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Abstract

A well-known method for modelling crack propagation in structural finite
element analysis is the use of interface elements employing the theory of
cohesive surfaces. However, the use of cohesive surfaces in explicit dynamics
is problematic since they have zero mass and must initially be very stiff in
order to avoid the introduction of artificial compliance. These properties
lead to an often drastic reduction in the critical time step of the analysis.
In this paper we use the bipenalty method to derive a mass matrix for a 2D
cohesive surface interface element that does not add net physical mass to
the overall system. This allows for cohesive surfaces with very high initial
stiffness that have no effect on the critical time step of the analysis. Not only
does this lead to a more robust and stable system, it also greatly simplifics
the choice of parameters since there is no need to adjust the time step, and
no need to limit the initial penalty stiffness according to time step stability
considerations.

Keywords: interface elements, cohesive surfaces, explicit dynamics, mass
penalty, bipenalty, critical time step

1. Introduction

In finite clement (FE) analysis the three most common techniques for the
modelling of fracture and crack propagation in a dynamic setting are the
element deletion method, the extended finite element method (XFEM), and
inter-element crack methods [23]. Each of these approaches build upon stan-
dard FE formulations to include the effects of damage and crack propagation
in some way. Element deletion is the simplest of the methods and the most
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widely used in commercial codes (e.g., ANSYS [15] and LS-DYNA [9]). It
requires only an alteration of the constitutive relation of a failing element
so that the stress in the element is reduced to zero for large strain, effec-
tively removing certain elements as an analysis is carried out. However, its
reliability with regards to the prediction of crack paths has been called into
question [23]. Furthermore, crack paths and the details of crack growth are
often highly mesh-dependent [10]. XFEM was first introduced by Belytschko
and co-workers in 1999 to tackle crack propagation problems in elastostatics
[3, 17]. It uses shape function enrichment in order to introduce discontinu-
ities within finite elements, which overcomes the high mesh dependence of
previously existing techniques. This makes it an attractive option for accu-
rately and efficiently predicting crack paths which are not known a priori [5],
but has yet to achieve widespread adoption in commercial software.

Inter-element crack methods are a well-established group of techniques
that explicitly model cracks on the boundaries of individual finite elements.
This can be achieved either by adaptive remeshing or by the addition of inter-
face elements at element boundaries possessing a specially designed traction-
displacement relationship, an approach also referred to as the cohesive zone
model. The theory of cohesive surfaces (also known as cohesive zones) was
first introduced in the 1960s [6, 2| but was not applied to dynamic crack prop-
agation until the 1990s, with publications from Xu and Needleman [26], Ca-
macho and Ortiz [4] and Repetto et al. [20] forming the basis for the present
work. Each of these formulations introduces interface elements, or ‘cohe-
sive surfaces’, into the FE continuum. A nonlinear traction-displacement
relationship is then chosen that approximately represents the fracture char-
acteristics of the material. Cracks are thus free to coalesce and propagate as
a natural outcome of the simulation.

Using cohesive zone modelling for explicit dynamic analysis, however,
leads to some unique challenges. Explicit solvers are much more efficient
that implicit schemes per time step, but because they are conditionally sta-
ble the step size must be kept below the so-called critical time step, Atit,
in order to ensure stability. For the central difference method the critical
time step is given by Atgis = 2/Wmax, Where wp.y is the maximum eigen-
frequency of the system. The critical time step therefore depends on mesh
size, as well as material properties. Elements with high stiffness or low mass
decrease Atir, leading to extra computational expense. Interface elements
in a cohesive surface formulation must initially have very high stiffness so
that they do not have any adverse effect on the simulation before damage



has occurred; elements that are not stiff enough lead to ‘artificial compliance’
in the continuum [8, 24]. In addition, they have no mass, since they have an
initial volume of zero. These properties can lead to a drastic reduction in
the critical time step that is required for stability.

Camacho and Ortiz [4] avoid this problem by introducing cohesive sur-
faces only at the onset of damage, but this requires alterations to the FE
discretisation (and thus to the computer memory requirements) as cracks
propagate. Ortiz and Pandolfi [18] also select a cohesive law without an
initial elastic region because this would place “stringent restrictions” on the
stable time step. FEspinosa and Zavattieri [8] use a large initial stiffness,
but it is acknowledged by the same authors that a large penalty will have
a significant impact on the critical time step, and as a result, the time step
calculation includes an additional limitation in that it must take into ac-
count the cohesive surfaces as well as continuum elements. Because of this,
a subcycling time integration routine is built into the formulation, adding
undesirable complexity to the solution algorithm. This is deemed necessary
because, as noted by Song et al., the original cohesive surface formulation
developed by Xu and Needleman “induces artificial compliance due to the
elasticity of the intrinsic cohesive law” [24].

