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Consumers, including the poor in many countries, & increasingly dependent on
food imports’ and are therefore exposed to variations in yieldsproduction, and
export prices in the major food-producing regions © the world. National
governments and commercial entities are thereforegying increased attention to
the cropping forecasts of major food-exporting coutries as well as to their own
domestic food production. Given the increased voldity of food markets and the
rising incidence of climatic extremes affecting foo production, food price spikes
may increase in prevalence in future yeafs’. Here we present a global
assessment of the reliability of crop failure hindasts for major crops at two lead
times derived by linking ensemble seasonal climatiforecasts with statistical crop
models. We found that moderate-to-marked yield lossover a substantial
percentage (26—33%) of the harvested area of thesmps is reliably predictable if
climatic forecasts are near perfect. However, onlyice and wheat production are



reliably predictable at three months before the havest using within-season
hindcasts. The reliabilities of estimates varied dastantially by crop—rice and

wheat yields were the most predictable, followed byoybean and maize. The
reasons for variation in the reliability of the estmates included the differences in
crop sensitivity to the climate and the technologysed by the crop-producing
regions. Our findings reveal that the use of seasahclimatic forecasts to predict
crop failures will be useful for monitoring global food production and will

encourage the adaptation of food systems to climatextremes.

Although global crop monitoring and yield predictioodels (e.g., the Global
Information and Early Warning System of the FA&nhd the Famine Early Warning
Systems Netwof}l have been developed, few studies have evalubtdetiability of
seasonal climatic forecast-based cropping predistan a global scale to date. However,
global commodity markets are essential to maimagnnational food balances and
affordable access for consumers, including the pBdrarge increases in food prices
since 2008, occurring as a result of the widespradght in crop-export regions in
2008 and 2012, coupled with a transforming foodesyg(i.e., the increasing production
of biofuels) increase the importance of being dblanticipate large changes in food
productioi™.. These changes affect both the rural and urban who are reliant on
imports from the global commodity market to endinag a sufficient amount of food is
available to meet demand.

We conducted a global overview of the reliabilifycoop failure forecasts for
maize, rice, wheat, and soybean, which are thecipah cereal and legume crops
worldwide, providing nearly 60% of all calories duxed on croplands The key
question posed was “How reliable is the forecasthgrop failure at lead times that
allow such information to be of value to governnseand commercial concerns?”
Previous work on this topic focused on predicting@me events with either a smaller
geographical focds or by using methods that limited their usefulniessonnection to
broader climate modeling effotfs

We assessed the reliability of “hindcasts” (i.etraspective forecasts for the
past) of crop yield loss relative to the previoesuyfor two lead times. Pre-season yield
predictions employ climatic forecasts and have lgates of approximately 3 to 5
months for providing information regarding variai#oin yields for the coming cropping
season (Fig. 1). Within-season yield predictiors elsnatic forecasts with lead times of
1 to 3 months. Pre-season predictions can be afeval national governments and
commercial concerns, complemented by subsequenategpdfrom within-season
predictions. The latter incorporate informationtbe most recent climatic data for the
upcoming period of reproductive growthIn addition to such predictions, hindcasts
using the re-analyzed historical climatic data.(i@servations) were performed to
demonstrate the upper limit of the reliability ebp forecasting.

Hindcasts using the re-analyzed climatic data toe 1983-2006 interval
indicated that the upper limits of prediction of deocate-to-marked (5% more) yield
losses were reliably captureB?¢0.301 when reported and hindcast yield losses were
compared; P<0.05) by modeling from 26-33% of the total cropeas harvested
worldwide in 2000 (Fig. 2; Table S1). These areasoanted for 28-40% of the world



crop production in that year. The reliability ofetlestimates of yield levels (including
values that were approximately normal or beyondnady when using the re-analyzed
climatic data was comparable to that of the esesaf crop failures mentioned above
(Figs. 2, S1). If such reliability is to be realizéor not only crop failures but also yield
levels, both temperature and soil moisture forecamstst be near perfect.

When within-season hindcasts were evaluated, gel@ability was evident in a
number of areas throughout the world, includinganajop-producing regions, such as
Southeast Asia for rice and Australia for wheag(R). With climatic hindcasts, the
capability of modeling was more distinct when idigimg the occurrences of crop
failures than when predicting all of the year-t@yeariations in yield levels throughout
the years (Figs. 3, S2). Note, however, that regocrop yields are not always reliable
over the time series used in this analysis, anddhkalts for some countries should be
interpreted with caution.

Comparatively higher reliability of pre-season tuasts was found in areas
with similar within-season hindcasts (e.g., Sousheasia for rice; Figs. S3, S4),
although such reliability gradually decreased witbreasing lead time (Table S1), as
has been previously reportéd However, the ability of modeling to capture crop
failures (17-21% of total production; Fig. S3; Tal81) was still higher in comparison
to that of predicting yield levels (5-11% of topabduction; Figs. S4; Table S1).

