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Consumers, including the poor in many countries, are increasingly dependent on 

food imports1 and are therefore exposed to variations in yields, production, and 

export prices in the major food-producing regions of the world. National 

governments and commercial entities are therefore paying increased attention to 

the cropping forecasts of major food-exporting countries as well as to their own 

domestic food production. Given the increased volatility of food markets and the 

rising incidence of climatic extremes affecting food production, food price spikes 

may increase in prevalence in future years2–4.  Here we present a global 

assessment of the reliability of crop failure hindcasts for major crops at two lead 

times derived by linking ensemble seasonal climatic forecasts with statistical crop 

models. We found that moderate-to-marked yield loss over a substantial 

percentage (26–33%) of the harvested area of these crops is reliably predictable if 

climatic forecasts are near perfect. However, only rice and wheat production are 



reliably predictable at three months before the harvest using within-season 

hindcasts. The reliabilities of estimates varied substantially by crop—rice and 

wheat yields were the most predictable, followed by soybean and maize. The 

reasons for variation in the reliability of the estimates included the differences in 

crop sensitivity to the climate and the technology used by the crop-producing 

regions. Our findings reveal that the use of seasonal climatic forecasts to predict 

crop failures will be useful for monitoring global food production and will 

encourage the adaptation of food systems to climatic extremes. 
Although global crop monitoring and yield prediction models (e.g., the Global 

Information and Early Warning System of the FAO5 and the Famine Early Warning 
Systems Network6) have been developed, few studies have evaluated the reliability of 
seasonal climatic forecast-based cropping predictions on a global scale to date. However, 
global commodity markets are essential to maintaining national food balances and 
affordable access for consumers, including the poor7, 8. Large increases in food prices 
since 2008, occurring as a result of the widespread drought in crop-export regions in 
2008 and 2012, coupled with a transforming food system (i.e., the increasing production 
of biofuels) increase the importance of being able to anticipate large changes in food 
production9-11. These changes affect both the rural and urban poor who are reliant on 
imports from the global commodity market to ensure that a sufficient amount of food is 
available to meet demand. 

We conducted a global overview of the reliability of crop failure forecasts for 
maize, rice, wheat, and soybean, which are the principal cereal and legume crops 
worldwide, providing nearly 60% of all calories produced on croplands12. The key 
question posed was “How reliable is the forecasting of crop failure at lead times that 
allow such information to be of value to governments and commercial concerns?” 
Previous work on this topic focused on predicting extreme events with either a smaller 
geographical focus13 or by using methods that limited their usefulness in connection to 
broader climate modeling efforts14.  

We assessed the reliability of “hindcasts” (i.e., retrospective forecasts for the 
past) of crop yield loss relative to the previous year for two lead times. Pre-season yield 
predictions employ climatic forecasts and have lead times of approximately 3 to 5 
months for providing information regarding variations in yields for the coming cropping 
season (Fig. 1). Within-season yield predictions use climatic forecasts with lead times of 
1 to 3 months. Pre-season predictions can be of value to national governments and 
commercial concerns, complemented by subsequent updates from within-season 
predictions. The latter incorporate information on the most recent climatic data for the 
upcoming period of reproductive growth15. In addition to such predictions, hindcasts 
using the re-analyzed historical climatic data (i.e., observations) were performed to 
demonstrate the upper limit of the reliability of crop forecasting. 

Hindcasts using the re-analyzed climatic data for the 1983-2006 interval 
indicated that the upper limits of prediction of moderate-to-marked (5% more) yield 
losses were reliably captured (R2

≥0.301 when reported and hindcast yield losses were 
compared; P<0.05) by modeling from 26-33% of the total crop areas harvested 
worldwide in 2000 (Fig. 2; Table S1). These areas accounted for 28-40% of the world 



crop production in that year. The reliability of the estimates of yield levels (including 
values that were approximately normal or beyond normal) when using the re-analyzed 
climatic data was comparable to that of the estimates of crop failures mentioned above 
(Figs. 2, S1). If such reliability is to be realized for not only crop failures but also yield 
levels, both temperature and soil moisture forecasts must be near perfect.  

When within-season hindcasts were evaluated, good reliability was evident in a 
number of areas throughout the world, including major crop-producing regions, such as 
Southeast Asia for rice and Australia for wheat (Fig. 3). With climatic hindcasts, the 
capability of modeling was more distinct when identifying the occurrences of crop 
failures than when predicting all of the year-to-year variations in yield levels throughout 
the years (Figs. 3, S2). Note, however, that reported crop yields are not always reliable 
over the time series used in this analysis, and the results for some countries should be 
interpreted with caution.  

Comparatively higher reliability of pre-season hindcasts was found in areas 
with similar within-season hindcasts (e.g., Southeast Asia for rice; Figs. S3, S4), 
although such reliability gradually decreased with increasing lead time (Table S1), as 
has been previously reported16. However, the ability of modeling to capture crop 
failures (17-21% of total production; Fig. S3; Table S1) was still higher in comparison 
to that of predicting yield levels (5-11% of total production; Figs. S4; Table S1). 

