1966–89, presented on the simulation grid.
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Figure 4. Actual transpiration divided by potential transpiration for the Control simulation. Also shown

are the four regions, from north to south: NW, GJ, CE and SP (bounded by two white and two black

lines).
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Figure 5. Thirty–year mean simulated baseline yields normalised by observed mean 1966-89 yields. The

two sets of simulations shown are described in more detail in table III and section 3.1.
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Figure 6. Histograms of thirty–year mean simulated baseline yields for two regions in the four baseline

simulations. All histogram counts are normalised by the total number of data points in the histogram. For

CE this total number is 92 for the histogram of All Simulations and 23 for all other histograms. The GJ

region contains one less data point per set of simulations. Although the observations contain 23 or 24 data

points, they are not uniquely–valued since they come from district–level data, and the districts are larger

than the grid cells (see section 2.5). Hence there are only four or six uniquely–determined yields in the

histograms of observations.
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Figure 7. Effect of elevated CO2 according to two FACE studies (FACE1: Kimball et al., 2002; FACE2:

Ainsworth and Long, 2005) and the GLAM simulations. Bars show mean values. For the FACE studies,

whiskers show the maximum and minimum values when standard error is taken into account. For GLAM,

whiskers show the full range of model output. Also shown are the results of the sensitivity analyses on two

further crop models: CROPGRO (i.e. PNUTGRO) and QNUT. For PNUTGRO, two sets of simulations,

both with the high value of SLPF (0.82), are shown: simulations using leaf–level photosynthesis, and

simulations using canopy–level photosynthesis. All crop model values are based on average yields within

two regions (CE and GJ for No stress, and NW and SP for Drought). Hence GLAM results are based on

36 ensemble members and PNUTGRO and QNUT are based on two points, one at each end of the bar.
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Figure 8. Impact of solar radiation on yield in simulations of irrigated crop cultivation using the CROPGRO

model. Individual simulations, rather than average yields, were used. Hence there are approximately 30

(years) * 4 (study regions: CE, GJ, NW and SP) * 24 (grid cells per region) = 2880 data points. Two

model configurations under two atmospheric CO2 concentrations are shown. The linear regressions shown

are all statistically significant, with r ≥ 0.88 and p < 0.0001.
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Figure 9. Mean percentage change in yield in well–watered environments minus the percentage change

in yield in the water–stressed environments. Data for the six bars on the right is the mean response

from the models and data in figure 7: CROPGRO (C) using the leaf– and canopy– level photosynthesis

modules, QNUT (Q), GLAM and two FACE (F) studies. Also shown are the range of values from five

wheat models run by Tubiello and Ewert (2002), and three differences in stimulation estimated from

assimilation rates at different values of: Palmer crop moisture index (regression across PCMI=-1 to +1.5,

Bernacchi et al., 2006); leaf area index (LAI=1 and 10, Ewert, 2004); stomatal conductance (using the Far-

quhar–von-Caemmerer–Berry model). The ’Farquhar’ data point is calculated by using the supply=demand

points, at baseline and elevated CO2, in figure 1 of Long et al. (2004). The analysis is conducted at the

leaf–level and assumes that the ratio of internal to external stomatal concentrations remains constant

under elevated CO2, and that there is no change in the demand function. The ’Farquhar’ data point is for

moderate stomatal closure, giving an assimilation of approximately 18 µmol m−2 s−1. Assuming a stomatal

closure such that assimilation under baseline CO2 is approximately half of this gives Ydif = −59%.
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List of abbreviations and symbols730

Abbrev. Symbol Description units

FACE Free air CO2 enrichment —

GLAM General Large–Area Model for annual crops —

LAI L Leaf area index Dimensionless

RUE Radiation use efficiency g MJ−1

SLA S Specific leaf area cm2 g−1

— T Transpiration cm

TE ETN Transpiration efficiency g kg−1

TE ET Transpiration efficiency Pa

VPD V Vapour pressure deficit kPa

YGP yield gap parameter Dimensionless
731

Challinor2006-final.tex; 29/01/2008; 15:18; p.35



36 Challinor and Wheeler

References732

Ainsworth, E. A. and S. P. Long: 2005, ‘What have we learned from 15 years of free–air CO2 enrichment733