Of the total crop area harvested worldwide, 15-%ounted for 15% to 23%
of world production appeared to be reliable whee thithin-season crop failure
hindcasts were evaluated (Fig. 3; Table S1). Tésslt indicates that the crop failure
hindcasts for all crops attained more than 50%bheirtpredictive potential whereas
yield hindcasts achieved considerably less than 86%eir potential. For both crop
failures and yield levels, the hindcast valuesriwe and wheat, the production of which
appears to be more sensitive to temperature thaailtonoisture content (Fig. 4), were
better at both lead times than the values obtaineh the random hindcasts (the
comparisons were significant at the 1% level; B§). By contrast, the hindcast values
for maize and soybean conducted at both lead t{thesproduction of which is more
sensitive to soil moisture content than to tempeeatFig. 4) were not significantly
better than the random hindcast values (Fig. S5).

The observed spread in hindcast yield reliabilityoas different crop types
reflects the finding that temperature hindcastsfarenore reliable than predictions of
soil moisture content at both lead times (Figs. SB). Higher hindcast temperature
reliability plays a certain role with respect toirgag the reliability of within-season
cropping hindcasts in irrigated cropland, which @@vapproximately 20% of cultivated
land and accounts for over 40% of world productipalthough more land is rainfed
area (Fig. S8). This tendency is particularly tineirrigated areas where yields are
sensitive to temperature, likely because tempezatua major driver of yield variations
if a crop is irrigated sufficiently, whereas thellsmoisture content is still important
under insufficient irrigation conditions, as suggeisby a previous studfy

Additionally, the hindcast climatic reliability wdsgher when data from low
latitudes were evaluated rather than those fromntitketo-high latitudes (Figs. S6, S7);
this conclusion is similar to that obtained in Earstudies’. Of the top four countries in
terms of maize and soybean production (the USAziBr@hina, and Argentina), all but
Brazil are located at mid-latitudes, whereas recavidely produced (particularly in the
tropics) and wheat is grown more extensively wortbwthan any other crop (Fig. S9;



Table S1). For wheat in particular, the timing lué growing season is important: a large
proportion of wheat is grown in winter. Winter chite forecasts in the northern
hemisphere are typically more accurate than sunfionecasts because the extratropical
winter atmosphere is strongly influenced by evemtgopical regions and because the
effects of tropical climatic variations on wintetingatic patterns in the northern
hemisphere are stronger than on that of the sufin®ecause of differences in the
characteristics of production systems, the religbdf the estimates of rice and wheat
yield losses was highest, distantly followed bysiaf soybean and maize (Fig. S5;
Table S1). For the estimates of yield levels, whediction was most reliable,
followed by the estimates of rice, soybean, andzen@iable S1).

The relatively high reliability of hindcasts toptare the crop failures of rice
and wheat and to predict the year-to-year variationwheat yield levels in particular
encouraged us to extract further information. Theaa for which within-season
hindcasts of yield levels are available includerfai the major wheat-exporting
countries, namely, the USA, France, Canada, andrdlizss Together, these regions
produced 53% of the world wheat export in 2008 (F&10). In these areas,
within-season hindcasts were reliable for 9% to 3&P%he harvested area (Fig. 5),
suggesting that up to 11% of all wheat exports fthese four countries are predictable
(27% of world wheat exports were predictable whHendata from all wheat-exporting
countries were considered; Table S1). When theseason yield hindcasts were
evaluated, the area for which the predictions weitmble was lower (1-32% of all
harvested areas in the exporting countries merdicai®ve; Fig. 5); however, the
reliability level was similar to that afforded blyet analysis of within-season hindcasts
from the USA and Australia.

In contrast, the levels of rice exports that welebly predicted were far lower
than those of wheat exports when the yield hindcagére evaluated but were
comparable when the crop failure hindcasts weresassl (Table S1). Notably, a
considerable extent of the predictable area (52-M%he national harvested area)
found in the third-major rice exporter, Uruguaynttduted to results in such values for
predicting the rice yield losses (Fig. S11). Theosel-major rice exporter, Thailand,
exhibited even less predictable area (3% of theomait harvested area); although
Thailand is located in the tropics, this resultikely due to the lack of crop calendar
data for the triple cropping systems under opemaiibthat regiofi > and the higher
sensitivity of yields to soil moisture conditiorfad. 4).

