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Abstract

This paper investigates the bond behaviour of lapped steel bars using fifteen RC beams tested in 

flexure. Twelve of the beams were designed to fail by bond splitting at midspan, where the main 

flexural reinforcement was lapped 10 bar diameters. The parameters studied include the amount 

and type of confinement at midspan (no confinement, internal steel stirrups or externally bonded 

carbon FRP), concrete cover and bar size. The results show that the CFRP confinement enhanced 

the bond strength of the lapped bars by up to 49% with reference to unconfined beams, and 

improved significantly the overall behaviour of the specimens. The experimental results are 

compared with existing models to predict the bond strength enhancement provided by CFRP 

confinement. It is shown that existing models overestimate considerably the CFRP strains and 

show a large scatter when predicting experimental results. Based on the test results, a new 

approach to predict the bond strength enhancement due to CFRP confinement is proposed. This 

can be used during the assessment and strengthening of substandard RC constructions.

Keywords: substandard lap splices, seismic strengthening, RC beams, CFRP 

confinement, bond-splitting strength, bar slip

1. Introduction

Extensive damage in recent major earthquakes in Mediterranean and developing 

countries has highlighted the seismic vulnerability of existing substandard RC

buildings built with little or no seismic detailing and low quality materials

(Kashmir, 2005; China, 2008; Indonesia and Italy, 2009; Haiti, 2010; Turkey, 

mailto:r.garcia@sheffield.ac.uk


2

2011). Many catastrophic failures in these structures can be attributed to failure of 

inadequately spliced reinforcement at locations of large demand, such as the 

column-footing interface and above beam-column joints. The local strengthening 

of these deficient members is a feasible intervention for reducing the seismic 

vulnerability of substandard buildings. Over the last two decades, externally 

bonded FRP have been extensively used by engineers for many seismic 

strengthening applications. Compared to other traditional strengthening 

techniques, FRP materials offer advantages such as high strength to weight ratio, 

high resistance to corrosion, excellent durability, ease and speed of in-situ 

application and flexibility to strengthen selectively only those members 

seismically deficient (Gdoutos et al. 2000).

Extensive experimental research has confirmed the effectiveness of FRP 

confinement at improving the behaviour of columns with inadequate short lapped 

reinforcement (e.g. Saadatmanesh et al. 1996, 1997; Seible et al. 1997; Ma and

Xiao 1999; Harajli and Rteil 2004; Harries et al. 2006; Bousias et al. 2006; Breña 

and Schlick 2007; Youm et al. 2007; Harajli and Dagher 2008; Harajli and Khalil

2008; Elgawady et al. 2010; Elsouri and Harajli 2011; Bournas and Triantafillou

2011). Despite the extensive research effort, only a few design models exist for 

the strengthening of column splices using FRP materials. Priestley et al. (Priestley 

and Seible 1995; Seible et al. 1997) proposed the first model for FRP 

strengthening of short lapped bars in columns, where failure was likely dominated 

by splitting. Whilst this model is included in current FRP design guidelines such 

as CNR-DT 200/2004 (CNR 2004) and Eurocode 8 (BSI 2005), its use in actual 

strengthening applications may lead to very conservative amounts of FRP 

confinement (Harries et al. 2006; Harajli and Khalil 2008).

More recently, the confinement of lapped bars with FRP materials was

investigated by adopting an approach similar to that used for steel confinement

(Hamad et al. 2004; Harajli et al. 2004; Tastani and Pantazopoulou 2010; Bournas 

and Triantafillou 2011). The results of these studies indicate that the full bond 

strength of the lapped bars could be developed using less FRP confinement than

that recommended by current FRP strengthening guidelines. The investigations 

also show that, in splitting-prone RC members, CFRP confinement is effective at 



3

enhancing bond strength up to the point where pullout of the bars dominates 

failure. This is also acknowledged in existing bond equations (Orangun et al. 

1977; Lettow and Eligehausen 2006; fib Model Code 2010), where the maximum

bond strength enhancement due to (heavy) steel confinement is limited to

maximum 30-40%. Based on the results of a limited number of experiments, some

analytical models were proposed to compute the additional contribution of FRP 

confinement to the bond strength of splices (Hamad et al. 2004; Harajli et al.

2004; Tastani and Pantazopoulou 2010; Bournas and Triantafillou 2011). These

models are mainly based on modifications of existing equations originally 

developed for steel confinement, and assume the total bond strength of a lap as the 

sum of the individual contributions of concrete cover and FRP confinement. 

Therefore, the concrete contribution to bond strength is computed using bond 

strength equations available in the literature, whereas the contribution of the FRP 

confinement is computed by adopting i) an equivalent area of FRP confinement 

accounting for the different stiffness of steel stirrups and FRPs (for instance

Harajli et al. 2004), or ii) an effective strain that can be developed in the FRP

confinement (Hamad et al. 2004; Tastani and Pantazopoulou 2010; Bournas and 

Triantafillou 2011). Whilst the use of these models may lead to more economical 

FRP strengthening solutions, it is necessary to evaluate their accuracy using more 

tests that consider other geometries and test parameters. Moreover, although some

of the previous models utilise an effective FRP strain in the calculations, few 

researchers have studied in detail the development of FRP strains during bond-

splitting failures (e.g. Harajli and Dagher 2008) and its interaction with bar 

slippage during tests.