Of the total crop area harvested worldwide, 15-19% accounted for 15% to 23% 
of world production appeared to be reliable when the within-season crop failure 
hindcasts were evaluated (Fig. 3; Table S1). This result indicates that the crop failure 
hindcasts for all crops attained more than 50% of their predictive potential whereas 
yield hindcasts achieved considerably less than 36% of their potential. For both crop 
failures and yield levels, the hindcast values for rice and wheat, the production of which 
appears to be more sensitive to temperature than to soil moisture content (Fig. 4), were 
better at both lead times than the values obtained from the random hindcasts (the 
comparisons were significant at the 1% level; Fig. S5). By contrast, the hindcast values 
for maize and soybean conducted at both lead times (the production of which is more 
sensitive to soil moisture content than to temperature; Fig. 4) were not significantly 
better than the random hindcast values (Fig. S5).  

The observed spread in hindcast yield reliability across different crop types 
reflects the finding that temperature hindcasts are far more reliable than predictions of 
soil moisture content at both lead times (Figs. S6, S7). Higher hindcast temperature 
reliability plays a certain role with respect to gaining the reliability of within-season 
cropping hindcasts in irrigated cropland, which covers approximately 20% of cultivated 
land and accounts for over 40% of world production17, although more land is rainfed 
area (Fig. S8). This tendency is particularly true in irrigated areas where yields are 
sensitive to temperature, likely because temperature is a major driver of yield variations 
if a crop is irrigated sufficiently, whereas the soil moisture content is still important 
under insufficient irrigation conditions, as suggested by a previous study18.  

Additionally, the hindcast climatic reliability was higher when data from low 
latitudes were evaluated rather than those from the mid-to-high latitudes (Figs. S6, S7); 
this conclusion is similar to that obtained in earlier studies19. Of the top four countries in 
terms of maize and soybean production (the USA, Brazil, China, and Argentina), all but 
Brazil are located at mid-latitudes, whereas rice is widely produced (particularly in the 
tropics) and wheat is grown more extensively worldwide than any other crop (Fig. S9; 



Table S1). For wheat in particular, the timing of the growing season is important: a large 
proportion of wheat is grown in winter. Winter climate forecasts in the northern 
hemisphere are typically more accurate than summer forecasts because the extratropical 
winter atmosphere is strongly influenced by events in tropical regions and because the 
effects of tropical climatic variations on winter climatic patterns in the northern 
hemisphere are stronger than on that of the summer20. Because of differences in the 
characteristics of production systems, the reliability of the estimates of rice and wheat 
yield losses was highest, distantly followed by those of soybean and maize (Fig. S5; 
Table S1). For the estimates of yield levels, wheat prediction was most reliable, 
followed by the estimates of rice, soybean, and maize (Table S1).  
 The relatively high reliability of hindcasts to capture the crop failures of rice 
and wheat and to predict the year-to-year variations in wheat yield levels in particular 
encouraged us to extract further information. The areas for which within-season 
hindcasts of yield levels are available include four of the major wheat-exporting 
countries, namely, the USA, France, Canada, and Australia. Together, these regions 
produced 53% of the world wheat export in 2008 (Fig. S10). In these areas, 
within-season hindcasts were reliable for 9% to 35% of the harvested area (Fig. 5), 
suggesting that up to 11% of all wheat exports from these four countries are predictable 
(27% of world wheat exports were predictable when the data from all wheat-exporting 
countries were considered; Table S1). When the pre-season yield hindcasts were 
evaluated, the area for which the predictions were reliable was lower (1-32% of all 
harvested areas in the exporting countries mentioned above; Fig. 5); however, the 
reliability level was similar to that afforded by the analysis of within-season hindcasts 
from the USA and Australia.  

In contrast, the levels of rice exports that were reliably predicted were far lower 
than those of wheat exports when the yield hindcasts were evaluated but were 
comparable when the crop failure hindcasts were assessed (Table S1). Notably, a 
considerable extent of the predictable area (52-78% of the national harvested area) 
found in the third-major rice exporter, Uruguay, contributed to results in such values for 
predicting the rice yield losses (Fig. S11). The second-major rice exporter, Thailand, 
exhibited even less predictable area (3% of the national harvested area); although 
Thailand is located in the tropics, this result is likely due to the lack of crop calendar 
data for the triple cropping systems under operation in that region21, 22 and the higher 
sensitivity of yields to soil moisture conditions (Fig. 4).  
 We found that the principal features of climate-induced crop failures in a 
substantial percentage of the global crop-growing regions were reliably predictable for 
rice and wheat but were less predictable for maize and soybean. The particular features 
of global production systems allow reliable estimates of crop failure, including a notable 
association between crop yields and ambient temperature, an extensive growth area 
worldwide (or within the tropics), significant production from winter cropping, and 
accurate estimates of winter temperatures. Notably, the areas within which the 
occurrences of crop failures (or yield levels) are reliably predictable include the 
countries that are major exporters of wheat and rice. This finding suggests that modeling 
can potentially yield information on the seasonal climate-induced variability in the 
production levels of rice and wheat in major exporter countries and that such estimates 
can be made available 3 to 5 months before harvest. Such information would be of 
value to both national governments and commercial entities for maintaining an adequate 



national food balance and ensuring adequate responses to major food crises. These data, 
when combined with satellite-derived information on rainfall levels and the extent of 
vegetative productivity23, can support a range of decisions, including the adaptation of 
food systems for the poor to climatic extremes and, ultimately, to climate change.  