We found that the principal features of climatdtioed crop failures in a
substantial percentage of the global crop-growegans were reliably predictable for
rice and wheat but were less predictable for marm soybean. The particular features
of global production systems allow reliable estiesabf crop failure, including a notable
association between crop yields and ambient terhperaan extensive growth area
worldwide (or within the tropics), significant prection from winter cropping, and
accurate estimates of winter temperatures. Notathlg, areas within which the
occurrences of crop failures (or yield levels) aediably predictable include the
countries that are major exporters of wheat arel fitis finding suggests that modeling
can potentially yield information on the seasonlnate-induced variability in the
production levels of rice and wheat in major expodountries and that such estimates
can be made available 3 to 5 months before har@sth information would be of
value to both national governments and commeraities for maintaining an adequate



national food balance and ensuring adequate respaasnajor food crises. These data,
when combined with satellite-derived information i@nfall levels and the extent of
vegetative productivifyf, can support a range of decisions, including dheptation of
food systems for the poor to climatic extremes aittémnately, to climate change.
However, considerable work is required to produgeerational forecasts
because yield levels do not exclusively determivgeextent to which food is supplied to
commodity markets and prices. Sociopolitical fagtire., the Russian wheat embargo
of 2010-2013% often critically influence the world food supmyd are often motivated
by crop failures induced by climatic extremes. BiExi makers struggle to respond
within a timely manner if predictions remain unegmtfor even a few months of |€3d

The predictions derived from the modeling presagitere or from more plant
physiological process-based crop models of thig'®/f %’can be used to establish a
global crop failure prediction system. Although gees-based models may be promising
at specific site’$, there is a lack of global historical crop datasethich would be
required for more sophisticated representationdydirid seeds, planting dates, and
nitrogen, water, and chemical inputs. Furthermahe methods of climate impact
assessment have tended to use yield variabiliy meeasure of uncertainty, instead of
assessing changes in crop vield variafflitye demonstrate the potential for skilful
predictions of crop failures, which in turn suggésat the limitation of qualitative
methods can be addressed. In demonstrating thent@btesalue of quantitative
prediction methods, this study also supports ewiel@rfor the potential use of such
methods in regions where qualitative methods ctigredominate, for example,
sub-Saharan Africd.

METHODOLOGICAL SUMMARY

Climate and crop data for the 1982-2006 intervalensllected by using a
grid with a resolution of 1.125n both latitude and longitude. The temperature swil
moisture data were downloaded from the JRA-25 mgnranalyzed datasét For
each of the four crops, all re-analyzed data weezaged over the reproductive growth
periods, as determined from the global crop calemtiaaset. Thus, the climatic
features specific to individual locations, over theonths of crop growth, were
considered.

Nine ensemble seasonal climatic hindcasts (thrgsigddly perturbed models,
for which three sets each of initial conditions &veised) were generated by using the
SINTEX-F ocean/atmosphere-coupled general ciraratnodel; the prediction lead



times ranged from 1 to 12 montfsThe lead data for 1 to 3 and 3 to 5 months were
averaged to yield the within-season and pre-selasmitasts, respectively. Biases in the
global climate model predictions for temperaturel aoil moisture were removed
before analysis.

Crop yields were obtained from the global histdrigeeld datasef, which
aligns the FAO vyield data and grid vyield proxy imf@ation derived from
satellite-derived net primary productivity.

The crop and climate data were combined as foll¢®sa first-difference time
series was computed by using the yield levels aretanalysis of the temperature and
soil moisture data. (2) Each first-difference yiglds divided by the 3-year average of
the yield to derive the percentage first-differemakies. (3) A multiple linear regression
model was constructed for each cropping systemWdighted-average yields were
calculated by using the production levels by cragpystem as weighting factors. (5)
Regression coefficients were determined on a ygarelr basis by using the
leave-one-out cross-validation method. Finally, dB)bias-corrected climatic forecasts
were subjected to regression modeling to derive Himelcast data (the percentage

changes in yield from that of the previous year).
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Seasonal climatic forecasts
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Figure 1. Timing of cropping predictions.The cropping calendar illustrates the times
at which the pre- and within-season predictionsrop failures and yield levels were
conducted and the lead times of seasonal climatecfsts on a monthly basis.



Soybean

Figure 2. The upper limits of reliability when modeate-to-marked yield losses of
maize, soybean, rice, and wheat were hindcasted we-analysis data.White—the
yield losses were less reliably estimated (thefimefits ofdeterminationR?, between
the reported and hindcast yields over the 1983-23i¥)td <0.454n=10, P>0.05).
Orange—the vield losses could be reliably estim#Rg0.454,n=10, P<0.05). Light
gray—no hindcast were produced because the cropnaal is lacking. Dark
gray—non-cropland. The pie diagrams indicate thegqrgages of production from the
areas. All data in the pie diagrams are normalaggainst the world production in 2000.



Soybean

Figure 3. The reliability of the within-season hina¢asts of the moderate-to-marked
(5% more) yield losses for maize, soybean, rice, dnvheat. The legend for Figure 2
is also applicable to this figure, although thehivitseason (and not the pre-season)
hindcasts were deriveB<0.301 and?®>0.301 (bothn=10, P<0.05) were used for the
areas in white and orange, respectively.



