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Abstract

The effectiveness of a novel Post-Tensioned Metal Strapping (PTMS) technique at enhancing the 

seismic behaviour of a substandard RC building was investigated through full-scale shake-table tests

during the EU-funded project BANDIT. The building had inadequate reinforcement detailing in

columns and joints to replicate old construction practices. After the bare building was initially 

damaged significantly, it was repaired and strengthened with PTMS to perform additional seismic 

tests. The PTMS technique improved considerably the seismic performance of the tested building. 

Whilst the bare building experienced critical damage at an earthquake of PGA=0.15g, the PTMS-

strengthened building sustained a PGA=0.35g earthquake without compromising stability.
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1 Introduction

Recent severe earthquakes in developing countries (Kashmir, 2005; China, 2008; Indonesia, 2009; 

Haiti, 2010) caused numerous casualties and financial losses due to the collapse of many reinforced 

concrete (RC) buildings. Many structural failures were attributed to the inadequate behaviour of

beam-column joints. Typical deficiencies in joints may include [Beres et al., 1996]:

1. Lack of internal steel stirrups (confinement) in the joint core

2. Short anchorage length of bottom beam reinforcement in joint core, and

3. Construction joints above and/or below beam-column joints

Therefore, the local strengthening of substandard joints is essential to reduce the seismic vulnerability

of such deficient buildings.

Different techniques have been used for the repair and strengthening of substandard exterior RC

beam-column joints, including: 

Crack injection and/or epoxy mortar repair [e.g. Karayannis et al., 1998]

Concrete/shotcrete jacketing [e.g. Corazao and Durrani, 1989; Karayannis et al., 2008; Tsonos, 

2008; 2010]

Steel jacketing or steel plates [e.g. Corazao and Durrani, 1989; Ghobarah et al., 1996; Biddah et 

al., 1997; Sasmal et al., 2011]

Externally bonded fibre reinforced polymers (FRP) [e.g. Gergely et al., 2000; Granata and 

Parvin, 2001; Ghobarah and Said, 2001; 2002; Antonopoulos and Triantafillou, 2003; Said and 

Nehdi, 2004; Ghobarah and El-Amoury, 2005; Pantelides and Gergely, 2008; Karayannis and 

Sirkelis, 2008; Tsonos, 2008; Akguzel and Pampanin, 2010; Alsayed et al., 2010; Le-Trung et 

al., 2010; Parvin et al., 2010; Al-Salloum et al., 2011; Ilki et al., 2011; Sezen, 2012].

These strengthening techniques were proven very effective at enhancing the ductility and capacity of 

beam-column joint specimens, as well as the global behaviour of full-scale buildings [e.g. Pinto et al., 

2002; Balsamo et al., 2005a; 2005b; Della Corte et al., 2006; Di Ludovico et al., 2008; Garcia et al., 



3

2010]. However, despite the extensive amount of research studies on strengthening techniques for 

deficient RC structures, it is important to develop simple and low-cost post-earthquake strengthening 

solutions for substandard structures, especially for developing countries.

Early work by Frangou et al. [1995; 1996] led to the development of a novel strengthening technique

for RC beams and columns using Post-Tensioned Metal Strapping (PTMS). The PTMS technique 

involves the post-tensioning of high-strength steel straps (bands) around RC members using 

hydraulically-operated steel strapping tools similar to those utilised in the packaging industry (see Fig. 

1). After post-tensioning, the straps are fastened mechanically using "push type" seals to maintain the 

tensioning force. This provides active confinement to members, thus increasing their ductility and 

capacity. In comparison to other strengthening techniques, PTMS has advantages such as ease and 

speed of application, low material cost, ease of removing/replacing damaged straps, and flexibility to 

strengthen different types of structural elements. The cost and speed of PTMS strengthening 

technique depend on different factors such as material and labour costs and skill of technical staff. 

The use of PTMS in developing countries is expected to lead to more cost-effective solutions 

compared to strengthening methods such as externally bonded FRP reinforcement.

Moghaddam et al. [2010a] carried out tests on 72 small-scale circular and square concrete columns 

confined with PTMS using different volumetric confinement ratios (i.e. different strap spacing and 

one or two strap layers). The results showed that the PTMS technique was very effective at enhancing 

the strength and ductility of the columns. As expected, the use of high volumetric confinement ratios 

(zero strapping spacing and/or applications with two layers of metal straps) generally led to the 

highest enhancements. Based on calibration with these test results, the authors proposed a stress-strain 

model for concrete columns confined with PTMS [Moghaddam et al., 2010b]. Samadi et al. [2012] 

performed cyclic tests on four substandard lap-spliced RC columns with and without PTMS. Whilst 

the unconfined control column failed prematurely due to cover splitting and spalling of the concrete 

cover around the lapped bars, the PTMS-strengthened columns failed in a ductile manner after 

yielding of the longitudinal reinforcement. Helal [2012] tested four substandard full-scale RC joint 

specimens strengthened with PTMS under cyclic loading. No stirrups were provided in the joint core 
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to induce a shear failure in the original bare specimens. After the initial tests, the joints were repaired 

and subsequently strengthened with PTMS using different strapping layouts and layers. The PTMS 

technique was proven effective at enhancing the capacity of the strengthened joints by up to 95%

compared to the original bare counterparts. Whilst these studies investigated the use of the PTMS 

technique at the element level, it is necessary to verify its effectiveness at a global level through tests 

on full-scale RC buildings before this technique can be widely used in practice.

This paper presents the global results of the first three testing Phases of the EU-funded research

project BANDIT [Mongabure, 2012]. The main objective of the project was to investigate

experimentally the seismic behaviour of a substandard full-scale RC building strengthened with 

PTMS. The experiments were performed on the AZALEE shaking table at the CEA/EMSI laboratory 

in Saclay (France), as part of the EU SERIES Programme (Seismic Engineering Research

Infrastructures for European Synergies).