Interface elements by their nature introduce large eigenvalues into the
FE system; since the critical time step is inversely proportional to the max-
imum eigenvalue this has a detrimental effect on the critical time step. The
standard analysis states that this is due to the high initial stiffness of the
cohesive surface elements. However, eigenvalues may be decreased not only
by decreasing the stiffness of an element, but also by adding mass. Re-
cently, an extension of the traditional penalty method—referred to here as
the bipenalty method—has been proposed that includes a mass penalty ma-
trix alongside standard stiffness penalties in the formulation [12, 1, 19, 13, 14].
In the present work, we use the bipenalty method to provide a mass matrix
for a simple cohesive surface formulation. No net physical mass is added
to the system; the sum of all elements in the interface mass matrix is zero.
The inclusion of the mass matrix, however, does allow for control over the
eigenvalues introduced by the interface elements, and therefore control over
the effect that the elements have on the critical time step. By providing
a mass matrix formulation alongside the traditional stiffness penalties, the
introduced eigenvalues can be controlled even when very a very large initial
stiffness is used, so that interface elements and, by extension, cohesive sur-
faces can be used in explicit dynamics without having to reduce the critical
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time step.

2. Element formulation

We assume that initially we have a structural system, discretised in space
by the FE method, of the form

Mii + Ku = f (1)

where M and K are the assembled mass and stiffness matrix for the con-
tinuum elements, u is the displacement vector, f the external force vector,
and dot notation is used to indicate time derivatives; structural damping is
neglected. A bipenalty formulation results in a system of equations of the
form

M+M")ii+ (K+ K )u=f (2)

where MP and K are mass and stiffness penalty matrices, which for a system
containing cohesive surfaces are assembled from the interface element mass
and stiffness matrices, which are to be derived in this section.

The critical time step for the system is given by

2
Atcrit - (3)

wmax

where wpyay is the maximum eigenfrequency of the system. FEigenvalues are
related to eigenfrequencies by \; = w? and the maximum eigenvalue is Apax.
The eigenvalues can be determined by solving the generalised eigenvalue
problem for the system. In the case where K = RMY (with R a scalar) it
has been shown that the maximum eigenvalue A, of the penalised system
(2) will not exceed the maximum eigenvalue AYF of the unpenalised system
(1) for the case where R < AUY [14, 11]. Thus, the critical time step At
is not decreased by the addition of the interface elements for R < AJF .

We will now present a standard interface element stiffness matrix formula-
tion, followed by the corresponding mass matrix formulation, and show that
under reasonable assumptions, K¥ = RM?Y (and therefore that the above

analysis holds for this bipenalty cohesive surface formulation).

2.1. Element stiffness matriz

The interface element formulation is based on the work of Schellekens
[21, 22], who derives a 4-noded 2D line interface element with an initial
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Figure 1: Line interface element in an initial (left) and deformed (right) configuration

volume of zero (see Figure 1). The stress is defined by normal and tangential
tractions across the interface and the stifiness of the element is controlled by
user-defined parameters that describe the constitutive behaviour.

We now consider this 4-noded line interface. Each node has two dis-
placement degrees of freedom (DOF), giving an element nodal displacement
vector

d = [dy,dy, dy, dy, dy, di, df, di]" (4)

where n and ¢ denote the directions normal and tangential to the interface, re-
spectively, and superscripts indicate the node numbers as shown in Figure 1.
The relationship between nodal displacements d and relative displacements
8 = [0, 0:]7 is given by

0 =Bd (5)
where
-nn 0 O
B= [ 0O 0 —n n] (6)

and n are the interpolation polynomials n = [Ny, N|. For arbitrarily orien-
tated elements, the matrix B should be transformed to the local tangential
co-ordinate system of the node set.
We now introduce a matrix Dy describing the constitutive traction-displacement
relation, so that
t =Dy (7)

where t = [t,, )7 is the traction vector for the element (units N/m?) and
D, is a constitutive matrix of the form

o[ ]

The values k, and k; (units N/m?) represent the ‘stiffness’ of the interface in
the normal and tangential directions, although a more accurate description



is stiffness per unit area. It is these values that function as the stiffness
penalty parameters for the interface. In the present work we assume that
both parameters are equal so that &, = k; = o and Dy = a,I. We postpone
until Section 2.3 a discussion of how these constitutive relations may change
over time (due to damage).

The stiffness matrix K, can now be obtained by minimisation of the total
potential energy. The internal work done in the element is

1
U——/aTtdS (9)
2 S

which can be rewritten using Equations (5) and (7) as
1
U= 5olT / B'D.B dS d (10)
s
while the external work W is given by

W =-d'f (11)

where f is a vector containing the external forces on the element. After
setting the variation of the total potential energy (U + W) to zero we find

K.d = f (12)

where the stiffness matrix is given by
K. = / B'D.B dS (13)
s

Considering the numerical integration of such elements, we note that the
linear shape functions can be written in one isoparametric co-ordinate £ as

Ni =509 (149)
Ny = 5(1+6) (15)

which means that we need integrate over only one co-ordinate. The stiffness
matrix can therefore be computed using 2-point Gaussian integration via