Figure 4. The dominant climatic factors affecting he year-to-year variations in the

yields of maize, soybean, rice, and wheathe pie diagrams indicate the percentages
of production that are sensitive to temperaturd)(ead soil moisture content (blue) as
well as those for which no hindcasts were availéiptay) in 2000. The dark gray area
indicates non-cropland.
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Figure 5. The capture reliability of the year-to-yer relative wheat yield variations
for the reliable areas in four major wheat-exporting countries (the USA, France,
Canada, and Australia). The reported yields (black), pre-season hindqgséen), and
within-season hindcasts (red) are presented. Theatues are correlation coefficients,
which were calculated by comparing the reportedesbith that obtained from the
two hindcasts. All correlations were significanttad 5% level. The numbers in
parentheses are the percentages of areas for yiklds were reliably predictable
among all of the harvested areas within each cguntr



Prediction of seasonal climate-induced variationglobal food production
SUPPLEMENTARY METHODS
Climate data

The monthly historical temperature and soil mostdata from regions gridded at a
scale of 1.12% in both latitude and longitude were obtained frahe Japanese
re-analysis (called JRA-25) dataSefhe re-analyzed soil moisture was estimated from
a multi-layer thermo-dynamical land surface modwelttconsiders the precipitation,
evaporation, vegetation respiration, soil waterdimg capacity, run-off, and other
processes. On a monthly mean basis, the temporatioa patterns of the data
accurately matcheih situ soil moisture observations collected in 1llinoi$SA®. For
each cropping system of a crop of interest, tha dam each cell were temporally
averaged over the reproductive growth period. Wesiciered the reproductive growth
period to be a 3-month interval, commencing 3 meiéfore harvesting and ending at
harvesting; this interval completely covered eaeli growth period (Fig. 1). For each
cropping system, the month of harvest in each geitl was determined by using the
global crop calendar dataSetA dataset containing information on the globakated
aread' was used to identify the grid cells in which apcod interest was grown.
Nine-member monthly temperature and soil moistarecasts were generated
using the SINTEX-F ocean/atmosphere-coupled gergralilation model (GCMY.
The ensemble featured three initial conditionsefach of the three physically perturbed
models, thereby accounting for the uncertaintiebath the model physics and initial
conditions. The initial conditions were generatgdabsimilating only the observed sea
surface temperature data into the coupled model ndonsidering three different
restoring times for temperature in a 50-m surfadeeth layef® *2 This approach is
effective for generating operational seasonal dici@recasts. Ensemble mean values
were calculated for each forecast at various leadd, ranging from one to 12 months.
Next, the forecast data averaged over the repriv@ugtowth period of each cropping
system of a crop of interest were computed in anaagimilar to that employed in
re-analysis. Pre- and within-season hindcasts wenstructed based on the lead data

15



for 3 to 5 and 1 to 3 months; these hindcasts rgugbrrespond to the so-called
“seasonal climate outlook” and “seasonal weathezdasts*®, respectively. The GCM
biases in temperature and soil moisture relativibeéare-analysis (but not the prediction
errors in these climatic variables) were removedubing a cumulative distribution
function-based correction methiBdSuch bias correction rendered the 25-year (1982—
2006) mean forecast values the same as those ethtaipon re-analysis, although
temporal variations in the forecast patterns wertteaffected by such corrections.

Crop yield data

Yearly crop yield data from areas gridded at aesadl 1.125 in both latitude and
longitude were obtained from a newly developed glapridded dataset that contains
information on historical crop vyielés The dataset aligns the FAO country yield
statistics with grid yield estimates based on teeprimary production values derived
from the Advanced Very High Resolution Radiometértlte National Ocean and
Atmosphere Administration (NOAA/AVHRR). The gridejd estimates were validated
by comparison with independent subnational yieldad@&om the major producing
countrie$” and a global dataset of crop yields in Z30Blowever, the yield data are not
always reliable over the analyzed period, and thsults for some countries (in
particular, Africa and South Asia) should be intetpd with caution because the
reported yields from countries in these regionsoditen estimated with reference solely
to the local weather conditions. This dataset anathinformation on the yields of
multiple cropping systems for maize, rice, and whead that of a single cropping
system for soybean. However, only aggregated datheyields from various cropping
systems were available when the present analyssaraducted.

Statistical crop models

Yearly time series of cropping and climatic datareaveombined as follows to derive
multiple linear regression models. For a crop dériest, a first-difference time series
was initially computed to provide the yield:

AY. —MX:LOO

e~ ?t—S:t—l,g , (Eq Sl)
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where the suffixes andg indicate the year and grid cell, respectivelyy, , is the
first-difference yield percentage in ydao); Y; g andY..y, g indicate the yields in year
and in the previous yeat-1) (t ha'); and Y s+, is the average yield for the interval
from yeart-3 to yeart-1 (t ha'). Calculation of the first-difference yields emplizes
the change in yield due to short-term, primarilymelte-related factors, although
demand, prices, technological improvements, androidctors affect the year-to-year
variations in both yields and production. The samerage yield was used for each of
the first 4 years of analysis.
Similarly, first-difference time series were comguit using the mean

re-analysis temperaturedt, _ ,°C) during the reproductive growth period and th# so

tg?
water content for the first soil layer from the gnal surface to a 10-cm depthg, , ,

mm):

AT, =T, T4, (EQ. S2)

4S,, =S ,-Su,,- (EQ. S3)
We used the 10-cm soil moisture data after configrthat the use of moisture data
from different soil depths yielded similar resul&sithough the reproductive growth
period-mean soil moisture was negatively correlatétl the mean temperature for the
same period to some extent, it was still more sgfiyorcorrelated with the mean
precipitation for that period than the temperatarmany regions (Fig. S12).