2 Experimental programme

The seismic performance of a substandard RC building was investigated through a series of 

unidirectional full-scale shaking table tests in two orthogonal directions. The building was initially

damaged significantly, and then repaired and strengthened with PTMS before additional seismic tests

were performed. Phase 1 corresponds to the seismic testing of the bare building in the X direction, and 

Phases 2 and 3 correspond to the seismic testing of the PTMS-strengthened building in the X and Y 

directions, respectively. A detailed description of the testing programme is given in the following 

sections.

2.1 Geometry of the building

The tested structure (see Fig. 2) was a one-bay two-storey frame building regular in plan and 

elevation, similar to a building tested as part of the EU ECOLEADER programme [Chaudat et al., 

2005; Garcia et al., 2010] and built according to substandard construction practices of developing 

countries. Fig. 3(a) to (c) show details of the general geometry of the building, cross sections of 
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members and corresponding reinforcement. The building was 4.26×4.26 m in plan and had a constant 

floor height of 3.30 m, as shown in Fig. 3(a) and (b), respectively. The cross section of the columns 

was 260×260 mm (Fig. 3(c)). The 1st floor columns were reinforced with eight 14 mm deformed bars,

whilst the 2nd floor columns had four 14 mm deformed bars. This resulted in longitudinal 

reinforcement ratios ( l) of 1.82% and 0.91% for the 1st and 2nd floor columns, respectively. These 

relatively low ratios are typical of substandard columns. The reduction of longitudinal column 

reinforcement between floors is a typical construction practice adopted in many developing countries 

to save material costs. The columns had transverse reinforcement consisting of 6 mm stirrups at 200 

mm spacing. The stirrups were closed with 90° bends instead of 135° hooks required by current 

seismic codes.

In order to examine different beam strengths in the two orthogonal directions, the cross section of the 

beams was 260×400 mm in the X direction, and 260×300 mm in the Y direction (see Fig. 3(c)). The 

top and bottom beam reinforcement consisted of four 14 mm bars, resulting in l values of 0.65% and 

0.90% for the beams in the X and Y directions, respectively. Shear reinforcement was provided using 

8 mm steel stirrups at 250 mm spacing. Similar to columns, no special measure was taken at the 

potential plastic hinge zones of the beams. It should be mentioned that the spacing of stirrups in 

beams and columns of the building was similar to the ECOLEADER building, where such spacing 

was effective at preventing shear failures in these members.

The top and bottom of the 120 mm thick slabs were reinforced using 10 mm bars spaced at 100 mm 

centres in both directions (see Fig. 3(c)). Table 1 shows the axial load on columns (N), yield (My) and 

ultimate (Mu) flexural strengths of beams and columns obtained using moment-curvature analysis. 

The values shown in Table 1 indicate that a strong beam-weak column mechanism is expected to 

control the behaviour of the building.

To study the effect of beam-column joint detailing on the local and global seismic performance of the 

building, different types of substandard anchorage details were examined as shown in Fig. 4(a) to (c).

For the 1st floor joints, the top beam reinforcement was anchored using a 90° bend in the X direction,
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and a hook in the Y direction, respectively (Fig. 4(a) and (b)). To study the effect of short bar 

anchorage length, the bottom beam reinforcement was anchored into the joints for a length of 220 mm 

(approximately 16db, where db is the bar diameter), with no hooks or bends. This short anchorage 

length is considered insufficient to develop the yielding capacity of the 14 mm bars according to 

current design recommendations. For the 2nd floor joints, top and bottom beam reinforcement bars

were anchored into the joints for 220 mm in both X and Y directions, as shown in Fig. 4(c). To

replicate old substandard construction practices, no transverse stirrups were provided in the joint core. 

In addition, the longitudinal column bars were lapped over a length lb=25db=300 mm just above the 

joint core, which is considerably less than the required lap splice lengths in high seismic regions (see 

EN 1998-1:2004 [CEN 2004]). Therefore, significant damage was expected in columns and beam-

column joints during the initial tests on the bare building (Phase 1).

In this paper, columns and beam-column joints of the building are identified using an ID code

according to their location in plan and elevation. The first letter of the ID represents the type of 

structural member (“C”=column, “J”=joint), whilst the subsequent digit and letter stand for the axes’ 

intersection at which the member is located in plan. The last digit and letter indicate the floor number

and the direction being considered. For instance, the element J1A-2X corresponds to the beam-

column joint of the 2nd floor located at the intersection of axes 1 and A, and parallel to the X axis (see

Fig. 3(a)).

2.2 Material properties

The building was cast off the shaking table using two batches of ready mixed concrete (one for each 

floor). To produce vertical slots through the slabs and ease the subsequent installation of the metal 

straps on the beams, rectangular pieces of expanded polystyrene were placed at the locations shown in 

Fig. 3(a) prior to casting. Four plastic pipes were also placed vertically in each slab formwork to 

enable the subsequent clamping of additional masses. Pieces of 1/4 pipes (radius=20 mm) were glued 

to the corners of the columns’ formwork to avoid grinding the sharp corners at the strengthening 

zones. Though such large radius was not strictly needed for the PTMS, the structure was also 

strengthened later using externally bonded CFRP sheets, for which sharp corners may be a problem.
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The concrete was cured in the formwork for seven days following casting, and then kept under 

standard laboratory conditions until testing. For each concrete batch, the compressive strength (fc) and 

elastic modulus (Ec) were obtained from tests on nine 160×320 mm cylinders according to the CPC 8 

guidelines [RILEM, 1994]. The indirect tensile splitting strength (fct) was determined from tests on 

twelve 160×320 mm cylinders according to NF EN 12390-6 [AFNOR, 2012]. The flexural strength

(fcf) was obtained from four-point bending tests on three prisms of 100×100×500 mm according to NF

EN 12390-5 [AFNOR, 2012]. All cylinders and prisms were cast at the same time and cured under the 

same conditions as the building. Table 2 reports the average results and standard deviations from the 

tested cylinders and prisms. The shaking table tests started at 119 and 105 days after the cast of the 1st

and 2nd floors, respectively.