However, considerable work is required to produce operational forecasts 
because yield levels do not exclusively determine the extent to which food is supplied to 
commodity markets and prices. Sociopolitical factors (i.e., the Russian wheat embargo 
of 2010–201124) often critically influence the world food supply and are often motivated 
by crop failures induced by climatic extremes. Decision makers struggle to respond 
within a timely manner if predictions remain uncertain for even a few months of lead25.  

 The predictions derived from the modeling presented here or from more plant 

physiological process-based crop models of this type16, 26, 27 can be used to establish a 

global crop failure prediction system. Although process-based models may be promising 

at specific sites16, there is a lack of global historical crop datasets, which would be 

required for more sophisticated representations of hybrid seeds, planting dates, and 

nitrogen, water, and chemical inputs. Furthermore, the methods of climate impact 

assessment have tended to use yield variability as a measure of uncertainty, instead of 

assessing changes in crop yield variability28. We demonstrate the potential for skilful 

predictions of crop failures, which in turn suggest that the limitation of qualitative 

methods can be addressed. In demonstrating the potential value of quantitative 

prediction methods, this study also supports evidence29 for the potential use of such 

methods in regions where qualitative methods currently dominate, for example, 

sub-Saharan Africa13. 

 

METHODOLOGICAL SUMMARY 

Climate and crop data for the 1982–2006 interval were collected by using a 

grid with a resolution of 1.125° in both latitude and longitude. The temperature and soil 

moisture data were downloaded from the JRA-25 monthly re-analyzed dataset30. For 

each of the four crops, all re-analyzed data were averaged over the reproductive growth 

periods, as determined from the global crop calendar dataset21. Thus, the climatic 

features specific to individual locations, over the months of crop growth, were 

considered.  

Nine ensemble seasonal climatic hindcasts (three physically perturbed models, 

for which three sets each of initial conditions were used) were generated by using the 

SINTEX-F ocean/atmosphere-coupled general circulation model; the prediction lead 



times ranged from 1 to 12 months20. The lead data for 1 to 3 and 3 to 5 months were 

averaged to yield the within-season and pre-season hindcasts, respectively. Biases in the 

global climate model predictions for temperature and soil moisture were removed 

before analysis. 

Crop yields were obtained from the global historical yield dataset22, which 

aligns the FAO yield data and grid yield proxy information derived from 

satellite-derived net primary productivity.  

The crop and climate data were combined as follows: (1) a first-difference time 

series was computed by using the yield levels and a re-analysis of the temperature and 

soil moisture data. (2) Each first-difference yield was divided by the 3-year average of 

the yield to derive the percentage first-difference values. (3) A multiple linear regression 

model was constructed for each cropping system. (4) Weighted-average yields were 

calculated by using the production levels by cropping system as weighting factors. (5) 

Regression coefficients were determined on a year-by-year basis by using the 

leave-one-out cross-validation method. Finally, (6) all bias-corrected climatic forecasts 

were subjected to regression modeling to derive the hindcast data (the percentage 

changes in yield from that of the previous year). 
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Figure 1. Timing of cropping predictions. The cropping calendar illustrates the times 

at which the pre- and within-season predictions of crop failures and yield levels were 

conducted and the lead times of seasonal climatic forecasts on a monthly basis.



 
Figure 2. The upper limits of reliability when moderate-to-marked yield losses of 

maize, soybean, rice, and wheat were hindcasted via re-analysis data. White—the 

yield losses were less reliably estimated (the coefficients of determination, R2, between 

the reported and hindcast yields over the 1983–2006 period <0.454, n=10, P>0.05). 

Orange—the yield losses could be reliably estimated (R2
≥0.454, n=10, P<0.05). Light 

gray—no hindcast were produced because the crop calendar is lacking. Dark 

gray—non-cropland. The pie diagrams indicate the percentages of production from the 

areas. All data in the pie diagrams are normalized against the world production in 2000. 



 
Figure 3. The reliability of the within-season hindcasts of the moderate-to-marked 

(5% more) yield losses for maize, soybean, rice, and wheat. The legend for Figure 2 

is also applicable to this figure, although the within-season (and not the pre-season) 

hindcasts were derived. R2<0.301 and R2
≥0.301 (both, n=10, P<0.05) were used for the 

areas in white and orange, respectively.



 

Figure 4. The dominant climatic factors affecting the year-to-year variations in the 

yields of maize, soybean, rice, and wheat. The pie diagrams indicate the percentages 

of production that are sensitive to temperature (red) and soil moisture content (blue) as 

well as those for which no hindcasts were available (gray) in 2000. The dark gray area 

indicates non-cropland.