Although the vegetative growth period is importamtterms of crop growth,
yields are more sensitive to climatic conditionsimiy the reproductive growth period
(particularly around the time of anthesis) tharitese at any other growth perfod®
Thus, statistical crop modeling frequently employmatic variables averaged over the
reproductive growth period, or over a specific phegical stage, as informative
variableg’.

Next, a multiple linear regression model was comgutor each cropping
system of a crop of interest:

A, g = ag [T o By U 7y e (Eq. S4)

v, Y, .
AY[,g - c=1 ¢ ’ ’ (Eq 85)

where the suffixes, g, andc denote year, grid cell, and cropping system ofagp ©f

interest, respectivelyAay, is the percentage first-difference in yield wheapping

9, C
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and 4S are the first-difference

t,9,.¢c

systemc of a crop of interest is used (%4T, , .
values of the re-analysis mean temperatif@) @nd the soil moisture value (mm)
during the reproductive growth perioda, ., p,., and y, . are regression
coefficients; ¢ is the error term;w, . is the production level of a crop of interest
using cropping system(tonnes); andC is the number of cropping systems employed to
produce each crop of interest. Two cropping systgmpes (major/second or
winter/spring) were used to produce the models aize) rice, and wheat, whereas a
single cropping system was employed to producestiypean model. The production
levels yielded by the application of various cramgpisystems in different countries
during the 1990s were obtained from the U.S. Depamt of Agriculturé®,

The regression coefficients were determined incdailistic manner by using
the Markov Chain Monte Carlo (MCMC) mettfédThe prior distribution setup was
non-informative in nature, which made it possibte use the MCMC approach to
explore possible uncertainties in the values ofrdgression coefficients as widely as
possible. The convergence of such values to postéistributions was analyzed using
the approach of Gelman and RuBim single set of regression coefficients assodiate
with the highest likelihood values was used to sssbe crop yield hindcast reliability
at two lead times, whereas the posterior probghdlistributions of such coefficients
were used to measure the uncertainties associatedhe likelihood values when the
hindcasts obtained by using statistical croppingle® were compared with the data
generated by using random hindcasts (please seesdti®on on Random vyield
hindcasting’ for details).

We used the leave-one-out cross-validation metbhayaluate the current crop
yield prediction and its reliability. For each griell, we removed one of 24 samples
(i.e., the first-difference yield time series otlee 25 years evaluated) and estimated the
parameter values under such conditions. Next, thgsscal crop model was used to
predict the value of the sample removed from thibreion data; a single set of
parameter values affording the highest likelihooaswised in such calculations. This
exercise was repeated with the sequential indiVidiraoval of all 24 samples.

The bias-corrected mean temperature and soil meigarecasts during the
reproductive growth period of each crop of intergstwn by using different cropping
systems, as calculated at two lead times, werepocated into the regression models
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calibrated using the re-analysis climatic data tedjct the year-to-year variations in
relative yield.

Random yield hindcasting

To measure the reliability of hindcasts of 5% myiedd losses, we generated random
cropping hindcasts and compared these predictiotistiae test values. For any given
grid cell and crop type, we first pooled the petage first-difference time series values

of the reported yieldsAY, ,, t=1983... 2006) and the randomly samplet, , values

tg
for the 24-year period in which data were availalidentical values were accepted.
Second, we calculated the determination coeffisigRt) values between the reported
and generated4Y, , time-series values (only the reported 5% moredyleses and
the sampled values in the corresponding years wensidered in the analysis); the
extent of reliable production was determined nexegse see theDefinition of
predictive reliability ” section for details). Finally, such random samphves iterated
10,000-fold to obtain a probability density distriton (PDF) of the reliability of the
production loss levels derived using random hintiicgs

We next calculated the uncertainty levels of dnoplcasting by comparing the
reliable production loss levels obtained when ramd@and seasonal climatic
prediction-based crop hindcasting steps (the l&tézrmed “model hindcasting”) were
performed. Each PDF of the reliable production leskies obtained by using model
hindcasting was calculated as follows. First, fgian grid cell and cropping system of
a crop of interest, we sampled the regression icomits from the posterior
distributions determined by using the MCMC methtiggn, we calculated thery,
time series over the study period. Only the sireglsemble mean temperature and soil
moisture forecast were used as inputs because fewmebasts are generally more
accurate than any other single-ensemble forecasbrl, theR® values were obtained
by comparing the realtY, ; time series with that obtained by model hindcas(only
the reported 5% more yield losses and hindcasesailu the corresponding years were
used); the extent of the reliable production lesgel was then calculated. Finally, such
sampling was iterated 10,000-fold.

