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Abstract: This paper studies how a class of sampled-data system may be stabilised
by slow sampling. A relationship is obtained between the minimum sampling period

and an estimated domain of attraction of the system.

1. Introduction

It has been shown ([1],[2]) that if a sampled-data system has a stable underly-
ing continuous system on a certain domain, it can be stabilised on the same
domain by fast enough sampling rates. Inspired by this idea and the consequent
results, this paper attempts to study the stability problem which may be thought of
as the counter part to that discussed [1] and [2]. Suppose a sampled-data system is
stable on a certain domain as its sampling rate tends to zero (i.e., all sampling inter-
vals tend to infinity), one would expect that at sufficiently slow sampling rates, the
system could still be stabilised on the same domain. This is to be examined in this

paper. First, section 2 will investigate how the sampled-data system may behave as

TR



2D

the sampling intervals tend to infinity, or equivalently, how the equilibrium points
of the system may behave. Then section 3 will show that if the sampled-data sys-
tem satisfies certain conditions, then there exists, on a certain domain, at least one
sequence {x,} which converges to the origin as the sampling intervals tend to
infinity. If this is true, then intuitively, it is reasonable to expect that the motion of
the system may converge to such a sequence provided its sampling intervals are
sufficiently long, and some additional restrictions may have to be satisfied by the
system. This will be studied in section 4. Examples will be taken to demonstrate the

method. A certain degree of conservativeness is expected because all the calcula-

tions involve norms.

2. The behaviour of a sampled-data system at zero sampling rate

The class of sampled-data systems to be studied can be represented by a block

diagram shown in Fig.1.

= s Digital
o Computer

—~ ZOH — Plant

Fig. 1
It is assumed that the plant can be described by the model
x(r) = Ax(t) + F(x(1)) + Bu(r)
}‘(I) = CI(I) ’ x(D)=xg
where yeR™, xeR",ueR'; 4, B and C are the characteristic, input and output
matrices of the plant of dimension (nxn), (nx/) and (mxn) respectively; =0 without loss

of generality; the nonlinearity of the plant F(x) is assumed a polynomial in x of

degree at most N, written as
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N ,
Fx)=3 Fix), F{ox) = &/F(x), VoeR, VxeR"
2

Assume that the linearised model of the plant is both controllable and observable.
The plant is to be controlled by a digital computer, and due to the ZOH device, the

plant inputs u(r) are piece-wise constant signals which can be written as

u(t) = uy, 1€ty [, k20
Note that constant sampling rate is nor assumed. In this paper, the digital controller

is assumed to be proportional. Hence the feedback system has a mathematical

model

x(t) = Ax(r) + F(x(1)) + Gx; , x(t)=x, 1€ [tptil, £20 (2.1
where G=-BKC; the (k+1)* sampling period is A = fis; — tp and f—oo as k—es. Given
the above model, the idea behind stabilising the system by slow sampling is very
similar to that by fast sampling ([1],[2]). In the later case, the system is first stabil-
ised on some domain D; at the extreme sampling rate of infinity, which corresponds
to a continuous system; then the stability behaviour of the system is investigated at
some finite sampling interval over the same domain. In this paper, the system will
first be stabilised on some domain at the other extreme a sampling rate of zero,
which corresponds to the case in which the motion of the system tends to some
equilibrium point during any sampling interval; then the stability behaviour of the

system will be studied at finite sampling intervals.

It is important to be aware of the fact that for a nonlinear sampled-data system
modelled by (2.1), there is no guarantee of the existence of some equilibrium points
for a given arbitrary initial condition. For this reason, this section investigates the
possible behaviours that system (2.1) may possess at h—. Without loss of gen-
erality, consider the first sampling interval with x(O)=x, and x(h)=x;. As hj—seo, the
system may behave in one of the following ways depending on its initial condition

X
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(a) There exists some x,eR" at which %=0. Therefore, x, is an equilibrium point

given by

0=Ax; + F(x;) + Gxg (2.2)
Note that due to the nonlinearity, x, is not necessarily unique, i.e., for some xeR",
there may exist more than one equilibrium point. Depending on x, the motion
x(txo) of the system may converge to an asymptotically stable equilibrium point, or

it may tend to infinity as t—es.