(FACE)? A meta–analytic review of the responses of photosynthesis, canopy properties and plant734

production to rising CO2’. New Phytologist 165, 351–372.735

Azam-Ali, S. N.: 1984, ‘Environmental and physiological control of transpiration by groundnut crops’.736

Agric. For. Meteorol. 33, 129–140.737

Banterng, P., A. Patanothai, K. Pannangpetch, S. Jogloy, and G. Hoogenboom: 2003, ‘Seasonal variation738

in the dynamic growth and development traits of peanut lines’. J. Agric. Sci. 141, 51–62.739

Bernacchi, C., A. Leakey, L. Heady, P. Morgan, F. Dohlman, J. McGrath, K. Gillespie, V. E. Wittig,740

A. Rogers, S. Long, and D. Ort: 2006, ‘Hourly and seasonal variation in photosynthesis and stomatal741

conductance of soybean grown at future CO2 and ozone concentrations for 3 years under fully open–air742

field conditions’. Plant, Cell and Environment 29, 1794–1800.743

Betts, A. K., J. H. Ball, M. Bosilovich, P. Viterbo, Y. C. Zhang, and W. B. Rossow: 2003, ‘Intercomparison744

of water and energy budgets for five Mississippi subbasins between ECMWF reanalysis (ERA-40) and745

NASA Data Assimilation Office fvGCM for 1990-1999’. J. Geophys. Res. 108(D16).746

Beven, K.: 2006, ‘A manifesto for the equifinallity thesis’. Journal of Hydrology 320, 18–36.747

Bhaskaran, B., R. G. Jones, J. M. Murphy, and M. Noguer: 1996, ‘Simulations of the Indian summer748

monsoon using a nested regional climate model: domain size experiments’. Climate Dynamics 12,749

573–587.750

Boote, K. J. and J. W. Jones: 1998, ‘Simulation of crop growth: CROPGRO model’. In: R. M. Peart751

and R. B. Curry. (eds.): Agricultural systems modeling and simulation. Marcel Dekker Inc, New York,752

Chapt. 18, pp. 651–692.753

Brooks, R. J., M. A. Semenov, and P. D. Jamieson: 2001, ‘Simplifying Sirus: sensitivity analysis and754

development of a meta–model for wheat yield prediction’. Eur. J. Agron. 14, 43–60.755

Challinor, A., T. Wheeler, J. Slingo, and D. Hemming: 2005a, ‘Quantification of physical and biological756

uncertainty in the simulation of the yield of a tropical crop using present day and doubled CO2 climates’.757

Phil. Trans. Roy. Soc. 1463(360), 1983–1989.758

Challinor, A. J., J. M. Slingo, T. R. Wheeler, P. Q. Craufurd, and D. I. F. Grimes: 2003, ‘Towards a759

combined seasonal weather and crop productivity forecasting system: Determination of the working760

spatial scale’. J. Appl. Meteorol. 42, 175–192.761

Challinor, A. J., J. M. Slingo, T. R. Wheeler, and F. J. Doblas-Reyes: 2005b, ‘Probabilistic hindcasts of762

crop yield over western India’. Tellus 57A, 498–512.763

Challinor, A. J., T. R. Wheeler, P. Q. Craufurd, C. A. T. Ferro, and D. B. Stephenson: 2007, ‘Adaptation of764

crops to climate change through genotypic responses to mean and extreme temperatures’. Agriculture,765

Ecosystems and Environment 119(1–2), 190–204.766

Challinor, A. J., T. R. Wheeler, T. M. Osborne, and J. M. Slingo: 2006, ‘Assessing the vulnerability of crop767

productivity to climate change thresholds using an integrated crop-climate model’. In: J. Schellnhuber,768

Challinor2006-final.tex; 29/01/2008; 15:18; p.36



37

W. Cramer, N. Nakicenovic, G. Yohe, and T. M. L. Wigley (eds.): Avoiding Dangerous Climate Change.769

pp. 187–194, Cambridge University Press.770

Challinor, A. J., T. R. Wheeler, J. M. Slingo, P. Q. Craufurd, and D. I. F. Grimes: 2004, ‘Design and771

optimisation of a large–area process–based model for annual crops’. Agric. For. Meteorol. 124, 99–120.772