This paper investigates the effectiveness of externally bonded carbon FRP (CFRP

EBR) confinement at enhancing the behaviour of RC beams. To achieve this,

fifteen RC beams were tested in flexure. Twelve of these beams were designed to 

fail by bond-splitting at the midspan, where the main bottom reinforcement was 

lapped. As a result, the confinement of this zone is expected to improve

considerably the “local” bond behaviour of the bars and therefore the overall 

behaviour of the beams. The results of the experiments are used to examine the 

accuracy of current predictive models available in the literature. Based on the test 

results, a new approach to predict more accurately the bond strength enhancement 
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of short lapped bars in RC members confined with CFRP is proposed. This study

is part of a multistage research project focused on the seismic strengthening of 

substandard RC buildings in developing countries (Garcia et al. 2010; 2012).

2. Experimental programme

2.1 Geometry of beam specimens

A total of fifteen RC beams were tested in flexural four-point bending. The 

geometry of twelve of these beams simulates a member in flexure with a known 

spliced length, similar to the specimens tested by Harajli (2006). The beams had a 

rectangular cross section of 150×200 mm, a total length of 1200 mm and a clear 

span of 1100 mm as shown in Figure 1a-b. Two 50×100 mm notches at the 

bottom of the beams defined the lap length and exposed the main flexural bars for 

measurements. The bottom flexural reinforcement consisted of two steel bars

lapped at the midspan zone. Bar sizes of 12 and 16 mm were used as main bottom 

reinforcement. The top beam reinforcement consisted of two continuous 10 mm 

bars. To prevent a brittle shear failure, the beam outside of the lapped zone had 

transversal reinforcement consisting of 6 mm fully closed plain stirrups spaced at 

100 mm centres. Due to the relatively short lap length selected for these tests (lap 

length lb=10db, where db is the bar diameter), the reinforcement is expected to 

remain elastic at failure. The short lap length was designed to lead to bar slippage,

but also to allow a significant number of bar ribs (lugs) to participate during bar 

movement.



5

Fig. 1 Geometry and reinforcement details of tested beams

To investigate the concrete to diameter ratio (c/db), concrete covers of 10 and 20 

mm were selected for the beams reinforced with 12 mm bars, whereas 27 mm was 

used for the beams reinforced with 16 mm bars. For each beam, the side and 

bottom covers were chosen to be approximately equal. Two types of confinement 

were investigated: internal steel stirrups and externally bonded CFRP composites. 

Hence, three beams were reinforced internally using two 6 mm smooth stirrups at 

the lapped zone. To replicate old construction practices, the stirrups were closed 

with 90 degree hooks instead of 135 degree hooks typically required by current 

seismic codes. The midspan region of three beams was fully wrapped with 1 layer 

and three beams with 2 layers of externally bonded CFRP sheets. For comparison, 

three unconfined beams with lapped bars and three benchmark beams with 

continuous bottom bars were also cast.

The main characteristics of the tested beams are shown in Table 1. The beams are 

classified in three groups according to the intended concrete cover c (SC10 for 

c=10 mm, SC20 for c=20 mm, and SC27 for c=27 mm). Individual beams were 

identified using an ID as follows: B=benchmark beams, Ctrl=unconfined control,

S=steel-confined, and F=CFRP-confined beams. The last digit of the CFRP-

confined beams indicates the number of layers used to strengthen the midspan 

region (1 or 2 layers). Table 1 also reports the effective side (cx), bottom (cy) and 
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internal (csi) concrete covers measured after casting (definitions shown in Figure 

1d). The measured covers produced cmin/db ratios ranging from 0.78 to 1.58, where 

cmin is the smaller of cx, cy or csi/2. These relatively small cmin/db ratios replicate

typical covers of many substandard RC structures in developing countries.

Table 1 Characteristics of tested beams

Group Beam fcm

(MPa)

Measured cover (mm) Main 

bars

Confinement

at midspancx cy csi

SC10 SC10B 22.5 - - - 2Ø12 Ø6/100 mm

SC10Ctrl 22.5 16 14 69 2Ø12 None

SC10S 22.5 21 16 60 2Ø12 2Ø6/60 mm

SC10F1 37.6 17 17 67 2Ø12 1 CFRP layer 

SC10F2 22.5 18 13 67 2Ø12 2 CFRP layers

SC20 SC20B 37.6 - - - 2Ø12 Ø6/100 mm

SC20Ctrl 37.6 19 22 63 2Ø12 None

SC20S 37.6 20 24 61 2Ø12 2Ø6/60 mm

SC20F1 37.6 20 22 62 2Ø12 1 CFRP layer 

SC20F2 37.6 20 21 60 2Ø12 2 CFRP layers

SC27 SC27B 37.6 - - - 2Ø16 Ø6/100 mm

SC27Ctrl 37.6 28 27 25 2Ø16 None

SC27S 37.6 28 26 31 2Ø16 2Ø6/70 mm

SC27F1 37.6 30 27 27 2Ø16 1 CFRP layer 

SC27F2 37.6 27 31 33 2Ø16 2 CFRP layers

2.2 Material properties

The beams were cast using two batches of ready mixed concrete with a mean 

target 28-days strength fcm=16/20 MPa. The following mix proportions were 

reported by the supplier: Portland cement CIIIA=125 kg/m3, GGBS=125 kg/m3,

coarse aggregate 4-10 mm=1002 kg/m3, sand 0-4 mm=884 kg/m3, and

water/cement ratio of 0.8. The concrete was cast from the top of the beams so that 

the lapped reinforcement is classified as bottom cast bars. After casting, the beams 

were covered with wet hessian and polythene sheets, cured for seven days in the 

moulds and subsequently stored under standard laboratory conditions.
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The concrete properties for each batch are summarised in Table 2. For each batch, 

the mean concrete compressive strength (fcm) was obtained from tests on at least

three 150×300 mm concrete cylinders according to BS EN 12390-3 (BSI 2009a).