Due to difficulties in finding low-strength smooth steel bars, the reinforcing steel of the building

consisted of deformed bars grade S500 complying with NF A 35-016-1 [AFNOR, 2007]. Compared 

to low-strength bars, the use of deformed bars S500 is more critical because the joints and columns 

can be subjected to higher force and bond demands. Table 3 summarises the yield and ultimate 

strengths obtained from the direct tension tests on three bar samples. Based on previous research by 

Helal [2012], commercially available high-strength metal straps with nominal cross section 0.8×25 

mm and zinc corrosion-resistant surface coating were used for the PTMS strengthening (if necessary, 

corrosion resistance can be provided by other coatings). The mechanical properties of the straps were

obtained from four sample coupons as reported in Table 3. More detailed information about the 

adopted repairs and strengthening technique is provided in Section 3.2.

2.3 Test setup and instrumentation

2.3.1 Fixity and additional masses

Stiff steel “shoe” supports with high-strength bolts were used to clamp the building rigidly to the

shaking table. The column flexural reinforcement was anchored and welded on the base of the 

“shoes”. The welding of these bars was to prevent failure at the column-“shoe” interface during the 

tests at high seismic intensities as reported by Balsamo et al. [2005]. To simulate additional
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permanent and variable loads, three steel plates with a total mass of 13.5 tonnes were bolted

underneath the 1st floor slab using post-tensioned high-strength bolts, as shown in Fig. 3(b). One steel 

plate and one concrete block were clamped to the top of the 2nd floor slab to add a mass of 11.0 

tonnes. These additional masses were supported on four half-ball steel bearings at the expected slab 

inflection points to allow the free deformation of the slabs during the tests (Fig. 3(a)). The steel plates 

below the 1st floor were initially placed on the shake table and clamped to the slab after moving/fixing 

the building to the table. Subsequently, the steel plates and concrete blocks were placed on the top of 

the 2nd floor slab. A similar arrangement was previously used in the ECOLEADER project [Chaudat 

et al., 2005; Garcia et al., 2010]. The estimated self-weight of the building was 20.4 tonnes. The self-

weight and the additional masses produced approximate normalised axial load ratios v=N/(fcAg) of 

0.05 and 0.03 for the 1st and 2nd floor columns, respectively, where N is the axial load and Ag is the 

column gross cross sectional area. These relatively low axial load ratios can be justified as 

substandard structures in developing countries usually have short span lengths.

2.3.2 Seismic record and dynamic identification

An artificial ground motion record based on Eurocode 8 (EC8, EN 1998-1:2004) soil type C spectrum 

[CEN, 2004] was used as horizontal input. The matching of the input record and EC8 spectra was 

performed analytically using commercial software (SignalStar by Data Physics). The record length 

was 30 s, with a frequency range of 0.7-30 Hz. The ground motion record was scaled to apply 

different levels of peak ground acceleration (PGA). In general, a good matching between the input 

record spectrum and the table response spectrum was observed for the range of frequencies of interest 

at all excitation levels. For instance, Fig. 5 compares the spectra for the “EC8” for 5% of critical 

damping, the “input” record, and the “AZALEE” actual response recorded on the shaking table at 

PGA=0.35g.

Natural frequencies of the structure were obtained using white noise before and after each test in the 

X and Y directions. For this purpose, a low intensity excitation (maximum PGA=0.05g) containing a 

frequency range of 0.5-50 Hz was used. The response recorded at each floor was then used to identify 
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the natural frequencies of the relevant vibration modes. All data were monitored for 50 s and collected 

by a data acquisition system at a sampling frequency of 600 Hz.

2.3.3 Test sequence

The testing programme consisted of 17 unidirectional shaking table tests conducted in three Phases

according to the sequence shown in Table 4. Phase 1 of the experiments consisted of shake table 

excitations in the X direction (i.e. parallel to axes 1 and 2 in Fig. 3(a)), ranging from PGA=0.025g to 

0.15g. The main objective of these tests was to investigate the seismic performance of the substandard 

RC structure and produce significant, but repairable damage. The effectiveness of the proposed 

strengthening technique was investigated in Phase 2 of the project. Damaged elements were repaired

and then strengthened using the PTMS technique, and additional shake table tests were conducted 

using earthquake excitations ranging from PGA=0.05g to 0.35g. In Phase 3, the capacity and seismic 

performance of the PTMS-strengthened building were assessed in the Y direction by applying 

additional earthquake excitations with PGA ranging from 0.05g to 0.3g. These tests allowed

investigating of the residual resistance of the PTMS-strengthened building in the Y direction after 

producing damage in the X direction (Phase 2).

2.3.4 Instrumentation

Each floor of the building was instrumented with horizontal displacement and acceleration 

transducers to monitor the response history during the shaking tests (see Fig. 6). As shown in Fig. 6,

two equidistant displacement transducers were fixed on each exterior face of the slabs to identify 

possible in-plan torsion. The displacement transducers were attached to an external rigid frame to 

facilitate the measurements and quantify the residual displacements after each test. Relative horizontal

displacement between the additional masses and slabs was also measured. A series of 59 strategically 

placed foil-type electrical resistance strain gauges monitored the strain developed along the 

reinforcement bars of selected beams, columns and joints at J2A-1X, J2A-2X, J1A-1Y, J1B-1Y and 

J1A-2Y locations (see Figs. 3 and 4). Additionally, circular targets were glued to columns and slabs in

order to measure the building displacements using a stereovision system (see Fig. 6). Further details

of this visual monitoring technique are reported in Mongabure [2012].
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3 Initial tests and PTMS strengthening

3.1 Phase 1: original bare building

In the first testing Phase, the seismic excitation ranged from PGA=0.025g to 0.15g. The test at a PGA 

level of 0.15g was halted after approximately 20.0 s due to resonance issues with the shaking table. 