Challinor, A. J., T. R. Wheeler, J. M. Slingo, P. Q. Craufurd, and D. I. F. Grimes: 2005c, ‘Simulation of crop773

yields using the ERA40 re-analysis: limits to skill and non-stationarity in weather–yield relationships.’.774

J. Appl. Meteorol. 44(4), 516–531.775

Chapman, S. C., M. M. Ludlow, F. P. C. Blamey, and K. S. Fischer: 1993, ‘Effect of drought during early776

reproductive development on growth of groundnut (Arachis hypogaea L.). I. Utilization of radiation and777

water during drought’. Field Crops Research 32, 193–210.778

Chen, D.-X. and M. B. Coughenour: 2004, ‘Photosynthesis, transpiration, and primary productivity: Scal-779

ing up from leaves to canopies and regions using process models and remotely sensed data’. Global780

Biogeochemical Cycles 18, Art. No. GB4033 (15 pp.).781

Clifford, S., C. Black, J. Roberts, I. Stronach, P. Singleton-Jones, A. Mohamed, and S. Azam-Ali: 1995,782

‘The effect of elevated atmospheric CO2 and drought on stomatal frequency in groundnut (Arachis783

hypogaea L.)’. Journal of Experimental Botany 46(288), 847–852.784

Clifford, S. C., I. Stronach, A. Mohamed, S. Mohamed, S. Azam-Ali, and N. Crout: 1993, ‘The effects785

of elevated atmospheric carbon dioxide and water stress on light interception, dry matter production786

and yield in stands of groundnut (Arachis hypogaea L.)’. Journal of Experimental Botany 44(269),787

1763–1770.788

Clifford, S. C., I. M. Stronach, C. R. Black, P. R. Singleton-Jones, S. N. Azam-Ali, and N. M. J. Crout: 2000,789

‘Effects of elevated CO2, drought and temperature on the water relations and gas exchange of groundnut790

(Arachis hypogaea) stands grown in controlled environment glasshouses’. Physiologia Plantarum 110,791

78–88.792

Cox, P., R. Betts, C. Bunton, R. Essery, P. Rowntree, and J. Smith: 1999, ‘Impact of new land surface793

physics on the GCM simulation of climate and climate sensitivity’. Climate dynamics 15, 183–203.794

Dewar, R., B. E. Medlyn, and R. E. McMurtrie: 1998, ‘A mechanistic analysis of light and carbon use795

efficiencies’. Plant, cell and Environment 21, 573–588.796

Doorenbos, J. and A. H. Kassam: 1979, ‘Yield response to water’. FAO Irrigation and Drainage 33, FAO,797

Viale delle Terme di Caracalla, 00100 Rome, Italy.798

El Maayar, W., N. Ramankutty, and C. Kucharik: 2006, ‘Modelling global and regional net primary799

production under elevated atmospheric CO2: on a potential source of uncertainty’. Earth Interactions800

10, Paper No. 2 (20 pp.).801

Ewert, F.: 2004, ‘Modelling plant responses to elevated CO2: how important is leaf area index?’. Annals802

of Botany 93, 619–627.803

Ewert, F., D. Rodriguez, P. Jamieson, M. A. Semenov, R. A. C. Mitchell, J. Goudriaan, J. R. Porter, B. A.804

Kimball, P. J. Pinter, R. Manderscheid, H. J. Weigel, A. Fangmeie, E. Fereres, and F. Villalobos: 2002,805

Challinor2006-final.tex; 29/01/2008; 15:18; p.37



38 Challinor and Wheeler

‘Effects of elevated CO2 and drought on wheat: testing crop simulation models for different experimental806

and climatic conditions’. Agric. Ecosyst. Environ. 93(1–3), 249–266.807

FAO/Unesco: 1974, ‘FAO/Unesco soil map of the world, 1:5,000,000, ten volumes’.808

Field, C., R. Jackson, and H. Mooney: 1995, ‘Stomatal responses to increased CO2: implications from the809

plant to global scale’. Plant, cell and Environment 18.810

Goudriaan, J. and M. Unsworth: 1990, ‘Implications of increasing carbon dioxide and climate change for811

agricultural productivity and water resources’. In: B. Kimball, N. Rosenburg, and L. Allen Jr. (eds.):812