The indirect tensile splitting strength of concrete (fctm) was determined from tests 

on six 100×200 mm cylinders as for BS EN 12390-6 (BSI 2009c). The modulus 

of rupture (fcfm) was obtained from four-point bending tests on six prisms of 

100×100×500 mm according to BS EN 12390-5 (BSI 2009b). Cylinders and 

prisms were cast at the same time and cured under the same conditions as the 

beams. The average results and corresponding standard deviations (StdDev) from

the tests on cylinders and prisms are reported in Table 2. The elastic moduli (Ecm)

of concrete calculated according to Eurocode 2 (EC2) (BSI 2004) were 28.1 and 

32.7 GPa for batches 1 and 2, respectively.

Table 2 Properties of concrete batches used to cast the beams

Test Batch 1 Batch 2

Slump (mm) 145 185

Compressive strength (MPa)
Mean 22.5 37.6

StdDev 1.93 1.64

Indirect tensile strength (MPa)
Mean 2.63 2.81

StdDev 0.18 0.22

Modulus of rupture (MPa)
Mean 4.53 4.88

StdDev 0.26 0.22

The main bottom reinforcement of the beams consisted of high ductility ribbed 

bars Grade 500 complying with BS 4449:2005 (2005) requirements. The 

mechanical properties of the bars were evaluated by direct tension tests on three 

bar samples. Yield and ultimate strength were: fy=559 and fu=692 MPa for the 12 

mm bar, and fy=551 and fu=683 MPa for the 16 mm bar. The elastic modulus of 

both bars was Es=209 GPa. Yield and ultimate strength of the 6 mm smooth 

stirrups used as internal confinement were fy=360 and fu=420 MPa. Table 3

summarises the bar and rib geometry data provided by the bar manufacturer based 

on actual measurements on 58 (12 mm) and 245 (16 mm) bar samples.



8

Table 3 Rib geometry of main lapped bars

Nominal bar size (mm) 12 16

35 & 75 35 & 75

) 50 50

Relative rib area (mm2) Mean 0.084 0.087

StdDev 0.006 0.009

Rib height (mm) Mean 1.02 1.32

StdDev 0.07 0.08

Average rib spacing (mm) Mean 7.40 9.42

StdDev 0.13 0.17

Cross-section area (mm2) Mean 111 196

StdDev 1.10 2.00

A commercial composite system consisting of unidirectional CFRP sheets and 

bonding adhesive was used for external strengthening. The mechanical properties 

of the dry fibres provided by the manufacturer (S&P) were: tensile strength 

ff=4000 MPa, modulus of elasticity Ef=240 GPa, ultimate elongation fu=1.60%, 

and fibre thickness tf=0.117 mm. The properties of the two-component epoxy 

bonding adhesive were: tensile strength fadh=17 MPa, bond to concrete badh>4 

MPa and modulus of elasticity Eadh=5 GPa.  Before applying the CFRP 

confinement, concrete surfaces at the application zones were thoroughly brushed

and cleaned with pressurised air to improve the adherence between the existing 

concrete and the fibre sheets. The sharp corners at the application zone were also 

rounded off to a radius of approximately 10 mm. An epoxy resin primer was then 

applied to seal the concrete surface at the application zones. The sheets were

oriented perpendicular to the beam axis and were applied across the entire lap 

length using a wet lay-up technique.

2.2 Instrumentation and test set-up

The beams were tested under displacement-controlled four-point bending in a

four-column universal testing machine of 1000 kN capacity. The load was applied 

symmetrically using a hydraulic actuator and a spreader loading beam as shown in 

Figure 2a. This loading configuration produced a constant moment over the 
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lapped bars at the midspan. The beams were simply supported on steel plates and 

rollers. As the support platen of the universal testing machine was slightly shorter 

than the beams, a stiff H steel profile was used to support the concrete beams (see 

Figure 2a).

Fig. 2 Typical instrumentation and set-up of tested beams

Two Linear Variable Displacement Transducers (LVDTs) monitored the vertical 

midspan deflections of the beams. Vertical displacements at the supports were

also measured using LVDTs to compute net deflections. Strains along the main 

lapped bars were measured using four foil-type electrical resistance strain gauges 

fixed on the reinforcing bars exposed at the notches as shown in Figure 2b. To 

obtain detailed information of the strains in the CFRP confinement, four strain 

gauges were fixed on the CFRP at the locations where splitting cracks were 

expected, as shown in Figure 2c. The slip at the free end of the lapped bars was 

also monitored using linear potentiometers mounted on an aluminium frame (see 

Figure 2a-b). The frame was clamped at the centreline of the beam to record the 

bar slip relative to intact concrete. All beams were tested after 28 days of casting, 

and 7 days or more after fixing the CFRP confinement.