To compare the random and model hindcasts for eeamp, we obtained a
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measure of the reliable production predictidd,,. ., ffom random hindcasting and a

similar measure,Q from model hindcasting, by using data from theFBDNext,

model !
)

Q.oser Was compared withQ to explore whether the null hypothesi®,,, >

random
Quode» Was or was not rejected. Finally, we iteratedhssampling 100,000-fold and
calculated the proportion of instances (relativethe total number of iterations) in
which the null hypothesis was rejected, yieldingvalues. The mean production loss
levels that could be reliably predicted, and theoamted 95% probability intervals,
obtained by using the random and model hindcaste wa&lculated at two lead times
with reference to the PDF values associated wighréiable predictions of production

loss.
Determination of the dominant climatic factors

The dominant climatic factor (i.e., either the meéamperature or soil moisture content
over the reproductive growth period) was determifgdcomparing the extent of
(percentage) change in the year-to-year relativedywith the unit changes in

temperature and soil moisture conteiatdata re-analysis:
Mo _y ATacand Moe_g 4Sc (Eq. S6)

04T, . P AV 04S,.  *°AYqc
c a4Y c a4Y
w 9. w, —2¢
04Y, _ Z; #04T, . 04Y, _ Zl: *ca4s, ., (EQ. S7)

C

04T, EC:WQ.C and a4s, Sw, .
c=1

=1
where the suffixeg andc denote the grid cell and cropping system usegfoduction
of the crop of interest, respectivelgaY, /04T, . and a4Y, /o4S, . reflect the
influence of the (percentage) changes in mean teatyge and soil moisture content
over the reproductive growth period, respectively,the (percentage) changes in the
year-to-year relative yield variation when croppsygtemc was used.a, . and Z?g,c

are the most likely values of the regression coieffits for «, . and g, respectively,

g.¢c’
derived using the MCMC methoddY . is the long-term mean variation in the
relative yield. a4Y, /04T, . and o4Y, /o4S, .  reflect the influence of the
(percentage) changes in mean temperature and s@ture content, respectively, on
the (percentage) changes in the yield variationaofrop of interestw, . is the

production level (tonnes) of a crop of interestvgnoby using cropping system We
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confirmed that A4Y , . had a non-zero value for all grid cells.

The dominant climatic factor for a given grid céDCFy a dimensionless
parameter) was the factor affecting the yield tanmato a greater extent than any other
factor. The dominant climatic factor was obtaingccbmparing the absolute changes in
the year-to-year relative yield variations with tineit changes in temperature and soll

DCFg = ma>{

Definition of predictive reliability

moisture content:
a4Y,
o4T,

a4Y,
a48,

]. (Eq. S8)

For each climatic variable (temperature and soiistnce content) and each lead time
(pre- and within-season), the climatic hindcasiakelity was measured by calculating
the R? values using the mean re-analysis data from thedective growth period and
hindcast values. Therefore, the reliability valudsat we obtained reflect a
correspondence between the yearly temporal vanigtadterns, as revealed by both the
data re-analysis and hindca8€ values greater than 0.163 were deemed “reliable”
because such values indicate statistically siggnific correspondences between
re-analysis and hindcasts at the 5% level (measwitbdthe one-tailed-test) when the
sample sizen) was 24 (i.e., using the yearly first-differendme series from the
25-year interval). Use of a one-tailed test is oeable in the present context; predictive
reliability was associated with only positive cdateve values.

The reliabilities of crop yield hindcasts for twead times were also measured
by calculating thé¥? values upon comparison of the relative year-ta-yeaiations in
the reported and hindcast yield®. values greater than 0.163 indicate “reliable” giel
hindcasts r{=24). To measure the yield hindcast reliability whesing the re-analysis
data, determination coefficients adjusted for thgrdes of freedonfdj-R, were used
instead ofR? values. When the sample size was 24 and there tmereexplanatory
variables (temperature and soil moisture contéxtt);R’ values greater than 0.177 were
statistically significant at the 5% level; thus, weemed such values “reliable” when
predicting yield levels using the re-analysis cliimadata.