 
Figure 5. The capture reliability of the year-to-year relative wheat yield variations 

for the reliable areas in four major wheat-exporting countries (the USA, France, 

Canada, and Australia). The reported yields (black), pre-season hindcasts (green), and 

within-season hindcasts (red) are presented. The “r” values are correlation coefficients, 

which were calculated by comparing the reported values with that obtained from the 

two hindcasts. All correlations were significant at the 5% level. The numbers in 

parentheses are the percentages of areas for which yields were reliably predictable 

among all of the harvested areas within each country. 
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Prediction of seasonal climate-induced variations in global food production 

 

SUPPLEMENTARY METHODS 

 

Climate data 

 

The monthly historical temperature and soil moisture data from regions gridded at a 

scale of 1.125° in both latitude and longitude were obtained from the Japanese 

re-analysis (called JRA-25) dataset30. The re-analyzed soil moisture was estimated from 

a multi-layer thermo-dynamical land surface model that considers the precipitation, 

evaporation, vegetation respiration, soil water holding capacity, run-off, and other 

processes. On a monthly mean basis, the temporal variation patterns of the data 

accurately matched in situ soil moisture observations collected in Illinois, USA30. For 

each cropping system of a crop of interest, the data from each cell were temporally 

averaged over the reproductive growth period. We considered the reproductive growth 

period to be a 3-month interval, commencing 3 months before harvesting and ending at 

harvesting; this interval completely covered each key growth period (Fig. 1). For each 

cropping system, the month of harvest in each grid cell was determined by using the 

global crop calendar dataset21. A dataset containing information on the global harvested 

areas31 was used to identify the grid cells in which a crop of interest was grown. 

 Nine-member monthly temperature and soil moisture forecasts were generated 

using the SINTEX-F ocean/atmosphere-coupled general circulation model (GCM)20. 

The ensemble featured three initial conditions for each of the three physically perturbed 

models, thereby accounting for the uncertainties in both the model physics and initial 

conditions. The initial conditions were generated by assimilating only the observed sea 

surface temperature data into the coupled model and by considering three different 

restoring times for temperature in a 50-m surface mixed layer20, 32. This approach is 

effective for generating operational seasonal climatic forecasts. Ensemble mean values 

were calculated for each forecast at various lead times, ranging from one to 12 months. 

Next, the forecast data averaged over the reproductive growth period of each cropping 

system of a crop of interest were computed in a manner similar to that employed in 

re-analysis. Pre- and within-season hindcasts were constructed based on the lead data 
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for 3 to 5 and 1 to 3 months; these hindcasts roughly correspond to the so-called 

“seasonal climate outlook” and “seasonal weather forecasts”13, respectively. The GCM 

biases in temperature and soil moisture relative to the re-analysis (but not the prediction 

errors in these climatic variables) were removed by using a cumulative distribution 

function-based correction method33. Such bias correction rendered the 25-year (1982–

2006) mean forecast values the same as those obtained upon re-analysis, although 

temporal variations in the forecast patterns were not affected by such corrections.  

 

Crop yield data 

 

Yearly crop yield data from areas gridded at a scale of 1.125° in both latitude and 

longitude were obtained from a newly developed global gridded dataset that contains 

information on historical crop yields22. The dataset aligns the FAO country yield 

statistics with grid yield estimates based on the net primary production values derived 

from the Advanced Very High Resolution Radiometer of the National Ocean and 

Atmosphere Administration (NOAA/AVHRR). The grid yield estimates were validated 

by comparison with independent subnational yield data from the major producing 

countries22 and a global dataset of crop yields in 200034. However, the yield data are not 

always reliable over the analyzed period, and the results for some countries (in 

particular, Africa and South Asia) should be interpreted with caution because the 

reported yields from countries in these regions are often estimated with reference solely 

to the local weather conditions. This dataset contained information on the yields of 

multiple cropping systems for maize, rice, and wheat and that of a single cropping 

system for soybean. However, only aggregated data on the yields from various cropping 

systems were available when the present analysis was conducted.  

 

Statistical crop models 

 

Yearly time series of cropping and climatic data were combined as follows to derive 

multiple linear regression models. For a crop of interest, a first-difference time series 

was initially computed to provide the yield:  
( )

100
Y

YY
∆Y

1, gtt

1, gtt, g

t, g ×
−

=
−−

−

:3 , (Eq. S1)
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where the suffixes t and g indicate the year and grid cell, respectively. t, g∆Y  is the 

first-difference yield percentage in year t (%); Yt, g and Yt-1, g indicate the yields in year t 

and in the previous year (t-1) (t ha-1); and 1, g:ttY −−3  is the average yield for the interval 

from year t-3 to year t-1 (t ha-1). Calculation of the first-difference yields emphasizes 

the change in yield due to short-term, primarily climate-related factors, although 

demand, prices, technological improvements, and other factors affect the year-to-year 

variations in both yields and production. The same average yield was used for each of 

the first 4 years of analysis.  