To check the instrumentation and release any residual stresses in the beams, an 

initial load of 5.0 kN was applied and then totally released. The initial load was 

then restored and subsequently increased up to the maximum capacity of the 

beams. After this point, the confined beams were subjected to three full load-

reload cycles (except beams SC10S and SC10F2). Crack development was
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monitored at each load increment by visual inspection. The tests were halted when 

splitting failure occurred (unconfined beams), or when the load-midspan 

deflection curve was practically horizontal due to a low residual resistance

(confined beams).

3. Test results

Table 4 reports the splitting load (Pspl) of the tested beams, corresponding 

midspan deflection ( spl) at Pspl, Pspl) and deflections 

spl) of the steel and CFRP-confined beams over the control beams, and the 

post-split load and deflection at 85% of the splitting load (Pspl,85% and spl,85%,

respectively). The table also presents the ratio of maximum load of the tested

beams to that of the benchmark beams (Pspl/Pbmk) and the average bar stress at 

splitting failure (fs,spl). The following sections summarise the most significant 

observations of the testing programme and discuss the results listed in Table 4.

Table 4 Load, deflection and bar stress results of tested beams

Beam Pspl

(kN)
spl

(mm)

Pspl

(%)
spl

(%)

Pspl,85%

(kN)
spl,85%

(mm)

Pspl/Pbmk

(%)

fs,spl

(MPa)

SC10B 98.3 6.89 - - - - 100 464

SC10Ctrl 33.0 0.94 - - - - 33 168

SC10S 36.8 1.52 +11 +62 31.2 2.21 37 190

SC10F1 42.1(a) 1.84 +27 +96 35.8(a) 2.10 43 223(a)

SC10F2 49.1 2.00 +51 +110 41.6 4.05 50 249

SC20B 120 9.22 - - - - 100 561

SC20Ctrl 34.6 1.36 - - - - 29 185

SC20S 39.0 1.82 +13 +34 NA NA 32 230

SC20F1 47.3 1.91 +37 +40 40.2 2.30 39 239

SC20F2 48.9 1.96 +41 +44 41.5 2.18 40 265

SC27B 156 6.14 - - - - 100 544

SC27Ctrl 52.1 1.37 - - - - 33 171

SC27S 50.0 1.72 -4 +25 42.5 4.13 32 162

SC27F1 68.7 1.89 +31 +38 58.3 7.74 44 214

SC27F2 69.6 1.95 +33 +42 59.1 10.6 45 230
(a) Value normalised by (22.5/37.6)1/4
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3.2 Modes of failure

In all unconfined beams, first flexural cracks were located at the upper corners of 

the notches outside the splice zone. The beams experienced sudden brittle failure 

due to splitting of the concrete cover around the lapped bars. This was 

accompanied by a loud explosive noise and the complete detachment of the cover,

which exposed the lapped reinforcement as shown in Figure 3a.

Fig. 3 Typical failures at the midspan of beams: (a) unconfined control, (b) steel-confined, (c) 

CFRP-confined, and (d) benchmark

The use of internal stirrups in the lapped zone did not delay the onset of flexural 

cracking of the steel-confined beams. However, unlike the unconfined beams,

additional flexural cracks appeared across the constant moment region. At the 

maximum load, splitting cracks formed along the lapped bars. Figure 3b shows a 

typical failure of a steel-confined beam. Although the concrete cover did not spall

completely, large flexural and splitting cracks formed across the lapped zone.

The initial flexural crack pattern of steel and CFRP-confined beams was similar. 

However, as the CFRP sheets were bonded directly onto the concrete surface (see 

Figure 3c), splitting cracks at failure were almost unnoticeable. The CFRP 

(a) SC10Ctrl (b) SC20S

(c) SC10F1 (d) SC20B
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confinement also reduced significantly the widening of splitting cracks and

prevented concrete cover spalling. No evident damage occurred at the CFRP 

sheets during the tests. However, towards the end of the tests, some local fibre 

debonding occurred at the location of wide flexural and splitting cracks. It should 

be mentioned that for beams SC10 and SC20, splitting cracks formed first at the 

side and bottom concrete covers. Conversely, for beams SC27, concrete splitting 

occurred first between the lapped bars, and then at the side and bottom covers.

This was due to the small internal concrete cover between the lapped bars of the 

latter beams (approximately 30 mm), which was the smallest cover.

A typical failure mode of the benchmark beams (with continuous flexural

reinforcement) is shown in Figure 3d. Although significant flexural cracking

occurred within the constant moment zone, the formation of shear cracks close to 

the supports prevented the beams from reaching higher flexural capacity (except 

for beam SC20B, which yielded). This type of failure was anticipated as the load 

arrangement used for the tests produced a small shear span-to-depth ratio between 

the load points and the beam supports (a/d 2.0). Nonetheless, the beams were 

close to reaching their full flexural capacity and beam SC20B developed some 

yielding (see bar stresses in Table 4).

3.2 Load-deflection response

The load-deflection responses obtained from the tests are shown in Figures 4a-c.

In Figure 4a, the load of beam SC10F1 (which had a higher concrete strength) is 

normalised by (22.5/37.6)1/4, as proposed by Zuo and Darwin (2000) and Hamad 

et al. (2004).



13

Fig. 4 Load-midspan deflection response of tested beams (a) SC10, (b) SC20, and (c) SC27
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In the figures, the brittle failure of the unconfined beams is indicated by a star 

symbol. The use of internal confinement in the lapped zone led to a ductile

response, characterised by a gentle drop of the load capacity after the maximum 

load. The deflections at splitting of the steel-confined beams increased by up to 

62% (beam SC10S) when compared to their unconfined counterparts (see Table 

4). However, the steel-confined beams resisted similar or only slightly higher 

loads than the unconfined beams (by up to 13%). It should be noted that Figure 4b

shows the experimental response of beam SC20S only up to splitting failure due 

to a malfunction of the test equipment.