As some large amplitude cycles of the input record were not applied, the test at PGA=0.15g was

repeated to apply the complete duration of the time history.

The first two shake table tests (PGA=0.025 and 0.05g) did not produce significant damage to the bare 

building. The first cracks appeared at the beam-column joints during the test at a PGA level of 0.10g. 

At PGA=0.15g, some of the 2nd floor joints experienced severe cracking and concrete spalling. The 

damage observed in joint J2A-2 suggested that a local failure occurred within this joint during this

test. This was confirmed by removing the spalled concrete after the test as shown in Fig. 7(a). The 

beam reinforcement may have also pulled out from the joint due to the excessive crack widths (>10

mm). However, only narrow diagonal cracks formed at the 1st floor joints at this PGA level (see Fig. 

7(b)). This indicates that whilst the 2nd floor joints experienced significant local damage due to the 

lack of stirrups and inadequate reinforcement detailing, the capacity of the 1st floor joints was not 

fully developed. Concrete cover splitting also occurred along the spliced longitudinal reinforcement of 

column C2A-2 (Fig. 7(c)). Horizontal cracks appeared in all 2nd floor columns at the location of the 

internal steel stirrups. The experiments were halted after the second test at PGA=0.15g to avoid 

irreparable local damage in the 2nd floor joints and a possible collapse of the 2nd floor.

In this study, an equivalent SDOF model is adopted to calculate the lateral stiffness as the building is 

low-rise, symmetric and regular in plan and elevation, and therefore the first mode is expected to 

dominate the response (e.g. Thermou and Pantazopoulou [2011]). Fig. 8 shows the change of lateral 

structural stiffness (K) of the tested structure at different PGA levels. The lateral stiffness was 

determined as K=M(2 f1)2, where M is the total mass of the building and f1 is its fundamental 

frequency measured after each test. It is shown that, as expected, the lateral stiffness of the building 

deteriorated rapidly with increasing PGA levels, which is in line with the damage progression 
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observed during the experiments. After the second test at PGA=0.15g, the residual stiffness of the 

damaged building was only 30% of its original value (K=2300 vs 7740 kN/m).

3.2 Repairs and PTMS strengthening

3.2.1 Repair of damaged joints

After conducting the tests in Phase 1, the damaged beam-column joints were repaired by:

a) Welding the external bars of the bottom beam reinforcement to the column reinforcement to 

prevent bar pullout (Fig. 9(a)). To achieve this, short bar segments 20-30 mm long were inserted 

between the column and beam longitudinal reinforcement bars. This was done in the X direction of 

the 2nd floor joints only.

b) Replacing damaged and spalled concrete with high-strength repair mortar (Fig. 9(b)), and

c) Injecting cracks with epoxy resin (Fig. 9(c)).

Subsequently, sharp corners at the strengthening zones of joints were rounded off to an approximate 

radius of 20 mm. 

3.2.2 Design of PTMS strengthening

The amount and layout of metal straps used for the PTMS strengthening is based on the principle that 

metal straps are treated as conventional tensile reinforcement. Based on previous experience from 

experimental work on columns (Frangou et al. [1995]; Moghaddam et al. [2010a]) and on substandard 

full-scale joint specimens strengthened with PTMS [Helal, 2012], the straps were post-tensioned to 

approximately 30-40% of their yield strength. The PTMS strengthening was designed to increase the 

flexural capacity of the columns, and to enhance the shear capacity of the joints. For illustrative 

purposes, the shear design of a 1st floor joint (X direction) is given below.

The horizontal shear force demand in the joint (Vjh) was computed using force equilibrium according 

to Eq. (1):
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colbjh VTV (1)

where Tb is the tensile yield force of the top reinforcement of beam and slab, and Vcol is the column 

shear force.

Using an effective slab width beff=600 mm, Tb was determined as 471 kN [Garcia, 2013]. By 

considering inflection points at the mid-height of the floors (floor height Hc=3300 mm), Vcol was 

computed assuming that half of the beam yielding moment (Mby=156 kNm, Table 1) was carried by 

the columns above and below the joint (Eq. (2)):

kN47
3300

10156 3

c

by
col H

M
V (2)

Thus Vjh=471-47=424 kN. 

The effect of the PTMS confinement on the joint core shear resistance (Vcc) was estimated using Eq. 

(3) [ASCE, 2007]. The confined concrete compressive strength (fcc) due to the horizontal straps was 

calculated using Moghaddam et al. [2010b] model. Two-layered metal straps spaced at s=50 mm 

centres and tensioned to 35% of their yield strength are used, resulting in a value fcc=36.3 MPa. A

shear strength factor =0.083×8=0.66 for exterior joints without internal shear reinforcement was 

adopted according to the ASCE/SEI 41-06 guidelines [ASCE, 2007].

kN2703.36)260260)(66.0(ccjcc fAV (3)

where Aj is the effective horizontal joint area.

The shear resistance provided by the horizontal metal straps (Vsh) was then calculated using 

conventional design principles and considering the straps as additional shear reinforcement (Eq. (4)):

kN180
50

)228)(982)(258.02(
s

dfA
V cyv

sh (4)

where Av is the cross-sectional area of the steel straps and dc is the effective depth of the column.
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The proposed PTMS layout was thus adequate to sustain the design shear force demand in the joint 

(Vcc+Vsh>Vjh).