Similarly, first-difference time series were computed using the mean 

re-analysis temperature ( t, g∆T ,°C) during the reproductive growth period and the soil 

water content for the first soil layer from the ground surface to a 10-cm depth (t, g∆S , 

mm):  

1, gtt, gt, g TT∆T −−= , (Eq. S2) 

 1, gtt, gt, g SS∆S −−= . (Eq. S3) 

We used the 10-cm soil moisture data after confirming that the use of moisture data 

from different soil depths yielded similar results. Although the reproductive growth 

period-mean soil moisture was negatively correlated with the mean temperature for the 

same period to some extent, it was still more strongly correlated with the mean 

precipitation for that period than the temperature in many regions (Fig. S12).  

Although the vegetative growth period is important in terms of crop growth, 

yields are more sensitive to climatic conditions during the reproductive growth period 

(particularly around the time of anthesis) than to those at any other growth period35, 36. 

Thus, statistical crop modeling frequently employs climatic variables averaged over the 

reproductive growth period, or over a specific phenological stage, as informative 

variables37.  

Next, a multiple linear regression model was computed for each cropping 

system of a crop of interest:  
εγ∆Sβ∆Tα∆Y g, ct, g, cg, ct, g, cg, ct, g, c ++⋅+⋅= , (Eq. S4) 

∑

∑

=

=

⋅
=

C

1c
g, c

C

1c
t, g, cg, c

t, g

w

∆Yw

∆Y
, (Eq. S5) 

where the suffixes t, g, and c denote year, grid cell, and cropping system of a crop of 

interest, respectively. t, g, c∆Y  is the percentage first-difference in yield when cropping 
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system c of a crop of interest is used (%); t, g, c∆T  and t, g, c∆S  are the first-difference 

values of the re-analysis mean temperature (°C) and the soil moisture value (mm) 

during the reproductive growth period; g, cα , g, cβ , and g, cγ  are regression 

coefficients; ε  is the error term; g, cw  is the production level of a crop of interest 

using cropping system c (tonnes); and C is the number of cropping systems employed to 

produce each crop of interest. Two cropping system types (major/second or 

winter/spring) were used to produce the models of maize, rice, and wheat, whereas a 

single cropping system was employed to produce the soybean model. The production 

levels yielded by the application of various cropping systems in different countries 

during the 1990s were obtained from the U.S. Department of Agriculture38.  

The regression coefficients were determined in a probabilistic manner by using 

the Markov Chain Monte Carlo (MCMC) method27. The prior distribution setup was 

non-informative in nature, which made it possible to use the MCMC approach to 

explore possible uncertainties in the values of the regression coefficients as widely as 

possible. The convergence of such values to posterior distributions was analyzed using 

the approach of Gelman and Rubin39. A single set of regression coefficients associated 

with the highest likelihood values was used to assess the crop yield hindcast reliability 

at two lead times, whereas the posterior probability distributions of such coefficients 

were used to measure the uncertainties associated with the likelihood values when the 

hindcasts obtained by using statistical cropping models were compared with the data 

generated by using random hindcasts (please see the section on “Random yield 

hindcasting” for details).  

We used the leave-one-out cross-validation method to evaluate the current crop 

yield prediction and its reliability. For each grid cell, we removed one of 24 samples 

(i.e., the first-difference yield time series over the 25 years evaluated) and estimated the 

parameter values under such conditions. Next, the statistical crop model was used to 

predict the value of the sample removed from the calibration data; a single set of 

parameter values affording the highest likelihood was used in such calculations. This 

exercise was repeated with the sequential individual removal of all 24 samples.  

The bias-corrected mean temperature and soil moisture forecasts during the 

reproductive growth period of each crop of interest grown by using different cropping 

systems, as calculated at two lead times, were incorporated into the regression models 
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calibrated using the re-analysis climatic data to predict the year-to-year variations in 

relative yield. 

 

Random yield hindcasting 

 

To measure the reliability of hindcasts of 5% more yield losses, we generated random 

cropping hindcasts and compared these predictions with the test values. For any given 

grid cell and crop type, we first pooled the percentage first-difference time series values 

of the reported yields ( t, g∆Y , t = 1983… 2006) and the randomly sampled t, g∆Y values 

for the 24-year period in which data were available; identical values were accepted. 

Second, we calculated the determination coefficients (R2) values between the reported 

and generated t, g∆Y  time-series values (only the reported 5% more yield losses and 

the sampled values in the corresponding years were considered in the analysis); the 

extent of reliable production was determined next (please see the “Definition of 

predictive reliability ”  section for details). Finally, such random sampling was iterated 

10,000-fold to obtain a probability density distribution (PDF) of the reliability of the 

production loss levels derived using random hindcasting.  