CFRP confinement was very effective at improving the load-deflection behaviour 

of the beams by delaying the splitting failure. For all CFRP-confined beams, 

maximum splitting loads and deflections were consistently higher compared to

their unconfined and steel-confined counterparts. As shown in Table 4, splitting 

loads increased by up to 51% with reference to the unconfined specimens (beam 

SCF10). Beams confined with 2 CFRP layers sustained higher loads than those

confined with 1 layer. Note that Figure 4c shows that, after the splitting of the 

cover between the bars, the load resisted by the CFRP-confined beams SC27

increased slightly. The slight increase in load capacity was also observed on 

similar beam tests performed by Harajli (2006). The use of CFRP confinement

also increased the deflection at splitting failure by up to 110% (beam SC10F2).

After splitting, at 85% of the splitting load, the loads and deflections were up to 

39% and 160% higher than those of steel-confined specimens, respectively

(except for beams SC10S and SC10F1, which had similar deflections).

Figure 5 shows that CFRP confinement was more effective at increasing the 

splitting load and deformation capacities as the minimum side/bottom concrete 

cover decreased (cmin(x,y)). This suggests that the confining effect of the CFRP 

sheets is more effective as the cover reduces. A similar trend was reported in 

experiments on RC columns (Harajli and Dagher 2008).
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Fig. 5 Effect of minimum concrete cover on load capacity enhancement

3.3 Bond-slip behaviour

The bond stress-bar slip (bond-slip) relationship of the lapped bars provides an 

insight into the effect of confinement. The average bond stress of a bar in tension 

can be determined assuming that bond is uniformly distributed over the lap length

lb, according to:

b

bs

l
df

4
(1)

where fs is the bar stress and db is the bar diameter. In the tested beams, fs was 

computed using readings from strain gauges fixed on the bars and the 

corresponding elastic modulus of the bars. Bar slip was obtained from the average 

readings of the linear potentiometers located at the unloaded ends of the bars, as 

shown in Figure 2b.

The bond-slip relationships for the tested beams are shown in Figures 6a-c. To 

compare the results in Figure 6a, bond stresses of beam SC10F1 are normalised 

by (22.5/37.6)1/4. For clarity, only the envelope responses are presented. It is 

shown that the bond-slip curves are consistent with the corresponding load-

deflection responses (see Figure 4a-c). Some minor differences exist between 

load-deflection and bond-slip curves due to slight variations of effective beam 

depths and strain gauge readings. The results confirm that the beam failure 

depends on the bond behaviour of the lapped bars.
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Figures 6a-c show that, at the initial loading, the bond-slip relationships of all 

beams were similar and negligible bar slips occurred. In the CFRP-confined 

beams, significant concrete cover splitting occurred at bond stresses of 

approximately 70-90% the bond splitting strength. After splitting and for the same 

slip value, the bond stress sustained by the CFRP-confined beams was 

consistently higher due to the delay in splitting crack propagation. In general 

terms, beams confined with 2 CFRP layers showed a better response than those 

confined with 1 layer.
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Fig. 6 Bond-slip relationships of tested beams (a) SC10, (b) SC20, and (c) SC27
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Table 5 summarises the results of the tested beams at peak load: a) bond strength 

spl, b) bond strength enhancement due to confinement spl, c) normalised bond 

strength enhancement *
spl= spl fc, d) bar slip sspl, e) bar slip enhancement due 

to confinement sspl, and f) strain in the CFRP confinement f,spl. spl was 

computed as the difference between the bond strength of the confined beams and 

that of the corresponding unconfined control beam. To evaluate the effect of 

confinement at the approximate onset of splitting failure, the CFRP strains at bar 

slips s=0.01 mm and 0.02 mm are also included in Table 5 ( f,s=0.01 and f,s=0.02,

respectively) and Figure 7. The reported CFRP strains are the average readings 

from the strain gauges shown in Figure 2c. The values of the strain gauges did not 

differ by much for bottom splitting (as can be seen from Fig. 7), although they 

differed for side splitting. Note that the values f,spl reported in Table 5 are only 4-

7% of the ultimate strain reported by the CFRP sheet manufacturer ( fu=1.60%). 

As shown in Table 5, the premature failure of the unconfined beams is clearly

reflected on the very low bar slip values recorded during the tests (0.01 to 0.026 

mm only). Although the bond strength of the steel-confined beams was similar or 

slightly higher than that of the unconfined beams, the use of steel stirrups 

enhanced the bar slip at failure by up to 590% (beam SC27S). The results also 

emphasise the effectiveness of CFRP confinement at improving the bond-slip

behaviour of the beams. Compared to unconfined specimens, the normalised bond

strength was enhanced by up to 33% and 49% for 1 and 2 CFRP confinement 

layers, respectively. Moreover, the CFRP confinement increased considerably the 

slip at splitting failure by a minimum of 100% (beam SC10F1) and up to 1200% 

(beam SC27F2).
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Fig. 7 Typical development of CFRP strains (beam SC20F2)