(b) There does not exist any x,eR® at which %=0, or equivalently, the equation (2.2)
has no real solution for some x,eR®. This is the case when no real equilibrium point

exists in the whole state space with respect to the initial condition x,

As far as the stability of the system at zero sampling rate is concerned, the
above case (b) is not desirable. A necessary but not sufficient condition on the sys- -
tem (2.1) to avoid case (b) is that the characteristic matrix A must be stable in the

continuous sense for the reason that, from (2.1)

x(t) = %y + [ 4] F(x(1)) + Gx, 1dt (2.3)
0

= &y + J’ AIF(x(1))dt + (eM-NA™Gx,
0

if A is not stable, then ¢* will become unbounded as r—e, which results in an
unbounded x(s) as +—e at almost all xyeR" except in the special case in which F(x)=0
and A™'G =-I, which results in x(r)=x, for all 0. Therefore, the following analysis

will always assume that A is stable and hence invertible.

The stability study below takes two steps. First, it searches for some conditions
that the controller design must satisfy to ensure the existence of a domain contain-
ing the origin and at least one sampling sequence {x}. obtained at hy—ee for all k>0
such that provided the initial condition x, of the above sequence lies in the above
domain, the sampling sequence converges to the origin. Then, as &, becomes finite,

the behaviour of the system is investigated and a search for a minimum sampling
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period h* is carried out such that provided h>h*, any sampling sequence {x,} will be

"close enough’ to the sequence {x}.. and consequently will converge to the origin.

3. The existence of a convergent sequence on a domain at a,—-e

This section investigates the relationship between the equilibrium points of the
sampled-data system and the sampled datum that results in these equilibrium points,
and hence show that if the system satisfies certain conditions, a finite domain exists
on which there exists at least one sampling sequence converging to the origin as
hy—yoo.

Suppose D is such a domain, then for any sampled datum x,eD at the sampling

instant ¢, there must exist at least one equilibrium point which lies in D and whose

"distance’ from the origin is shorter than that of x,.

To find such a domain, first consider the following adjacent problem. Given a

matrix equation

0=Az+ F(2) + Gx (3.1
where F(0)=0 and A is a stable matrix in the continuous sense, investigate the varia-

tion of the roots z of the equation with respect to x.

First note that when x=0, there exists at least one real root z=0. As A is stable

and hence invertible, (3.1) can be written as

z=—-A"1Gx - A7'F(2) (3.2)
Now, let ||| denote any real norm on the vector space R*. Taking the norm on both

sides of (3.2) yields

N .
llzll < 147Gl Il + 147 3 MlzlY
=
= o(llxll, lizll) (3.3)

where

N ;
okl lizll) = IAT'GIl lixil + 147 Y Mzl (3.4)
=



and M; is defined as
M;= sup |IF;(x)l (3.5)
lIxll=1
From Appendix I, provided x| is small enough, there exists a finite { dependent on

x| such that the inequality (3.3) is satisfied for all ||z|l < { where { is given by

C=a(Kl, (3.6)

and =0 at x=0. In other words, for small enough |ix||, there exists a region |jzll<{
within which some of the roots : lie. If it is now required that |z|| < pllxll, O<u<I, this

requirement will be met provided

O(lkxll, piixll) < p x| (3T)
By substituting the definition of ¢ into the above, dividing both sides by |ix|| and not-

ing that at x=0, the equal sign holds, (3.7) becomes

N ; .
IATGI + A7 X M W I < p (3.8)

=

Clearly, this inequality can be satisfied for some finite ||| provided p—|lA~'G| >0, or

1> |A7G (3.9)

Under this condition, there exists a well defined domain D, of the form
Dy ={x/Ixl €r.}
where r, is obtained from
N 5 i
ATGI + AN I M Tt = (3.10)
2
such that for all xeD,,
lzll < plixl,  VxeD,, [A7Gll<p<1

When this result is applied to the system (2.1) with hg=s for all k20, the impli-

cation is obvious: for all xeD,, there exists some equilibrium point z; such that

fleall = 1 llxoll 4Gl <pn <1

Hence, x, lies also within D, , and by induction,



[l = [ byl
< Pk gl

Obviously, as k—es, |Ix)l=0, or x—0. The above analysis leads to the following

lemma:

Lemma 3.1. Consider the sampled-data system (2.1) where A is stable and inverti-

ble. If all sampling intervals of the system tend to infinity, and if the matrix G is

chosen such that

MA7Gll < 1

for some real norm defined on the vector space R", then there exists at least one

sequence {x}.. which is a solution to the equation

Axh.l + F(xh.;) e ka = 0, k20

and which has the property that for an arbitrary p lying in the interval
IA7GIl < 1 < 1

if x, lies in the domain D, which is a connected region

N ) ]
{x/ AN MW ™ < - 147Gl

2

of the form

Dy={x/|xlsr, }

where M; is defined as in (3.5) and r, is given by
N i
AT X M, ot = - IATG|
F2
then,

el € Bl 20
Thus for all x,eD,,

fim =0

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)
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Remarks. From the above lemma, the estimation of D, is affected by two variables:
the controller gain G and the parameter p. Assuming uelllA™'Gll, 1[, then it is quite
obvious (eq.(3.15)) that a high controller gain reflected by a higher |47'G|| reduces
the value of r, and hence decreases the domain D,. The effect of u on D, is not so
obvious, as p appears on both sides of eq.(3.15). However, it is not difficult to see
that r,=0 at p=||A'G|, and when p>|A™'G||, there always exists an r,>0. It can be
shown that in general r, increases with p to 2 maximum, and then decreases to zero
as p—eo. Hence for each r,, two values of u are possible one of which may be
greater than unity. They represent two upper bounds on ||zl It is sufficient to take

the lowest upper bound as the upper bound of |z, and this upper bound increases

monotonically with r,.

Before leaving this section, it is emphasised that lemma 3.1 only serves to
specify the conditions for the existence of some sequence {x]}. converging to the
origin. It did not exclude the possibility of having more than one such sequence,
and it did not specify the stability property of each element in the sequence. For
example, x, may be an equilibrium point resulting from x,.;, but x, may be unstable.
Now if a sampled-data system is to be stabilised by slow sampling rates, it means
that the motion trajectory of the sampled-data system during any sampling interval
converges to an equilibrium point which is ’closer’ to the origin. This has two
implications: (i) this equilibrium point must be stable; (ii) the sampled datum at the
beginning of the sampling interval must lie inside the DOA of this equilibrium
point. When these conditions are satisfied, then it is quite obvious that sufficiently

long sampling intervals guarantee the stability of the system.

4. Relationship between sampling periods and the estimated DOA

This section aims to find a domain having the following properties: for every
sampled datum x, in it, there exists a unique equilibrium point z which is closer to

the origin and that x, lies in the DOA of z. Once such a domain is found, the
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search for a minimum sampling interval that ensures the system stability is an easy

task.

The analysis below first introduces an error signal measuring the vector
difference between the motion x(tx,) of the system and one of its equilibrium points
z. The idea behind it is to show that provided : is sufficiently close to the origin,
there exists a Lyapunov function in the neighbourhood of z. This implies that the
corresponding :z is an asymptotically stable equilibrium point. It then shows that on
certain domain, x, actually lies in the DOA of z Furthermore, if x, also lies on D,
(given by lemma 3.1), then |zli<pixoll. Thus, x(tx,) will converge to this z and the

sampled-data system will be asymptotically stable at h=oo.

Hence, the analysis starts by considering the error term e(s) defined as

e(t) = x(t, xp) — z (4.1)
where x(1x,) is the motion of the system with the initial condition x(0)=x, and :

satisfies

0= Az + F(z2) + Gxg (4.2)

for some x;. A is a stable matrix as required before. Let the (nxn) matrix P satisfy

ATP+P A=, (4.3)
Hence P is a positive definite matrix. Let V be a quadratic mapping V: R®*—R such
that

Vie)=e'Pe, P=PT>0 (4.4)
Also as before, let the P-matrix norm be defined as

Iklp = P 0% = V(x)!? 4.5)

Now, consider how the error signal e(t) behaves by considering

é=x=Ax+ F(x) + Gx,
= A(x-z) + F(x) — F(z)
= Ae + F(e+z) — F(z) 4.6)

Along the solution e(r), % is found to be
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V=¢éPe+elPé
= —eTe + 2"P [F(e+2) - F(2)] (4.7)
If it is possible to restrict z in some way so that there exists a domain on which V<o,
then from the La Salle’s theorem, e(s) is asymptotically stable on this domain. As
before, one approach is to find the upper bound of V in terms of the norms of e and

z. Now, the nonlinear terms have the following expansion:

N
e'P [F(e+z) — F(z2)] = 'P 3 [Fle+2)~F(2)] (4.8)
F2

First, consider the second order nonlinearity at /=2, it can be written in the form of a

bilinear function as

Fy(x) = g(x.x)

where g(x.x) is bilinear and therefore,

gle+z,e+z) = g(e,e).+ glez) + g(z,e) + g(z,2)

Hence, the second order nonlinear term can be expanded as

P [Fa(e+z) — Fy(2)] = e’P [g(e,e) + gle,z) + g(z,e)]

<07 llzllp My + 17 My, (4.9)
where
M, = lle@)llp = V(e(r)'"? (4.10)
My = sup |lgle,z) + g(z.e)lp
llzll=1
n =1

My = sup |lg(e.e)llp
n=1
More generally and following the same principle, the /* order nonlinearity can be

written as

Fix) = g(x.x,...%)

with j arguments in g, and

&P [Ffetz) - Fi@) <7, Mzl o]
=l
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Hence eq.(4.7) becomes

¥e-

V2 5 I, el
G(P) 72 1=l

1 ok P
== (—-2 a2 mit ) v 4.11
=) ;Z,Z EMﬂ P (4.11)
Note that the above inequality is true for all z satisfying (4.2). However, V will be a
Lyapunov function only if the quantity inside the bracket of the inequality (4.11) be

kept positive at all times, and this puts restrictions on ||zll as well as on n,. To find

these restrictions, define

N J :
Slzlleme) = 23 XM L2l nit (4.12)
F2 El
and note that S has the following properties:
(ii) § is continuous and increases monotonically with respect to its arguments;
Thus, § can be made as small as required by making both of its arguments small

enough. The requirement that

V < -E¥V, 0< 4.13
3 &< m—— (4.13)
will be satisfied provided § is sufficiently small that
— _ S(lzllem) 2 &
S(P)
or
SUlellesn) € —— — & (4.14)

G(P)

This restriction implies that if an equilibrium point z is close enough to the origin, it
is possible to find a finite error norm n=|x(t,xo)—zll and hence a finite domain about :
on which the quadratic mapping V is a Lyapunov function of the error signal e().
Furthermore, V is exponentially bounded on that domain about z. This domain is
therefore an estimated DOA for the corresponding equilibrium point z. It is impor-

tant to observe at this stage that if (4.14) is satisfied initially at =0, i.e., if
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S(lizllpmo) = -

S(P)
then, V<- £V initially, which implies that v, and hence M. decreases initially. This
decrease results in an even smaller S. Therefore (4.14) will always be satisfied if it

is satisfied inirially, and hence (4.13) can be written as

&

lx(t, zo)»—zllp < & 2 lxo ~zllp (4.15)
This is stated by the following lemma.

Lemma 4.1. Consider the sampled-data system (2.1). Let the quadratic mapping V
and the P-matrix norm be defined as in (4.4) and (4.5) respectively. Let the map-
ping § be defined as in (4.12). Let z denote an equilibrium point given by

0=Az + F(z) + Gxg, x(0)=xq
and let e(r) denote the error signal

e(t) = x(t, xg) — z

If z is such that

S(lzlle, < & 0<§ 4.16
(llzllp, Mo) = = <C< = ( )
where n¢=|lx¢~zllp, then V is a Lyapunov function of e(:) over the domain
Di={ellelp<smg}
and this domain is an estimated DOA of the corresponding equilibrium point.
0

The next step is to find those conditions which ensure that x, actually Lies in
Dy. It has been stated in lemma 3.1 that provided the system (2.1) satisfies the con-
dition
IA7'Gllp < 1
there exists a domain D, and that for all xeD,, at least one equilibrium point of the

system lies in the domain
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D,={ z/|zllp < plixollp, 147 Gllp<p<1, x€D,, } (4.17)

The upper bound on n, can thus be found from

Mo = lIxg=2zllp < llxolle + llzllp
< xolle + 1ilxolle
= (1 + W) lixollp (4.18)

for all xeD,. If now for some xeD,,

S(ixolle, (1+W)lxollp) <

e E (4.19)

this implies that for every : that is bounded by |zl < pilxollp, it has an estimated
DOA

Dy ={e/lllellp < (1)l }
Therefore, the corresponding x, lies in the DOA of z and hence x(r,x;) will converge

to z as t—ee. Substituting the definition of § into (4.19) yields:

N j 2 )
23 M p ()T Il < _1 —§
F2 =l G(P)

and the domain D; on which this inequality is satisfied is given by

De={x/|lxllp < rg }

where r¢ is calculated from

N j , ) 1
22 M ()T A = —— -
EH i o BP

It is clear that if x; lies in the intersection of the above two domains, i.e.,

x € D* =Dy\D;
then x(1x0)—z as r—»«~ and x—0 as k—. Hence the following theorem has been

proved.