3.2.3 Installation of PTMS

All columns and joints were strengthened locally using PTMS to increase their capacity. The metal 

straps were installed progressively, as described below and shown in Figs. 10 and 11.

1. First, six 10 mm thick anchor steel plates were fixed to the columns, beams and top of 2nd floor 

slab using high-strength M12×120 mm bolts inserted in holes prefilled with epoxy adhesive mortar.

After the adhesive set, the plates were positioned and partially tightened with nuts and washers

leaving a small gap of approximately 1 mm between the plates and the concrete faces, which was 

necessary to secure the 2 layer metal straps (see Fig. 10(c)). The diameter of the high-strength bolts 

and dimensions of the steel plates were conservatively selected to resist the shear force corresponding 

to the nominal tensile strength of the metal straps.

2. Next, nine horizontal straps at 50 mm spacing were placed at column ends to provide confinement 

and increase their shear strength.

3. One layer of straps was inserted in the pre-formed slots of the slabs to confine the beam ends and 

also increase their shear capacity. 

4. Based on the calculations presented in the previous section, eight straps (2 layers each) were 

installed parallel to the longitudinal beams axes (i.e. horizontally) at 50 mm centres to provide 

confinement to the beam-column joint. These straps were anchored around the steel plates as shown 

in Fig. 10(c). Due to the different beam depths in the X and Y directions, an additional anchorage 

plate was placed at the interior face of the deeper beams as shown in Fig. 11(b).

5. Six straps (2 layers each) were provided along the outer faces of the columns (parallel to the 

column axis) to enhance their flexural capacity. For the 2nd floor joints, the six straps were bent at 90°

at the slab edges and secured to steel plates located on the top of the 2nd floor slab as shown in Fig. 
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10(a). Afterwards, the nuts of the bolts securing the steel plates were tightened by hand using a 

spanner to prevent the loss of prestressing in the straps.

6. Finally, 1 layer of confinement straps was placed around beams and columns to prevent excessive 

buckling of the horizontal and longitudinal straps installed at stages 4 and 5. 

All straps were fastened using “push type" seals of 25 mm length (see seals in Fig. 1) to maintain the 

tensioning force. Fig. 11(c) and (d) show typical beam-column joints after the PTMS strengthening. 

As can be seen, the metal strapping provided a confining grid around the beam-column joints and 

columns ends. The total strapping time for each joint varied from 2 to 3 hrs, which demonstrates the 

speed of application of the proposed strengthening technique. In addition, the added weight of the 

steel plates and metal straps was considered negligible compared to the total weight of the building. 

The amount of steel used in the PTMS strengthening of all joints was approximately 220 kg.

4 PTMS tests and discussion

4.1 Phase 2: PTMS-strengthened building (X direction)

The seismic excitation applied to the building after repair and PTMS strengthening ranged from 

PGA=0.05g to 0.35g (Table 4). In general, as the metal straps covered much of the concrete surfaces,

damage at the joints could not be observed during the tests. However, metallic sounds during tests

(especially after a PGA=0.15g) indicated that the metal straps were tensioning considerably at the 

joints and columns. After the tests were halted, a thorough inspection revealed that no apparent 

damage occurred at the straps or steel plates. Overall, the metal straps maintained the post-tensioning 

force, with the exception of a few longitudinal straps placed along the columns of the 1st floor joints. 

This loss of force can be attributed to the partial shearing off of some “push type” metal seals, which 

had poor bearing resistance to start with. Significant cracking was also evident in the beam-column 

joints, particularly at J1A-1X, J1A-2X, J2A-1X and J2A-2X locations. The tests show that whilst the

2nd floor of the bare building (in Phase 1) was approaching collapse at a seismic intensity PGA=0.15g,

the PTMS-strengthened building (in Phase 2) sustained a PGA=0.35g earthquake without extensive 
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damage or compromising the global stability. Maximum relative displacement between the additional 

masses and slabs was 1 mm at PGA 0.35g. Due to the arrangement and detailing of the mass supports 

(see Fig. 3), only a fraction of the 2nd floor lateral inertia force was transferred as axial loads to the 

steel bearings (i.e. the floor slabs were not subjected to additional bending moments). Therefore, the 

effect of vertical mass eccentricity was considered to be negligible.

The damage observed in the building in Phase 2 indicates that the repairs and PTMS strengthening 

intervention enhanced considerably the shear capacity of the 2nd floor joints, preventing their 

premature failure. As a consequence, seismic force demands redistributed among other structural 

members and the 1st floor joints were subjected to higher forces, leading to significant cracking. This 

implies that the PTMS strengthening intervention exploited better the available members’ capacities 

and led to a more uniform damage distribution over the height of the structure. A uniform damage 

distribution commonly leads to less overall structural damage and better seismic performance under 

strong earthquakes [e.g. Hajirasouliha et al., 2012].

Fig. 8 indicates that the repairs and PTMS strengthening restored the stiffness of the building from 

K=2300 kN/m (damaged) to 4820 kN/m (after repair). The latter stiffness is similar to that of the bare 

building after the test PGA=0.05g, which corresponds to a post-cracked elastic stage. Fig. 8 also 

shows that at a PGA=0.15g, the stiffness degradation of the building was 70% in Phase 1 (from 7740

to 2300 kN/m) and 21% in Phase 2 (from 4820 to 3830 kN/m). This implies that the adopted repairs

and strengthening technique were very effective at controlling the stiffness degradation of the 

building, which is important in seismic strengthening design.

4.2 Phase 3: PTMS-strengthened building (Y direction)

In this Phase, the PTMS strengthened building was subjected to earthquake excitations ranging from 

PGA=0.05 to 0.30g in the Y direction. The Y direction was weaker than the X direction due to the 

smaller depth of the beams. No significant damage was observed in the metal straps during the tests.