 We next calculated the uncertainty levels of crop hindcasting by comparing the 

reliable production loss levels obtained when random and seasonal climatic 

prediction-based crop hindcasting steps (the latter is termed “model hindcasting”) were 

performed. Each PDF of the reliable production loss values obtained by using model 

hindcasting was calculated as follows. First, for a given grid cell and cropping system of 

a crop of interest, we sampled the regression coefficients from the posterior 

distributions determined by using the MCMC method; then, we calculated the t, g∆Y  

time series over the study period. Only the single-ensemble mean temperature and soil 

moisture forecast were used as inputs because such forecasts are generally more 

accurate than any other single-ensemble forecast. Second, the R2 values were obtained 

by comparing the real t, g∆Y  time series with that obtained by model hindcasting (only 

the reported 5% more yield losses and hindcast values in the corresponding years were 

used); the extent of the reliable production loss level was then calculated. Finally, such 

sampling was iterated 10,000-fold. 

 To compare the random and model hindcasts for each crop, we obtained a 
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measure of the reliable production prediction, randomQ , from random hindcasting and a 

similar measure, modelQ ,, from model hindcasting, by using data from the PDFs. Next, 

modelQ  was compared with randomQ  to explore whether the null hypothesis, randomQ ≥

modelQ , was or was not rejected. Finally, we iterated such sampling 100,000-fold and 

calculated the proportion of instances (relative to the total number of iterations) in 

which the null hypothesis was rejected, yielding the p-values. The mean production loss 

levels that could be reliably predicted, and the associated 95% probability intervals, 

obtained by using the random and model hindcasts were calculated at two lead times 

with reference to the PDF values associated with the reliable predictions of production 

loss.  

 

Determination of the dominant climatic factors  

 

The dominant climatic factor (i.e., either the mean temperature or soil moisture content 

over the reproductive growth period) was determined by comparing the extent of 

(percentage) change in the year-to-year relative yield with the unit changes in 

temperature and soil moisture content via data re-analysis:  

g, c
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cg
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∂
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, (Eq. S7) 

where the suffixes g and c denote the grid cell and cropping system used for production 

of the crop of interest, respectively. g, ccg ∆T∆Y ∂∂  ,  and g, ccg ∆S∆Y ∂∂  ,  reflect the 

influence of the (percentage) changes in mean temperature and soil moisture content 

over the reproductive growth period, respectively, on the (percentage) changes in the 

year-to-year relative yield variation when cropping system c was used. g, cα  and g, cβ  

are the most likely values of the regression coefficients for g, cα  and g, cβ , respectively, 

derived using the MCMC method. g, c∆Y  is the long-term mean variation in the 

relative yield. g, ccg ∆T∆Y ∂∂  ,  
and g, ccg ∆S∆Y ∂∂  ,  reflect the influence of the 

(percentage) changes in mean temperature and soil moisture content, respectively, on 

the (percentage) changes in the yield variation of a crop of interest. g, cw  is the 

production level (tonnes) of a crop of interest grown by using cropping system c. We 
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confirmed that g, c∆Y  had a non-zero value for all grid cells.  

 The dominant climatic factor for a given grid cell (DCFg; a dimensionless 

parameter) was the factor affecting the yield variation to a greater extent than any other 

factor. The dominant climatic factor was obtained by comparing the absolute changes in 

the year-to-year relative yield variations with the unit changes in temperature and soil 

moisture content: 


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DCF  ,max . (Eq. S8) 

 

Definition of predictive reliability  

 

For each climatic variable (temperature and soil moisture content) and each lead time 

(pre- and within-season), the climatic hindcast reliability was measured by calculating 

the R2 values using the mean re-analysis data from the reproductive growth period and 

hindcast values. Therefore, the reliability values that we obtained reflect a 

correspondence between the yearly temporal variation patterns, as revealed by both the 

data re-analysis and hindcast. R2 values greater than 0.163 were deemed “reliable” 

because such values indicate statistically significant correspondences between 

re-analysis and hindcasts at the 5% level (measured with the one-tailed t-test) when the 

sample size (n) was 24 (i.e., using the yearly first-difference time series from the 

25-year interval). Use of a one-tailed test is reasonable in the present context; predictive 

reliability was associated with only positive correlative values. 

 The reliabilities of crop yield hindcasts for two lead times were also measured 

by calculating the R2 values upon comparison of the relative year-to-year variations in 

the reported and hindcast yields. R2 values greater than 0.163 indicate “reliable” yield 

hindcasts (n=24). To measure the yield hindcast reliability when using the re-analysis 

data, determination coefficients adjusted for the degrees of freedom, Adj-R2, were used 

instead of R2 values. When the sample size was 24 and there were two explanatory 

variables (temperature and soil moisture content), Adj-R2 values greater than 0.177 were 

statistically significant at the 5% level; thus, we deemed such values “reliable” when 

predicting yield levels using the re-analysis climatic data.  

 R2 values greater than 0.301 were used to define “reliable” for the reliability of 

hindcasts of 5% more yield losses (based on the typical sample size, n=10). The 
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corresponding Adj-R2 values were 0.454. The arrangements of the R2 and Adj-R2 values 

were performed to account for the impacts of the sample size and number of 

explanatory variables on the statistical significance.  