Theorem 4.2 (Asymptotic stability at infinite sampling intervals). Consider the
sampled-data system (2.1) where A is stable and invertible. Assume that all sam-

pling intervals of the system tend to infinity and the matrix G is such that

IA™Gllp < 1
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Let the P-matrix norm be defined as in eq.(4.5). Let D, be a domain of the form

-Du:{xj”x”}’srp} (420)

where r, is given by

N " "
A XMW A = p - IA7Glp, A7 Gllp<p<l (4.21)
=

and let D; be a domain of the form

DE = { x/ HXHF < rg } (422)
where r; is given by
2)5 iM W A = = _E, octe—— (4.23)
2 &l 7 a(P) ' o(P) ’

The sampled-data system is asymptotically stable on the domain

D* = D,~D¢ (4.24)
at h=too, Vk20. '

o}

Having found the domain upon which the sampled-data system is asymptoti-
cally stable as ko, it is now easy to show that the system is also asymptotically

stable on D* at finite sampling intervals. Denote x(t)=x(s,xy). Then,

[x(Ollp = [x(£)—z+2]|p
< [x(O—zllp + llzllp

If x,e D*, then according to the above theorem,

u

Ix®llp < e * |xg-zllp + K [Ixollp

<e 2 (lxollp + Wixollp) + 1t Ixgllp
k
= [e 2

If &, is such that

(1+10) + 1] lIxollp

&k

e 2 4w+ < &, u<e<1 (4.25)
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Ix1llz = lx(hy)llp < € |xollp
and hence x;eD*. Imposing this conditions on all sampling intervals k4, , it is clear

that at the #* sampling instance,

lxelp < ellxeyllp
Sefxllp,  p<e<l
which results in

Eimlixt”;’ =0

Hence the restriction upon #, can be found from (4.25) by replacing &, by ,, which

yields:

2 £ —
htZ—Eln( 1+i}, H<e<l

The minimum sampling interval a* is thus given by

__2, E-U
LR ézn( T

The following stability theorem is a result of the stability study carried out in this

paper.

Theorem 4.3 (Asymptotic stability by slow sampling). The sampled-data system
(2.1) is asymptotically stable in the domain D* given by theorem 4.2 provided all

sampling intervals k, of the system are such that

h 2 h* k=1,2,...
where
2, E-B
h* = 3 In ( oL ), p<e<l (4.26)

u and & are defined in eq.s (3.12) and (4.13) respectively.

Example 4.1 Consider the second order system
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) o 1/4x%
(1) = {01 _03] x(t)+l: - L [8 162} X, x0)=xe 1€l fl, 20

where x = (x4, x3)". Note that (x;, xy,....x;,...) are reserved to denote sampled data rather

than the components of a data point. Hence,
_ |12 0
P= [0 1!6]

From theorem 4.2, r, is found to be

V3
AXp=—-)
?'P_ — —3\-[—5;"— 5 —2—<I..L<1

and by choosing

1.1
==X =025
¢ 8 BP)
re 1s given by
3.5

e IV2(3p + 1)
At u=0.990 for example,

r,=0.119, re = 0.208

Then on the domain

* = {x/|}xllp €£0.119 }

the sampled-data system is asymptotically stable at zero sampling rate. The actual
domain on which the system is stable at zero sampling rate can be easily found, and
is shown in Fig.2. Compared with the above estimated domain, it is seen that

theorem 4.2 can give rather conservative results.

Now according to theorem 4.3, the system will be asymptotically stable on the

domain D* for all A>k* where h* is given by

2 In( £-0.990

h* =
025  1+0.990

), 0.990<e<1

At £=0.999, h*=43. It can be shown that the actual sampling sequence {x} will

eventually converge to zero as k— irrespective to sampling intervals.
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Although the stability criteria derived in this paper are rather conservative, as
1s shown by the above example, it is important to bear in mind that in most general
cases, it will not be possible to calculate the actual domain of attraction of a

sampled-data system or to relate it to the sampling rate of the system.