R® values greater than 0.301 were used to defineliel’ for the reliability of
hindcasts of 5% more vyield losses (based on the&edysample sizen=10). The
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correspondingpdj-F values were 0.454. The arrangements ofRthandAdj-F values
were performed to account for the impacts of then@a size and number of
explanatory variables on the statistical signifan

Extrapolation to production and exports

The extent of all harvested areas for which prashstwere “reliable”, and the levels of
production (or production loss) from such grid se(termed “reliable area” and
“reliable production (loss),” respectively) werdatdated as follows. First, data on the
grid cells for which theR? values were greater than 0.163 (for yield hindcasting
climatic hindcasts, bubdj-R values of 0.177 for yield hindcasts using the malgzed
data) were extracted; second, the extent of theekted areas located within such cells
and the crop yields in 2000 were obtained usintpba) dataset of harvested areas and
crop vields; third, for such cells, the harvested areas weudtipfied by the yield
percentages, and the figures were added to obtaitotal production values from the
reliable areas; and fourth, the reliable productialues were divided by the total world
production values in 2000 (calculated by usinggtubal dataset mentioned abdYje
The production percentages that were sensitivehéo mean temperature and soll
moisture levels over the reproductive growth perae calculated in a similar manner.
Additionally, the values for the hindcasts of 5%rmgield losses were calculated using
R* andAdj-R values of 0.301 and 0.454, respectively.

The food export amounts from the areas in whiéhgroduction (loss) levels
could be reliably predicted were calculated forheatseveral countries by multiplying
the percentages of the exports by the total prasludevels in the countries in 2008.
The FAO databas®was used to calculate the grid export levels enridiable areas in
food-exporting countries. Although the harvesteglaand yield level data used in the
analysis for the year 2000 may have differencesoifipared to those in the present,
global historical harvested area data are lacking.

A comparison of the predictive reliability betweenirrigated and rainfed croplands

To survey the potential impacts of irrigation oe tieliability of cropping prediction, the
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global map of monthly irrigated and rainfed cropain 2006' was used. Using the
data, we calculated the percentage of area irdgated rainfed) that was located within
a 1.128 grid cell for each crop of interest. The mean ektef the irrigated (and
rainfed) area was calculated by averaging the nhprdhta over the entire growth
period of a crop of interest, as obtained from ghebal crop calendar dataSetThe
arranged cells in which the crop was grown weré¢esloin ascending order, and each
top 10% of the irrigated and rainfed areas wasgcaieed as an “irrigated area” or
“rainfed area,” respectively. We only used the 1®3% samples to avoid cells in which
the irrigated and rainfed areas are mixed.

We collected theR? values calculated between the reported yield fossel
within-season hindcasts over the correspondings cledt each of the four areas,
including temperature-sensitive and rainfed (T-R)Jnperature-sensitive and irrigated
(T-1), soil moisture-sensitive and rainfed (S-R)dasoil moisture-sensitive and irrigated
(S-1). Such data were derived from Figs. 3, 4. Treebox plot was provided for each
area to highlight the differences in tRé values as a result of the dominant climatic
factor and the agro-ecosystem (irrigated or rainfed
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Table S1 Summary of globally harvested areas and produdgieels of various crops in 2000; global exporielevof
the crops in 2008; percentages of cropped areasviicch 5% more yield losses were reliably preditalthe
production loss levels; the export loss levels;gbeentages of cropped areas for which the yealdl$ were reliably
predictable; the production levels; and the expevels, as indicated by the upper limits of thedoast values
(calculated via data re-analysis). Both pre- antthiniseason hindcasts were used in these calauati@a: hectare. t:
tonnes.

Reliably predictable by crop Reliably predictable by yield

Global failure hindcasts hindcasts
Crop Harvested Production Export Harvested Prolgl;gtlon El)é p;(;rt Harvested Production Export
area area area
(10° ha) (161 (101 (%) (%) (%) (%) (%) (%)

Re-analysis
Maize 136 591 25 30 32 35 36 36 38
Soybean 74 162 54 26 28 30 33 32 26
Rice 150 572 24 33 40 46 38 45 59
Wheat 209 563 39 30 31 41 48 47 49
Pre-season hindcast
Maize 17 21 23 7 6 3
Soybean 17 17 17 11 5 3
Rice 17 19 26 8 7 11
Wheat 18 19 16 12 11 24
Within-season hindcast
Maize 18 21 22 9 8 7
Soybean 15 15 14 8 10 7
Rice 19 23 22 12 11 5
Wheat 18 19 16 14 17 27
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Fig. S1.Upper limits of reliability when the yield leveld maize, soybean, rice, and
wheat were hindcasteda re-analysis data. White—yields were less reliadd{imated
(the coefficients of determinatioR?, between the reported and hindcast yields over the
1983-2006 <0.177n=24, P>0.05). Orange—yields could be reliably estimated
(R>>0.177, n=24, P<0.05). Light gray—no hindcast was possible becathse crop
calendar is lacking. Dark gray—non-cropland. Pegdams indicate the percentages of
production sourced from the above areas. All datthé pie diagrams are normalized
against the world production levels in 2000.
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Soybean