However, a visual inspection after the removal of the metal straps and spalled concrete confirmed that

the beam-column joints experienced extensive cracking, as shown in Fig. 12(a) and (b). Nonetheless, 
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the PTMS technique has proven extremely effective at maintaining the integrity of the joints. Whilst 

the relatively high intensity of the seismic excitation produced additional damage to the building,

none of the structural elements showed evidence of potential failure. The good performance observed 

in the Y direction also suggests that the welding of the beam and column bars (performed in the X 

direction) may not be necessary for rapid strengthening applications. However, in general the welding 

of bars is expected to enhance the seismic performance of buildings. Fig. 13 compares the stiffness of 

the building in the Y direction during Phase 3 with the stiffness values at the beginning of Phases 1 

and 2 in the same direction. The results indicate that, due to damage accumulation produced by the 

shaking in the X direction, the initial stiffness of the building in Phase 3 reduced by 62% and 41% in 

comparison to the bare building (KiY=6600 kN/m, beginning of Phase 1) and after the PTMS 

strengthening (K=4260 kN/m, beginning of Phase 2), respectively. Moreover, although no significant 

damage was observed during the tests in Phase 3, the residual stiffness of the building decreased by 

43% with reference to its initial value at the start of Phase 3 (K=1430 vs 2510 kN/m, respectively). It 

should be mentioned that although the building was clearly capable of sustaining seismic excitations 

at higher PGA intensities and the majority of the straps were intact, the tests were halted after a PGA 

level of 0.30g to evaluate the local damage at the joints and the global condition of the structure. 

Moreover, structural damage had to be maintained within repairable limits as further shaking table 

tests were planned on the building.

4.3 Time-history results

Fig. 14 shows displacement time-history of the 1st and 2nd floors for the last test performed in each 

testing Phase. It is shown that the 2nd floor exhibited higher lateral displacement (up to 160%) 

compared to the 1st floor in all three tests. Fig. 14 shows that residual displacements at the end of 

Phases 2 and 3 were very small (approximately 2-3 mm), which confirms the effectiveness of the 

PTMS intervention at controlling damage and maintaining the building stability. The test in Phase 1 

was halted after approximately 32 s (see Fig. 14 (a)) to prevent the possible collapse of the 2nd floor, 

and therefore, residual displacements were not measured. In general, readings from the equidistant 
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displacement transducers fixed on the exterior faces of the slabs were very similar, which indicates 

that in-plan torsion was negligible during all three testing Phases.

Fig. 15 compares strain time-history readings from gauges fixed on the bottom beam reinforcement of 

the 1st floor (gauges marked with an asterisk in Fig. 4). As shown in Fig. 15 (a), elastic strains of 300-

-concrete interface. In 

comparison, ve ng Phases 2 and 3, which indicates that most

of the seismic force demand was taken by the metal straps rather than by the internal reinforcement. 

The readings from the strain gauges fixed on the reinforcing bars indicated that no yielding occurred 

in beams or columns.

4.4 Global damage index

It has been suggested that the change in structural period is an appropriate parameter to assess the 

global damage experienced by buildings subjected to earthquakes (DiPasquale and Çakmak [1988]; 

DiPasquale et al. [1990]; Zembaty et al. [2006]). Therefore, this study adopts the global damage index 

(DI) proposed by DiPasquale et al. [1990] to assess quantitatively the structural damage of the tested 

building at different PGA levels. The global damage index is defined as DI=1-(Ti/Tf)2, where Ti and Tf

are the natural periods of the building in initial undamaged condition and after an earthquake, 

respectively. Accordingly, a DI value of zero implies no damage to the building, whereas a DI value 

of 1.0 represents the theoretical collapse of the structure. Fig. 16 shows the global DIs calculated for 

each shaking table test using the formula above. The values Ti and Tf were taken as the initial periods 

of the bare undamaged building and the periods after each test, respectively. It should be mentioned 

that any global damage index should be calibrated before it can be directly associated to a specific 

damage state. However, in this study the global damage index is used mainly to compare 

quantitatively the global structural damage experienced by the building during different testing 

Phases.

Phase 1. The results in Fig. 16 indicate that the bare building was not very close to its theoretical 

collapse point at a PGA=0.15g (DI=0.70), as also suggested by the experimental observations.
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Nonetheless, the experimental evidence showed severe local damage, which is not very easy to 

capture using a global damage index.

Phase 2. Fig. 16 shows that at a PGA=0.15g, the PTMS-strengthened building exhibited a DI of only 

0.51, which indicates a damage reduction of 27% compared to the bare building (Phase 1). It is also 

shown that the damage of the strengthened building at PGA=0.30g (DI=0.70) was identical to that 

obtained at a considerably lower PGA=0.15g in the bare building and no local damage was observed.

Although the tests in Phase 2 were stopped at a relatively high PGA=0.35g, the DI value only reached 

0.78 (without severe local damage) and could potentially resist higher PGAs.

Phase 3. Despite the significant damage accumulated at the start of this testing phase (DI=0.64) due 

to shaking in the X direction, the PTMS-strengthened building in the Y direction (Phase 3) showed 

similar levels of damage as the bare building at PGA=0.15g (DIs=0.69 and 0.70, respectively) tested 

in the X direction (stronger direction).

Based on the results, it is clear that global damage was well controlled in the PTMS-strengthened 

building, particularly at higher levels of PGA. This indicates that the PTMS-strengthening technique 

was very effective at sustaining structural stability and delaying a potential collapse.