4. Discussion and comparison of results

4.1 Bond strength of unconfined and steel-confined beams 

Table 6 compares the experimental bond strength results of the unconfined and 

steel-confined beams with predictions by Orangun et al. (1977), Esfahani and 

Rangan (1998), Zuo and Darwin (2000), Harajli (2006), Lettow and Eligehausen 

(2006) and EC2 (2004) equations. The (unfactored) predictions by EC2 are 

computed using the characteristic tensile strength of concrete (fctk,0.05=0.7fctm). In 

general, the analytical predictions compare reasonably well with the test results of 

the unconfined control beams, with Orangun et al., Harajli and EC2 equations 

giving the best predictions. However, most of the examined models overestimate

the contribution of the internal stirrups. This is particularly evident for Zuo and 

Darwin and Lettow and Eligehausen models, which overestimate the bond results 

by up to 90% (beam SC27S). It should be mentioned that this may be a 

characteristic of substandard RC structures, in which internal stirrups may 

contribute little to bond strength. This is also recognised by current codes (e.g. 

ACI 318-11 2011), where the internal confinement can be conservatively 

neglected in bond calculations. Nonetheless, even substandard stirrups can 

enhance the ductility of laps by providing some bond stress reserve after splitting 

failure. This is important during earthquakes where structures should be able to 
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sustain significant deformations. Overall, the results in Table 6 show that the bond 

splitting strength of substandard splices can be computed with sufficient accuracy 

using existing bond equations. The good predictions given by equation by EC2 as 

well as by other researchers (Tepfers 1973, Esfahani and Rangan 1998; fib

Bulletin 10 2000) confirm that splitting failures are essentially controlled by the 

tensile strength of concrete. Therefore, the use of the tensile concrete 

characteristics appears to provide a suitable starting point for the analysis of bond-

splitting failures.

4.2 Bond strength enhancement in CFRP-confined beams

To assess the accuracy of existing models at predicting the bond strength 

enhancement due to CFRP confinement, Table 7 compares the experimental

normalised bond strength ( *
spl) with analytical predictions ( *

spl,pred) by Hamad 

et al. (2004), Harajli et al. (2004) and Bournas and Triantafillou (2011) bond 

equations. The table also summarises the predicted effective CFRP strains ( f,pred)

used for the calculation of *
spl,pred in Hamad et al. and Bournas and Triantafillou 

equations. The test/prediction ratios (T/P) and corresponding standard deviation 

(StdDev) for each equation are also reported. Table 7 includes results of normal-

strength concrete beams (series NC) tested by Hamad et al. (2004). The short-

spliced beams NC were tested under similar conditions as the current beams, but 

they had different test parameters (e.g. free cover=db=20 mm and three lap 

splices) and less CFRP confinement at midspan consisting of discontinuous or 

continuous U-shaped strips. It should be noted that Harajli et al. and Hamad et al. 

equations were calibrated using the test results of beams NC.
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As expected, Hamad et al. equation predicts the test data used for its calibration

with reasonably accuracy, but it underestimates the results of beams SC confined 

with 2 CFRP layers by up to 72%. This can be attributed to the conservative upper 

limit of normalised bond strength enhancement adopted in this model 

( *
spl=0.25). This limit was originally proposed by Orangun et al. (1977) for

spliced beams confined with internal steel stirrups and acknowledges that, after a 

certain point, adding stirrups is no longer effective at enhancing the lap bond 

strength as bar pullout tends to dominate the failure. The relatively high 

variability of the test/prediction ratios (StdDev=0.30) reflects the conservativeness 

of the equation at high confinement levels.

In comparison, Harajli et al. and Bournas and Triantafillou equations predict the 

experimental results of some beams SC with reasonably accuracy, but they

generally underestimate the results of beams NC by up to 158% and 80%, 

respectively. Moreover, the large scatter of test/prediction ratios (StdDev=0.54

and 0.45, respectively) indicates that these models do not capture accurately the 

influence of CFRP confinement on bond. The upper limit of normalised bond

strength enhancement for EBR suggested by Harajli et al. ( *
spl 0.40) appears to 

be more appropriate than the more conservative limit proposed by Hamad et al.

This is consistent with the experimental observations which show that CFRP 

confinement controls splitting cracks more effectively than internal steel 

confinement. Based on Harajli et al. observations and on the current test results, it 

is apparent that the use of additional CFRP layers is not expected to enhance

considerably the bond strength by more than *
spl =0.40. Therefore, it is

uneconomical to provide more confinement than that necessary to develop the full 

bond strength of the lap (unless it is required for other strengthening objectives).

This means that the use of suitable bond equations in the design of FRP 

strengthening of lapped RC members can lead to more economical solutions.

The test results also show that the bond strength of beams confined with 2 CFRP 

layers was 32-85% higher than that of beams confined with 1 layer only (see also 

Table 5). Hence, increasing the thickness of CFRP confinement does not result in 

proportional enhancement of bond strength, as shown in Figure 8. This is in 

agreement with previous experimental results by Hamad et al. (2004). Despite the 
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significant bond improvement, CFRP-confined beams sustained 40 to 50% of the 

load resisted by the corresponding benchmark beams with continuous main 

bottom bars (see Table 4). This indicates that CFRP confinement can enhance the 

capacity of substandard splices, but that enhancement could be still insufficient to 

develop yielding in very short splices.