 

Extrapolation to production and exports 

 

The extent of all harvested areas for which predictions were “reliable”, and the levels of 

production (or production loss) from such grid cells (termed “reliable area” and 

“reliable production (loss),” respectively) were calculated as follows. First, data on the 

grid cells for which the R2 values were greater than 0.163 (for yield hindcasts using 

climatic hindcasts, but Adj-R2 values of 0.177 for yield hindcasts using the re-analyzed 

data) were extracted; second, the extent of the harvested areas located within such cells 

and the crop yields in 2000 were obtained using a global dataset of harvested areas and 

crop yields31; third, for such cells, the harvested areas were multiplied by the yield 

percentages, and the figures were added to obtain the total production values from the 

reliable areas; and fourth, the reliable production values were divided by the total world 

production values in 2000 (calculated by using the global dataset mentioned above31). 

The production percentages that were sensitive to the mean temperature and soil 

moisture levels over the reproductive growth period were calculated in a similar manner. 

Additionally, the values for the hindcasts of 5% more yield losses were calculated using 

R2 and Adj-R2 values of 0.301 and 0.454, respectively.  

 The food export amounts from the areas in which the production (loss) levels 

could be reliably predicted were calculated for each of several countries by multiplying 

the percentages of the exports by the total production levels in the countries in 2008. 

The FAO database40 was used to calculate the grid export levels in the reliable areas in 

food-exporting countries. Although the harvested area and yield level data used in the 

analysis for the year 2000 may have differences if compared to those in the present, 

global historical harvested area data are lacking.  

 

A comparison of the predictive reliability between irrigated and rainfed croplands 

 

To survey the potential impacts of irrigation on the reliability of cropping prediction, the 



23 

 

global map of monthly irrigated and rainfed crop area in 200041 was used. Using the 

data, we calculated the percentage of area irrigated (and rainfed) that was located within 

a 1.125° grid cell for each crop of interest. The mean extent of the irrigated (and 

rainfed) area was calculated by averaging the monthly data over the entire growth 

period of a crop of interest, as obtained from the global crop calendar dataset21. The 

arranged cells in which the crop was grown were sorted in ascending order, and each 

top 10% of the irrigated and rainfed areas was categorized as an “irrigated area” or 

“rainfed area,” respectively. We only used the top 10% samples to avoid cells in which 

the irrigated and rainfed areas are mixed.  

We collected the R2 values calculated between the reported yield losses and 

within-season hindcasts over the corresponding cells for each of the four areas, 

including temperature-sensitive and rainfed (T-R), temperature-sensitive and irrigated 

(T-I), soil moisture-sensitive and rainfed (S-R), and soil moisture-sensitive and irrigated 

(S-I). Such data were derived from Figs. 3, 4. Then, a box plot was provided for each 

area to highlight the differences in the R2 values as a result of the dominant climatic 

factor and the agro-ecosystem (irrigated or rainfed).  
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Table S1. Summary of globally harvested areas and production levels of various crops in 2000; global export levels of 
the crops in 2008; percentages of cropped areas for which 5% more yield losses were reliably predictable; the 
production loss levels; the export loss levels; the percentages of cropped areas for which the yield levels were reliably 
predictable; the production levels; and the export levels, as indicated by the upper limits of the hindcast values 
(calculated via data re-analysis). Both pre- and within-season hindcasts were used in these calculations. ha: hectare. t: 
tonnes. 

Crop 

Global 
Reliably predictable by crop 

failure hindcasts 
Reliably predictable by yield 

hindcasts 

  
Harvested 

area  
Production Export 

  
Harvested 

area  

Production 
loss  

Export 
loss  

  
Harvested 

area 
Production Export 

(106 ha) (106 t)  (106 t) (%) (%) (%) (%) (%) (%) 

Re-analysis 
Maize 136 591 25 30 32 35 36 36 38 
Soybean 74 162 54 26 28 30 33 32 26 
Rice 150 572 24 33 40 46 38 45 59 
Wheat 209 563 39 30 31 41 48 47 49 
Pre-season hindcast 
Maize 

 

17 21 23 7 6 3 
Soybean 17 17 17 11 5 3 
Rice 17 19 26 8 7 11 
Wheat 18 19 16 12 11 24 
Within-season hindcast 
Maize 

 
18 21 22 9 8 7 

Soybean 
 

15 15 14 8 10 7 
Rice 

 
19 23 22 12 11 5 

Wheat   18 19 16 14 17 27 
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Fig. S1. Upper limits of reliability when the yield levels of maize, soybean, rice, and 

wheat were hindcasted via re-analysis data. White—yields were less reliably estimated 

(the coefficients of determination, R2, between the reported and hindcast yields over the 