4.5 Performance levels

In performance-based design methods, design criteria are expressed in terms of achieving specific 

performance targets during a design level earthquake. Performance targets could be satisfied by 

controlling the level of structural and non-structural damage. Current guidelines for seismic 

rehabilitation of existing buildings such as ASCE/SEI 41-06 [ASCE, 2007] place limits on acceptable 

values of inter-storey drift ratios implying that exceeding these limits is a violation of a performance 

objective. According to ASCE/SEI 41-06, maximum transient drift ratios of 1%, 2% and 4% 

correspond to Immediate Occupancy (IO), Life Safety (LS), and Collapse Prevention (CP) 

performance levels, respectively.
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Phase 1. Fig. 17 shows the maximum inter-storey drift ratios ( ) of the 1st and 2nd floors obtained for 

each shaking table test. The results indicate that the 1st and 2nd floors of the bare building had similar 

drift ratios at PGA levels of 0.025g, 0.05g and 0.10g. However, when the building was subjected to a 

PGA=0.15g, the 2nd floor drift value was 100% higher than that of the 1st floor ( =1.69% vs 0.82%). 

This sharp increase of the drift ratio can be attributed to the significant local damage of the beam-

column joints at the 2nd floor, as observed in the experiments.

Phase 2. It is shown in Fig. 17 that the drift ratios of the bare and PTMS-strengthened buildings were 

very similar at a PGA=0.05g (0.29% vs 0.30%). At a PGA level of 0.10g, the drift ratios of the 1st and 

2nd floors of the strengthened building (Phase 2) were respectively 33% and 25% higher than the 

corresponding ratios measured on the bare building (Phase 1). While the 2nd floor of the bare structure 

was within LS level at a PGA=0.15g ( =1.69%) due to the local damage, the critical drift ratio of the 

strengthened building was very close to the IO performance level ( =1.14%), which is consistent with 

the experimental observations. In general, the local repairs and PTMS strengthening of the joints were 

very effective at reducing the critical drift of the 2nd floor (i.e. critical storey). As discussed in Section 

4.1, this led to a more uniform distribution of damage in the structure. 

Despite the relatively high seismic excitation applied during the last test on the strengthened building 

(PGA=0.35g), the maximum drifts of both floors were at the early stages of CP. This implies that the 

adopted repair and PTMS strengthening strategy was very effective at improving the seismic 

performance of the building by reducing structural deterioration at the 2nd floor and critical inter-

storey drifts.

Phase 3. The effectiveness of the PTMS strengthening is emphasised by comparing the maximum 

inter-storey drifts of the strengthened building in the X and Y directions (Fig. 17). Although no 

rehabilitation was done after Phase 2, similar maximum inter-storey drifts were observed during the 

shaking table tests in the X and Y directions up to PGA=0.25g (Phases 2 and 3, respectively).

Fig. 17 shows that the maximum drift ratios of the PTMS-strengthened structure in both X and Y 

directions were within the CP performance level. In particular, the 1st floor was very close to LS level. 
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This shows that despite the damage produced by the earthquakes applied in the X direction (Phases 1 

and 2), the building was capable of resisting additional earthquakes in the Y direction (Phase 3).

Based on the results of this study, it is concluded that the PTMS technique is a feasible and very 

effective for quick post-earthquake strengthening of substandard RC buildings. Owing to the low 

material costs and ease of installation, this technique is especially suitable for structures in developing 

countries. The results of subsequent testing phases of this research programme, which pushed the 

building to 3D shaking of PGA=0.6g, will be presented in future publications.

5 Summary and conclusions

This paper presents the results of the first three testing phases of the EU-funded project BANDIT. The

project investigated the effectiveness of a novel strengthening technique using Post-Tensioned Metal 

Straps (PTMS) through shaking table tests on a full-scale RC building. The building had inadequate 

reinforcement detailing in columns and beam-column joints to simulate typical deficiencies of 

substandard existing buildings in developing countries. From the results presented in this study, the 

following conclusions can be drawn:

1) The capacity of the substandard bare building was limited by the premature local failure of the 

beam-column joints at the 2nd floor. Following various levels of seismic excitation, the joints and 

columns at the 1st floor experienced limited damage. The damage produced during the shaking table 

tests in the X direction (Phase 1) reduced the initial stiffness of the bare building by 70%. The tests 

were halted at a PGA level of 0.15g to avoid excessive damage and a possible collapse of the 2nd

floor.

2) The PTMS strengthening technique was shown to be easy to apply and was done without the use of 

adhesives, sophisticated equipment or materials. The amount of steel straps used for the building did 

not exceed 250 kg, which confirms that the major costs of strengthening come from labour.
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3) The repairs and local PTMS strengthening of columns and joints after initial tests were effective at 

restoring the stiffness of the building to a post-cracked stage. The results show that the adopted repair

and PTMS strengthening solutions reduced the stiffness degradation of the building from 70% to 21%

at PGA=0.15g.

4) The repairs and PTMS strengthening enhanced the capacity of the severely deteriorated 2nd floor 

beam-column joints. This resulted in a more uniform damage distribution and better exploitation of 

the available capacity in the structure. While the bare structure reached a critical level of damage at 

PGA=0.15g, the PTMS-strengthened building resisted seismic shaking up to PGA=0.35g without 

compromising its stability.

5) The local rehabilitation and PTMS strengthening of the columns and joints resulted in a 

considerable reduction (up to 30%) of the inter-storey drift ratio of the 2nd floor at PGA=0.15g.

Following strengthening, the seismic performance of the bare building at the 2nd floor improved from 

near Collapse Prevention to near Immediate Occupancy performance level.