Fig. 8 Normalised bond strength vs amount of CFRP confinement

4.3 Strains developed in CFRP confinement

To compute the bond strength enhancement due to CFRP confinement, the Hamad 

et al. and Bournas and Triantafillou models require calculating the effective CFRP 

strain at splitting failure. For the beams tested in this research, the models predict

CFRP strains values of 4000 and 5950 , respectively (see Table 7). However,

the current test results show that splitting failures occur at much lower CFRP 

strains (see Table 5). As strains in the CFRP confinement depend on bar slip and 

consequent concrete dilatancy, the bond-slip relationship of the bars and the 

development of CFRP strains during the tests are examined in more detail.

Figures 9a-b show the development of CFRP strain and bar slip as a function of 

bond stress for beam SC20F2. These are typical results and the following 

observations apply to the other beams as well. Figure 9a indicates that CFRP 

strains are very small during the initial loading and up to approximately 50-60% 

of the bond splitting strength. This was expected as bar slip is practically 
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negligible at low load levels (see Figure 9b), and therefore the CFRP confinement 

is not activated. At an approximate bar slip of 0.01 mm, concrete dilatancy around 

the bar has activated the confinement, thus mobilising strains in the CFRP sheets.

CFRP strains increase rapidly as the splitting cracks widen at 70-90% of the bond 

splitting strength (0.01 mm s 0.1 mm, see Figure 9a). Bond stress remains

practically constant before and after splitting failure (marked by × in Figures 9a-

b). Following splitting, CFRP strains increase rapidly up to approximately 1000

, due to additional bar slippage and consequent widening of cracks. Large 

CFRP strains in excess of 2500-3000 are recorded only towards the end of the 

tests when the bars pullout completely from the concrete. Such strains are only 

15-19% of the ultimate strain reported by the CFRP sheet manufacturer

( fu=1.60%). It should be noted that the gauges bonded to the CFRP sheets only 

provide local strain data. Therefore, the increase in strain values shown in Figures 

7 and 9(a) is mainly attributed to widening of splitting cracks along the lapped 

bars.
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Fig. 9 Typical test results of (a) strains in CFRP confinement, and (b) bond-slip (beam SC20F2)

Based on the above discussion, it is evident that splitting failures occur at small 

bar slips and low strain values in the CFRP confinement. For the CFRP-confined 

beams tested in this research, CFRP strains never exceeded 1500 at peak load.

This is less than 10% of the ultimate elongation capacity of the CFRP sheets.

Harajli and Dagher (2008) measured similar values of 100-1300 in tests on lap 

spliced columns confined with 1 or 2 layers of CFRP. Using a kinematic 

relationship between bar slip and concrete cover dilation, Tastani and 

Pantazopoulou (2007; 2008) also computed CFRP strains in the order of 1000-

1600 . The results of these three studies indicate that Hamad et al. and Bournas 

and Triantafillou models overpredict considerably the strain values of the CFRP

confinement. It should be mentioned that more tests are necessary to determine
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the appropriate CFRP strains developed at splitting failure for longer splices. The 

authors will be presenting such results in a separate paper.

5. Model proposal

The large scatter and inconsistencies of existing predictive equations indicate the 

need for more accurate analytical models for the CFRP strengthening of 

substandard laps. This is particularly important for the strengthening of structures 

in developing countries as lower strengthening costs would make rehabilitation of 

structures more likely. Hence, a new approach for predicting the bond strength 

enhancement of substandard lapped bars due to CFRP confinement is proposed in 

the following.

In the proposed approach, the concrete around the lapped bars is regarded as two 

thick-walled cylinders of thickness cmin(x,y) (e.g. Tastani and Pantazopoulou 2007; 

2008) as shown in Figure 10a, where side splitting is considered as an example of 

cover splitting. It is also considered that the initial behaviour of the splice is 

mainly controlled by the tensile concrete characteristics of the cover. Due to the 

high variability in concrete strength characteristics in tension, splitting failures of 

unconfined laps occur when the characteristic tensile stress in the concrete cover

(perpendicular to the splitting crack) is exceeded (see Figure 10a). The 

strengthening of a lap with CFRP confinement is expected in the first instance to 

reduce the concrete variability in tension and, as a result, splitting in the CFRP-

confined lap is expected to be governed by the mean tensile strength of concrete 

fctm (see Figure 10b), rather than the characteristic strength.
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Fig. 10 Bond-splitting failure assumptions in (a) unconfined lap, (b) CFRP-confined lap and (c) 

confining pressure of CFRP sheets on lapped bar

The additional effect of the CFRP confinement can then be considered through an

additional confining stress, fo, which is assumed to act over a split cross sectional 

area equal to (cmin(x,y)+db) lb (see Figure 10c). A strain control approach is adopted

to compute fo, which leads to Equation (2). The effective CFRP strain f,o is 

calculated using the concrete tensile strain at the onset of cover splitting (see 

Figure 10b), when concrete tensile strains ( ctm) and CFRP strains are assumed to 

be equal. Hence, f,o= ctm=fctm/Ecm, where all the variables were defined before. 