1983–2006 <0.177, n=24, P>0.05). Orange—yields could be reliably estimated 

(R2
≥0.177, n=24, P<0.05). Light gray—no hindcast was possible because the crop 

calendar is lacking. Dark gray—non-cropland. Pie diagrams indicate the percentages of 

production sourced from the above areas. All data in the pie diagrams are normalized 

against the world production levels in 2000. 
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Fig. S2. Reliability of the within-season yield hindcasts for maize, soybean, rice, and 

wheat. Legend of Fig. S1 is applicable to this figure, except that the within-season (not 

the pre-season) hindcasts were derived. R2<0.163 and R2
≥0.163 (both, n=24, P<0.05) 

were used for the areas in white and orange, respectively. 
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Fig. S3. Reliability of the pre-season hindcasts of the moderate-to-marked yield losses 

for maize, soybean, rice, and wheat. White—yield losses were less reliably estimated 

(the coefficients of determination, R2, between the reported and hindcast yields over the 

1983–2006 <0.301, n=10, P>0.05). Orange—yield losses could be reliably estimated 

(R2
≥0.301, n=10, P<0.05). Light gray—no hindcast was obtained because the crop 

calendar is lacking. Dark gray—non-cropland. Pie diagrams indicate the percentages of 

production sourced from the above areas. All data in the pie diagrams are normalized 

against the world production levels in 2000.



29 

 

 
Fig. S4. Reliability of the pre-season yield hindcasts for maize, soybean, rice, and wheat. 

Legend of Fig. S2 is applicable to this figure, except that the pre-season (not the 

within-season) hindcasts were derived. R2<0.163 and R2
≥0.163 (both, n=24, P<0.05) 

were used for the areas in white and orange, respectively.
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Fig. S5. Probabilities that the levels of production loss were reliably predicted when the 

random hindcasts and pre- and within-season hindcasts were conducted. Empirical 

probability density functions (PDFs) of the crop production loss for the areas in which 

such production loss was reliably predictable by the pre-season hindcasts (blue), 

within-season hindcasts (red), and random hindcasts (black) are shown. Each PDF was 

calculated by using a single ensemble of the mean temperature and soil moisture 

hindcasts and the perturbed crop model parameter values (within the posterior 

distributions). Colored shading and vertical lines indicate, respectively, the 95% 

confidence intervals and the means of each hindcast probability. Numbers in each panel 

are the mean values of reliable production loss estimates with the corresponding 

p-values in parentheses.
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Fig. S6. Determination coefficients (R2) obtained when the re-analyzed data and the 

within-season hindcast year-to-year relative temperature and soil moisture variations, 

obtained over the 1983–2006 period, were compared. Data for maize, soybean, rice, and 

wheat are shown. White—climatic hindcast was less reliable (R2<0.163, n=24, P>0.05). 

Orange—climatic hindcast was reliable (R2
≥0.163, P<0.05). Light gray—no hindcast 

was achieved because the crop calendar is lacking. Dark gray—non-cropland. 
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Fig. S7. Determination coefficients (R2) obtained when the re-analyzed data and the 

pre-season hindcast year-to-year relative temperature and soil moisture variations, 

obtained over the 1983–2006 period, were compared. Data for maize, soybean, rice, and 

wheat are shown. White–the climatic hindcast was less reliable (R2<0.163, n=24, 

P>0.05). Orange—the climatic hindcast was reliable (R2
≥0.163, n=24, P<0.05). Light 

gray—no hindcast was achieved because the crop calendar is lacking. Dark 

gray—non-cropland. 
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Fig. S8. Box plots of the determination coefficient (R2) values calculated between the 

reported and within-season hindcasts of the moderate-to-marked (5% more) yield losses 

for the four areas: T-R, the temperature-sensitive and rainfed cropland (orange, dashed); 

T-I, the temperature-sensitive and irrigated cropland (orange solid); S-R, the soil 

moisture-sensitive and rainfed cropland (blue, dashed); and S-I, the soil 

moisture-sensitive and irrigated cropland (blue, solid). Horizontal line—median. Lower 

and upper hinges of a box—the 25% and 50% tiles, respectively. Vertical bar—the 90% 

interval. Numbers located below each box plot indicate the number of grid cells used in 

the analysis. 
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Fig. S9. Geographical distributions, in 2000, of the areas harvested for maize, soybean, 

rice, and wheat. Coloring indicates the percentages of harvested areas located within a 

grid cell measuring 1.125° in arc (of both latitude and longitude).  
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Fig. S10. Global shares of rice and wheat exports, in 2008, by country of production.
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Fig. S11. Capture reliability of the year-to-year relative rice yield variations for 

reliable areas in four major rice-exporting countries (the USA, Thailand, Uruguay, 

and China). The reported yields (black), pre-season hindcasts (green), and 

within-season hindcasts (red) are presented. The “r” values are the correlation 

coefficients calculated by comparing the reported values with the values from each of 

two hindcasts. All correlations were significant at the 5% level. Numbers in parentheses 

are the percentages of areas for which the yields were reliably predictable among all 

harvested areas within each country. 



37 

 

 
Fig. S12. Correlation coefficients (R) obtained when the reproductive growth 

period-mean re-analyzed soil moisture, temperature, and precipitation data, obtained 

over the 1983–2006 period, were compared. Data for maize, soybean, rice, and wheat 

are shown. Light gray—no hindcast was achieved because the crop calendar is lacking. 

Dark gray—non-cropland. 