Impact of carbon dioxide, trace gases, and climate change on global agriculture, American Society of813

Agronomy Special Publication 53. Madison, WI, USA: pp. 111–130.814

Hammer, G. L., T. R. Sinclair, K. J. Boote, G. C. Wright, H. Meinke, and M. J. Bell: 1995, ‘A peanut815

simulation model: I. Model development and testing’. Agron. J. 87, 1085–1093.816

Hartwell Allen., L., J. T. Baker, and K. Boote: 1996, ‘The CO2 fertilization effect: higher carbohydrate817

production and retention as biomass and seed yield’. In: Global climate change and agricultural produc-818

tion. Direct and indirect effects of changing hydrological, pedological and plant physiological processes.819

John Wiley & Sons Ltd, Baffins Lane, Chichester, West Sussex PO19 1UD, EnglandFAO, Rome, Italy.820

Hunt, R.: 1990, Basic growth analysis : plant growth analysis for beginners, p. 38. Unwin Hyman, London.821

IITM: 2004, ‘Indian Climate Change Scenarios for Impact Assessment’. Technical report, Indian Institute822

of Tropical Meteorology, Homi Bhabha Road, Pune 411 008, India.823

IPCC: 2001, Climate Change 2001: Impacts, Adaptation, and Vulnerability. Contribution of Working824

Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change, p. 255.825

Cambridge University Press.826

Kakani, V. G.: 2001, ‘Quantifying the effects of high temperature and water stress in Groundnut’. Ph.D.827

thesis, University of Reading, U.K.828

Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White,829

J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. C. Mo, C. Ropelewski, J.830

Wang, A. Leetmaa, R. Reynolds, R. Jenne, and D. J. D: 1996, ‘The NCEP/NCAR 40-year Re-analysis831

Project’. Bull. Am. Meteorol. Soc. 77, 437–471.832

Kimball, B. A., K. Kobayashi, and M. Bindi: 2002, ‘Responses of agricultural crops to free–air CO2833

enrichment’. Advances in Agronomy 77, 293–368.834

Long, S. P., E. A. Ainsworth, A. Leakey, and P. B. Morgan: 2005, ‘Global food insecurity. Treatment of835

major food crops to elevated carbon dioxide and ozone under large-scale fully open-air conditions suggest836

models may seriously over-estimate future yields.’. Phil. Trans. Roy. Soc. 1463(360), 2011–2020.837

Long, S. P., E. A. Ainsworth, A. D. B. Leakey, J. Nösberger, and D. R. Ort: 2006, ‘Food for thought:838

lower–than–expected crop yield stimulation with rising CO2 concentrations’. Science 312, 1918–1921.839

Long, S. P., E. A. Ainsworth, A. Rogers, and D. R. Ort: 2004, ‘Rising atmospheric carbon dioxide: plants840

FACE the future’. Annual Review of Plant Biology 55, 591–628.841

Challinor2006-final.tex; 29/01/2008; 15:18; p.38



39

Makowski, D., C. Naud, M. H. Jeuffroy, A. Barbottin, and H. Monod): 2006, ‘Global sensitivity analysis for842

calculating the contribution of genetic parameters to the variance of crop model prediction’. Reliability843

Engineering & System Safety 91(10–11), 1142–1147.844

Martin, G. M.: 1999, ‘The simulation of the Asian summer monsoon, and its sensitivity to horizontal reso-845

lution, in the UK Meteorological Office Unified Model’. Quarterly Journal of the Royal Meteorological846

Society 125(557), 1499–1525.847

Medlyn, B., D. Barrett, J. Landsberg, P. Sands, and R. Clement: 2003, ‘Conversion of canopy intercepted848

radiation to photosynthate: review of modelling approaches for regional scales’. Functional Plant Biology849

30, 153–169.850

Morison, J.: 1998, ‘Stomatal responses to increased CO2 concentration’. Journal of Experimental Botany851

49, 443–452.852

Murphy, J. M., D. M. H. Sexton, D. N. Barnett, G. S. Jones, M. J. Webb, M. Collins, and D. A. Stainforth:853

2004, ‘Quantification of modelling uncertainties in a large ensemble of climate change simulations’.854