6) The PTMS-strengthened building was clearly capable of resisting additional seismic excitations up 

to PGA=0.3g in the Y direction, after the damage produced by a series of earthquakes in the X 

direction. The building remained within the Collapse Prevention performance level and its stability

was never compromised. On the basis of the above discussion, it can be concluded that the low-cost 

and simple strengthening method is very effective for rapid post-earthquake strengthening of 

substandard RC structures, and it is especially suitable for applications in developing countries.
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TABLES

Table 1. Beam and column strengths

(a) Effective tension flange computed according to EN 1992-1-1 [CEN, 2004]

N (kN) My (kNm) Mu (kNm)
Column 2nd floor 52 38 41
Column 1st floor 110 63 77
Beams X direction (positive) - 111 127
Beams X direction (negative)(a) - 156 167
Beams Y direction (positive) - 79 88
Beams Y direction (negative)(a) - 108 113
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Table 2. Properties of concrete used to cast the building

Note: standard deviations are shown in brackets

1st floor 2nd floor
Compressive strength, fc (MPa) 30.7 (1.56) 24.6 (2.03)
Indirect tensile strength, fct (MPa) 2.67 (0.38) 2.28 (0.22)
Flexural strength, fcf (MPa) 3.60 (0.26) 3.83 (0.32)
Elastic modulus, Ec (GPa) 24.3 (1.30) 21.2 (1.16)
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Table 3. Mechanical properties of steel reinforcement and metal straps

Nominal diameter, db (mm) Ø6 Ø8 Ø10 Ø14 Strap 0.8×25 mm
Yield strength, fy (MPa) 574 (6) 544 (12) 513 (4) 526 (8) 982 (11)
Tensile strength, fu (MPa) 604 (9) 572 (9) 587 (9) 616 (2) 1100 (22)
Yield strain, y (%) 0.28 0.26 0.25 0.26 0.43
Elongation at max. force, u (%) 3.0 (0.9) 3.3 (0.6) 6.8 (1.5) 8.0 (2.3) 4.60 (0.5)
Elastic modulus, Es (%) 207 209 202 201 230
Note: standard deviations are shown in brackets
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Table 4. Test sequence and building condition for shaking table tests

Phase Test direction
and condition

PGA (g) 1st mode
T1 (s)

2nd mode
T2 (s)

1 X - Bare building Undamaged 0.48 0.18
0.025 0.53 0.20
0.05 0.60 0.22
0.10 0.68 0.25
0.15(a) 0.88 0.29

2 X - Repaired and 
PTMS-strengthened building

Initial 0.61 0.20
0.05 0.64 0.21
0.10 0.67 0.22
0.15 0.68 0.23
0.20 0.75 0.23
0.25 0.78 0.26
0.30 0.88 0.26
0.35 1.01 0.27

3 Y - PTMS-strengthened
building(b)

Damaged 0.84 0.27
0.05 0.86 0.27
0.10 0.93 0.27
0.15 0.93 0.28
0.20 0.97 0.29
0.25 1.08 0.29
0.30 1.11 0.30

(a) After this test, cracks were resin-injected and damaged concrete replaced with high-strength epoxy 
mortar. PTMS were subsequently installed.
(b) In Y direction: T1=0.52 s in undamaged condition (start of Phase 1); T1=0.65 s after repairs and 
PTMS strengthening (start of Phase 2).
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FIGURES

Fig. 1. Strapping tool and clamping jaws used for the PTMS strengthening technique
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Fig. 2. General view of BANDIT building in bare condition
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Fig. 3. Geometry of tested building in (a) plan and (b) elevation; (c) reinforcement details of members
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Fig. 4. Detailing of columns and beam-column joints at (a) 1st floor X direction; (b) 1st floor Y direction; and (c)
2nd floor, X and Y directions
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Fig. 5. Matching of response spectra input record and response of shake table (PGA=0.35g)
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Fig. 6. Instrumentation of BANDIT building
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Fig. 7. Damage in beam-column joints and columns after Phase 1: (a) J2A-2Y, (b) J1A-1X, (c) concrete splitting 
along lapped flexural reinforcement of C2A-2X
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Fig. 8. Lateral stiffness degradation, Phases 1 and 2 (X direction)
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Fig. 9. Repairs after Phase 1: (a) welding of external beam bars to column bars, (b) mortar repair at J2B-2 and 
injection ports for crack injection, (c) crack injection in progress
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Fig. 10. Sequence of PTMS strengthening in joints: (a) 2nd floor, (b) 1st floor, and (c) gap between steel plates 
and concrete faces to secure the 2 layer metal straps
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Fig. 11. PTMS strengthening of beam-column joints: (a) fixing of steel plates, (b) additional anchorage plate at 
interior face of beams, (c) final view of 1st floor joints, (d) final view of 2nd floor joints.
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Fig. 12. Damage in beam-column joints after removal of PTMS in Phase 3: (a) J2A-1X, and (b) J1A-1X
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Fig. 13. Lateral stiffness degradation, Phase 3 (Y direction)
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Fig. 14. Displacement time-histories of 1st and 2nd floors, last test of Phases 1 to 3
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Fig. 15. Strain time-histories of bottom beam reinforcement at joints, last test of Phases 1 to 3
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Fig. 16. Global damage indices, Phases 1 to 3

0.19

0.35

0.51

0.70
0.64

0.69 0.69 0.72
0.77 0.78

0.44 0.48 0.51
0.59 0.62

0.70
0.78

0.00

0.25

0.50

0.75

1.00

1.25

1.50

0.025g 0.05g 0.10g 0.15g 0.05g 0.10g 0.15g 0.20g 0.25g 0.30g 0.35g 0.05g 0.10g 0.15g 0.20g 0.25g 0.30g

Test

Phase 1
Bare

(X direction)

Phase 2
PTMS-strengthened 

(X direction)

Phase 3
PTMS-strengthened 

(Y direction)

DI=1 (theoretical collapse)

Repairs and PTMS 
strengthening



45

Fig. 17. Inter-storey drift ratio of 1st and 2nd floors, Phases 1 to 3
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