5. Conclusions

This paper has studied sufficient conditions for stabilising the sampled-data
system (2.1) by slow sampling. The principle idea behind the analysis was quite
simple. If a sampled-dara system could be stabilised over a domain with an infinite
sampling period, then with a sufficiently long sampling period, the system could
still be stabilised. The restrictions that must be met by the system are that the 4
matrix of the system should be asymptotically stable, and that the proportional con-

troller gain G satisfies

IA7'Gllp < 1

It is emphasised that the above analysis allows random sampling rates provided all
sampling periods are within the ’allowable’ range which ensures the system stabil-
ity. Examples taken above showed how the stability criteria could be easily applied,
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even though the results may be conservative in some cases.
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APPENDIX

A Lemma

Lemma. Let ¢(c, B) be a mapping ¢: RxR—R with the following properties:

(1) ¢ is defined and continuous ¥a>0, ¥B20, with continuous first partial derivative

with respect to p;

(2) ¢ increases monotonically with respect to o and B, with ¢(0, 0) = 0;

3) . also increases monotonically with respect to o and B, with

B

36(0,0) _
B -0

then, for small enough o, there exists a B* dependent on o such that

B < o(ap), VBe [0,8*%)

where

B* = ¢(a,p*)

Proof. Define

D(c, B) = ¢(c, B) - B

on a compact domain LxL where

L={x/0sx<l}

(A.1)

and ! can be arbitrarily large. Then & is continuous on LxL and hence it is uni-

formly continuous on LxL. The following proof first shows that for some small

enough a, there exists a B’ such that at p’, ®<0. It then shows that for the same o,

there exists a B” such that for all B<B”, ®>0. It then concludes that there must exist

a p* lying in the region B”<B*<p’ such that for all p<B*, ®>0 and at B=p*, ®=0. The

proof is thus complete.

Consider now
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@ _ s
ap op

From the properties of ¢, it is clear that 22 ig continuous on LxL, and hence uni-

af
formly continuous on LxL, and that it increases monotonically with respect to a and

B, with

aB ap

Thus, for each &0, there exists an ¢>0 such that

ID(O0.B) _ 3D(0,0)
op aB

provided B<e and BeL. Set 8=% where 0<A<l, and let the corresponding e=g,.

<8

Then, provided B<e,,

aLa(g‘B—) < %-1 (<0)

Observe that because 22 increases monotonically with B, this inequality holds for

o
all B<e,. Thus, by integrating both sides,

SOP) <= (1- 2B, WBelel
In other words, there exists an g4 such that for all B<e,, ®(0,8) is negative. Now,
from its definition (A.1), the mapping @ increases monotonically with o, and ® is

uniformly continuous on aeL. Hence at some fixed P=B’<es, for each 80, there exists

an e>0 such that

D(0,f) - P0O,B) < &
provided a<e and oeL. Now, set &=(1-A)B" and let the corresponding e=¢’. Then at

B=P’<e,, provided a<e’,

D(0,p") < & + ©(0,8")

< (1-A)p - -2

—"2'-)5'

=-2¥F (A2)
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In other words, provided o is small enough, there exists some B'<e, at which ®(a,B")

can still be kept negative.
Now, return to the definition (A.1) again and note that at B=0,

D(0,0) = ¢(o,0) > 0O, O<ox!
Then, from uniform continuity of & on BeL, it is clear that for each &(c)>0, there

exists an E(o)>0 such that

[D(0,B) - ©(0,0)] < &()
provided B<e(a), BeL. Set 8(o)=r(0)<®(c,0) and let the corresponding e(a)=¢,. Then for

B<p”<e,,

0<P(e,0)-r < O,f) < O(,04+r
Thus, for each 0<a<l, there exists a B”<e, such that for all Be [0,3”], ®>0. This implies
that for each ae(0,¢"), there exist a B”<e, and a range Be[0,”] such that ®(a,B)>0. But,
eqn.(A.2) says that for each oe(0,"), there exists a B* such that &(a,8"<0. Hence,
there must exist a p*e (3”,p") such that ®(,B)>0 for ae(0,e) and Be[0,3*), and at B=p*,

@(a,f*) = 0

This indicates, from (A.1), that for all Be [0,3%),

B < oap)
and at p=p*,
B* = o(e,B*

QED.