Nature 430(12), 768–772.855

Raupach, M. R. and J. J. Finnigan: 1988, ‘’Single-layer models of evaporation from plant canopies are856

incorrect but useful, whereas multilayer models are correct but useless’: Discuss’. Australian Journal857

of Plant Physiology 15, 705–716.858

Reddy, P. S. (ed.): 1988, Groundnut. Krishi Anusandhan Bhavan, Pusa, New Delhi, India: Indian Council859

of Agricultural Research.860

Reilly, J. M. and D. Schimmelpfennig: 1999, ‘Agricultural impact assessment, vulnerability, and the scope861

for adaptation’. Clim. Change 43(4), 745–788.862

Rosati, A. and T. M. Dejong: 2003, ‘Estimating photosynthetic radiation use efficiency using incident light863

and photosynthesis of individual leaves’. Annals of Botany 91, 869–877.864

Siegenthaler, U., T. Stocker, E. Monnin, D. Lthi, J. Schwander, B. Stauffer, D. Raynaud, J.-M. Barnola, H.865

Fischer, V. Masson-Delmotte, and J. Jouzel: 2005, ‘Stable Carbon Cycle–Climate Relationship During866

the Late Pleistocene’. Science pp. 1313–1317.867

Sinclair, T. R. and N. Seligman: 2000, ‘Criteria for publishing papers on crop modelling’. Field Crops868

Research 68, 165–172.869

Stanciel, K., D. Mortley, D. Hileman, P. Loretan, C. Bonsi, and W. A. Hill: 2000, ‘Growth, pod, and seed870

yield, and gas exchange of hydroponically grown peanut in response to CO2 enrichment’. HortScience871

35(1), 49–52.872

Stephenson, D. B., F. Chauvin, and J. F. Royer: 1998, ‘Simulation of the Asian summer monsoon and its873

dependence on model horizontal resolution’. Journal of the Meteorological Society of Japan.874

Stronach, I. M., S. C. Clifford, A. D. Mohamed, P. R. Singleton-Jones, S. N. Azam-Ali, and N. M. J. Crout:875

1994, ‘The effects of elevated carbon dioxide, temperature and soil moisture on the water use of stands876

of groundnut (Arachis hypogaea L.))’. Journal of Experimental Botany 45(280), 1633–1638.877

Tubiello, F. N., J. S. Amthor, K. J. Boote, M. Donatelli, W. Easterling, G. Fischer, R. M. Gifford, M.878

Howden, J. Reilly, and C. Rosenzweig: 2007a, ‘Crop response to elevated CO2 and world food supply879

Challinor2006-final.tex; 29/01/2008; 15:18; p.39



40 Challinor and Wheeler

A comment on ”Food for Thought...” by Long et al., Science 312:1918–1921, 2006’. Eur. J. Agron. 26,880

215–223.881

Tubiello, F. N. and F. Ewert: 2002, ‘Simulating the effects of elevated CO2 on crops: approaches and882

applications for climate change’. Eur. J. Agron. 18(1–2), 57–74.883

Tubiello, F. N., J.-F. Soussana, and S. M. Howden: 2007b, ‘Crop and Pasture responses to climate change’.884

Proceedings of the National Academy of Sciences of the United States of America 104(50), 19686–19690.885

Wang, E., M. J. Robertson, G. L. Hammer, P. S. Carberry, D. Holzworth, H. Meinke, S. C. Chapman,886

J. N. G. Chapman, J. N. G. Hargreaves, N. I. . Huth, and G. McLean: 2002, ‘Development of a generic887

crop model template in the cropping system model APSIM’. Eur. J. Agron. 18, 121–140.888

White, J. and C. Montes-R.: 2005, ‘Variation in parameters related to leaf thickness in common bean889

(Phaseolus vulgaris L.)’. Field Crops Research 91, 7–21.890

Ziska, L. H., C. Morris, and E. Goins: 2004, ‘Quantitative and qualitative evaluation of selected wheat891

varieties released since 1903 to increasing atmospheric carbon dioxide: can yield sensitivity to carbon892

dioxide be a factor in wheat performance?’. Global Change Biology 10, 1810–1819.893

Challinor2006-final.tex; 29/01/2008; 15:18; p.40


	WRROcoversheetChallinor5.pdf
	Challinor2006-final.pdf