Fig. S2.Reliability of the within-season yield hindcasts foaize, soybean, rice, and
wheat. Legend of Fig. S1 is applicable to this fegiexcept that the within-season (not
the pre-season) hindcasts were deri@0.163 andR*>>0.163 (both,n=24, P<0.05)
were used for the areas in white and orange, réspic
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Soybean

Fig. S3.Reliability of the pre-season hindcasts of the maigdeto-marked yield losses
for maize, soybean, rice, and wheat. White—yieksé&s were less reliably estimated
(the coefficients of determinatioR?, between the reported and hindcast yields over the
1983-2006 <0.301p=10, P>0.05). Orange—yield losses could be reliably ested
(R>>0.301, n=10, P<0.05). Light gray—no hindcast was obtained becatse crop
calendar is lacking. Dark gray—non-cropland. Pegdams indicate the percentages of
production sourced from the above areas. All datthé pie diagrams are normalized
against the world production levels in 2000.
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Fig. S4.Reliability of the pre-season yield hindcasts fa@ize, soybean, rice, and wheat.
Legend of Fig. S2 is applicable to this figure, epicthat the pre-season (not the
within-season) hindcasts were derivéd<0.163 andR?>>0.163 (both,n=24, P<0.05)
were used for the areas in white and orange, réspic
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Soybean
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Fig. S5.Probabilities that the levels of production losrereliably predicted when the
random hindcasts and pre- and within-season hitglegse conducted. Empirical
probability density functions (PDFs) of the cropguction loss for the areas in which
such production loss was reliably predictable leyghe-season hindcasts (blue),
within-season hindcasts (red), and random hind¢bkisk) are shown. Each PDF was
calculated by using a single ensemble of the memperature and soil moisture
hindcasts and the perturbed crop model paramelees/éwithin the posterior
distributions). Colored shading and vertical limedicate, respectively, the 95%
confidence intervals and the means of each hingicabibility. Numbers in each panel
are the mean values of reliable production logsnases with the corresponding

p-values in parentheses.
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Temperature Soil moisture content

Fig. S6.Determination coefficientsRf) obtained when the re-analyzed data and the
within-season hindcast year-to-year relative temjpee and soil moisture variations,
obtained over the 1983-2006 period, were comp&ath for maize, soybean, rice, and
wheat are shown. White—climatic hindcast was leiabile 7<0.163,n=24,P>0.05).
Orange—climatic hindcast was reliabR$0.163,P<0.05). Light gray—no hindcast

was achieved because the crop calendar is ladRiaudx. gray—non-cropland.
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Temperature Soil moisture content

Fig. S7.Determination coefficientsxf) obtained when the re-analyzed data and the

pre-season hindcast year-to-year relative temperand soil moisture variations,
obtained over the 1983-2006 period, were comp&ath for maize, soybean, rice, and
wheat are shown. White—the climatic hindcast was teliable R<0.163,n=24,

P>0.05). Orange—the climatic hindcast was reliaBfe-(.163,n=24, P<0.05). Light
gray—no hindcast was achieved because the cropdaalés lacking. Dark
gray—non-cropland.
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Maize Soybean
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Fig. S8.Box plots of the determination coefficied®’] values calculated between the
reported and within-season hindcasts of the moelé¢oaimarked (5% more) yield losses
for the four areas: T-R, the temperature-sensdn rainfed cropland (orange, dashed);
T-1, the temperature-sensitive and irrigated croglgorange solid); S-R, the soill
moisture-sensitive and rainfed cropland (blue, ddgh and S-I, the soll
moisture-sensitive and irrigated cropland (bludidyoHorizontal line—median. Lower
and upper hinges of a box—the 25% and 50% tilepeaively. Vertical bar—the 90%
interval. Numbers located below each box plot iatkdhe number of grid cells used in

the analysis.
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Soybean
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Fig. S9.Geographical distributions, in 2000, of the areawvésted for maize, soybean,
rice, and wheat. Coloring indicates the percentafjésrvested areas located within a
grid cell measuring 1.125n arc (of both latitude and longitude).
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Fig. S10.Globalshares of rice and wheat exports, in 2008, by cgwitproduction.
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Fig. S11. Capture reliability of the year-to-year elative rice yield variations for
reliable areas in four major rice-exporting countries (the USA, Thailand, Uruguay,
and China). The reported yields (black), pre-season hindcageen), and
within-season hindcasts (red) are presented. Titievalues are the correlation
coefficients calculated by comparing the reportatlies with the values from each of
two hindcasts. All correlations were significantta¢ 5% level. Numbers in parentheses
are the percentages of areas for which the yielele weliably predictable among all
harvested areas within each country.
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Fig. S12. Correlation coefficients R) obtained when the reproductive growth
period-mean re-analyzed soil moisture, temperatanel, precipitation data, obtained
over the 1983-2006 period, were compared. Datanftize, soybean, rice, and wheat
are shown. Light gray—no hindcast was achieveduser#he crop calendar is lacking.
Dark gray—non-cropland.
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