With exception of beam SC10F1, Table 7 shows that the predicted values f,o

compare reasonably well with the experimental CFRP strains at the approximate 

onset of splitting (see values f,s=0.01 and f,s=0.02 in Table 5). fo is defined by:

)( ),min(

,

byxb

fofff
o dcn

Etn
f (2)

where nf and tf are the number of CFRP sheets and thickness of one sheet, 

respectively; Ef is the elastic modulus of the CFRP; nb is the total number of pairs

of lapped bars in tension (included in Equation (2) to account for the number of 

splitting cracks), and the rest of the variables are as defined before. For

discontinuous CFRP applications (strips), Equation (2) can be multiplied by wf/sf,

where wf and sf are the width and spacing at centres of the CFRP strips,

respectively.
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It should be mentioned that Equation (2) assumes that the bond strength 

enhancement provided by the CFRP confinement is related to the elastic strain in 

the concrete, and cover splitting leads very rapidly to splitting failure. Although 

the development of a splitting crack along the lapped bars is not instantaneously 

leading to splitting failure, this assumption is sufficiently accurate to predict the 

bond strength enhancement provided by the CFRP confinement for the beams 

tested in this study, where cover splitting occurred at 70-90% of the lap bond 

strength. Also, note that the CFRP sheets provide passive confinement and 

therefore their contribution depends on concrete dilation around the lapped bars. 

Such confining stress is mobilised even at very low slip values (<0.01 mm). This 

is confirmed by the strain readings from the gauges bonded to the CFRP sheets 

(Figure 9a). The proposed equation predicts an increase of the contribution of 

CFRP confinement to bond strength with a reduction of the minimum concrete 

cover cmin(x,y), as also observed in the experiments (Figure 5).

Based on a calibration with the test data of beams NC and SC, the relationship 

between the bond strength enhancement due to CFRP confinement and the 

confining pressure can be defined by the following equation:

40.015.1*
o

c

spl
spl f

f
(3)

In Equation (3), the maximum bond enhancement is limited to 0.4 fc as shown by 

the current tests and as proposed by Harajli et al. (2004).

Figure 11 compares the experimental results of beams SC and NC with Equation

(3). The concrete tensile strength of beams SC was taken from the test data 

reported in Table 2, whilst the strength fctm of beams NC was calculated using 

EC2. It can be seen that the proposed equation matches well the experimental 

results. The bond predictions given by Equation (3) are reported in Table 7.

Compared to other models, it is evident that the proposed equation predicts the 

test results more accurately (mean T/P=0.99) and with significantly less scatter 

(StdDev=0.11). Therefore, the proposed approach can be used for assessment and 

strengthening of short splices in existing substandard RC constructions of 

developing countries, where members are typically reinforced with no more than 

two or three bars on each face.
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Fig. 11 Proposed equation and fitting of experimental results, CFRP-confined beams

It should be mentioned that Equation (3) needs to be added to the concrete 

contribution to compute the total bond strength of the lapped bars. As discussed in 

section 4.1, the concrete contribution can be calculated with sufficient accuracy 

using existing bond equations available in the literature (e.g. EC2). Due to the 

limited data used for the calibration and to the short lap length examined, future 

research should verify the applicability of the proposed model to the CFRP 

strengthening of RC members with longer laps where yielding can occur. 

Moreover, as for internal steel stirrups, CFRP confinement is expected to be more 

effective at engaging bars located at the corners of rectangular cross sections in 

comparison to intermediate bars. Consequently, further research should also 

verify the accuracy of the proposed model at predicting the bond strength 

enhancement in members with more than three splices or with several bars 

distributed across the section. Also, due to the relatively small number of concrete 

covers examined in the tested beams, the applicability of the model should be 

limited to approximately 0.8 cmin(x,y)/db until future data become available.

The use of other FRP materials such as glass, aramid or basalt should be also 

studied.
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6. Conclusions

This paper presented results from substandard splices in RC beams confined with 

internal steel stirrups or externally bonded CFRP. The beams were subjected to 

four-point bending and were designed to fail by bond-splitting at midspan, where 

the main flexural reinforcement was lapped. Based on the results presented in this 

paper, the following conclusions are drawn:

1) Unconfined control beams with short splices failed in a brittle manner due to

splitting of the concrete cover around the splice. For the tested beams, bar slip at 

splitting ranged from 0.01 to 0.026 mm.

2) Compared to unconfined specimens, steel-confined beams failed by splitting at

similar or slightly higher loads (by up to 13%) and bond strengths (by up to 18%).

However, bar slips increased by up to 590%. After splitting, steel-confined beams

showed a rather ductile behaviour and sustained significant additional 

deformations, but with a gradual drop in capacity.

3) Existing equations predict the bond strength of substandard unconfined splices

with sufficient accuracy, but they tend to overestimate the additional contribution 

of internal stirrups. Compared to other bond equations, EC2 predicts more 

accurately the beam test results as splitting is essentially controlled by the tensile 

concrete strength.

4) The use of externally bonded CFRP confinement delayed the splitting failure of 

the laps. Compared to unconfined specimens, CFRP confinement also enhanced

the bond strength and bar slip by up to 49% and 1200%, respectively. Whilst 

strengthening applications with 1 or 2 CFRP layers proved very effective at 

enhancing the splice bond strength, further enhancements are not expected beyond 

0.40 fc. Therefore, it seems uneconomical to provide more confinement than that 

necessary to develop the full bond strength of the lap.

5) The test results show that splitting failures of laps in CFRP-confined members 

occur at small bar slips (s

confinement (570-1170 ). These values are much lower than the effective CFRP 
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strains predicted by Hamad et al. (2004) and Bournas and Triantafillou (2011) 

bond equations (4000-5950 ).

6) Existing equations for predicting the bond strength enhancement due to CFRP 

confinement show large scatter when compared to experimental results. A new

“strain” approach that yields more consistent predictions is proposed. This can be 

used for assessment and strengthening of short splices in substandard RC 

constructions.
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