K=o [ o () (%) 6

where b is the width of the interface in the out-of-plane direction.
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2.2. Element mass matrix

Thus far, we have formulated a stiffness matrix for the interface, based on
the minimisation of total potential energy. In order to obtain a full bipenalty
formulation, and thus obtain a suitable mass matrix, we must also consider
the kinetic energy of the interface, which is related to velocity. Thus, analo-
gous to Equation (5) we have

6 =Bd (17)

Introducing a momentum vector p = [py, pt]T we can then write a momentum-

velocity relation, )

where p represents momentum (per unit area) in the normal and tangential
directions, and the matrix D, contains mass penalties in the normal and
tangential directions (with units kg/m?). It is assumed that this matrix is
a scalar multiple of the constitutive matrix (25), so that Dy = RD,,, since
this will simplify the implementation (and in any case, there is no appar-
ent reason for the two penalty types to possess different normal/tangential
contributions). The kinetic energy of the interface is then given by

1 .
T=- / §'pds (19)
2Js
which, after invoking (17) and (18), becomes
1. .
T=d’ / B’D, B dS d (20)
s
The equations of motion then follow from the minimisaton of energy

M.d + K.d = f (21)

where the mass matrix is given by

1
M, = / B'D,B dS = =K, (22)
g R
where o
- 5 23
- (23)

Since the mass matrix is therefore a scalar multiple of the stiffness matrix,
it is clear that the sum of all entries is zero, and that no net physical mass is
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added to the system by the interface element mass matrices. Furthermore,
the stability analysis given in Reference [14] for an arbitrary set of multipoint
constraints remains valid, which implies that any additional eigenvalues in-
troduced by the addition of the interfaces will tend to the penalty ratio R for
large penalty parameters. Therefore, to ensure time step stability, the ratio
R should be chosen such that

R (24)

- 4
= A
where At is the chosen time step for the analysis (i.e., a time step suitable for
analysis of the unpenalised system, without interfaces). The magnitude of
the entries in Dy and D,, can be selected by the analyst, and may be related
to the stress history in the element, as explored in Section 2.3.

It is important to note that this formulation results in a mon-diagonal
mass matriz. Since explicit methods are most efficient when a lumped, di-
agonal mass matrix can be used, this will inevitably have an effect on the
computational efficiency of the solution algorithm. However, the system
mass matrix remains diagonal except for those DOF which are penalised,
and therefore the effects on solution time are usually limited. For an alter-
native implementation of this methodology that avoids the inversion of (part
of) the mass matrix, see the recent work of Lombardo and Askes [16].

2.3. Constitutive relations and damage law

The constitutive law for the cohesive surfaces relates traction in the inter-
face to the displacement jump across the surface. As summarised by Xu and
Needleman, “the behaviour that needs to be captured is that, as the cohesive
surface separates, the magnitude of the traction at first increases, reaches a
maximum and then approaches zero with increasing seperation” [26, p. 1400].
However, this kind of cohesive law is problematic when used in explicit dy-
namics, since “the initial elastic slope ... may place stringent restrictions on
the stable time step for explicit integration” [18]. In other words, the initial
penalty stiffness in the interface causes a significant decrease in the critical
time step of the analysis. This effect may be mitigated by decreasing the
initial stiffness of the interfaces, but this leads to an increase in artificial
compliance (a general decrease in the stiffness of the continuum that leads
to unrealistic elastic deformation), especially when cohesive surfaces are em-
bedded throughout the finite element mesh [25, 24]. Since the inclusion of an
interface mass matrix means that such considerations are no longer relevant,

8



in the present formulation there is no such restriction on the initial stiffness
of the interfaces.

We begin by describing the traction-displacement relationship to be em-
ployed, first by rewriting the constitutive matrix for the cohesive surface
stiffness matrix as

Dy =1 (25)

where v, acts as the penalty parameter (interface stiffness), but is now de-
pendent on a set of damage parameters. It is initially set to s = as, but
may decrease over time as damage occurs and the interface cohesion begins
to lessen.

The value of 74 is determined by two scalar quantities, namely the effective
opening displacement d and the effective traction ¢. Inspired by the fracture
criteria given by Camacho and Ortiz [4], we have for the effective opening

displacement
V02 + 3262 if 0, >
5:{ e (26)

On if 0, <0

This value gives a measure of displacement across the interface. The parame-
ter 3 dictates to what degree tangential displacements are taken into account
when assessing damage in the interface. We assume that no damage occurs
in compression, and hence tangential displacements are not considered when
assessing relative displacement for 9,, < 0.

The effective traction depends on the current state of the interface and
where it lies with regards to the cohesive law shown in Figure 2. For un-
damaged interfaces, the traction-displacement relation is linear-elastic. By
defining the history parameter d,,,x as the maximum effective opening dis-
placement reached during an analysis, we can say that the interface is undam-
aged if 0. < g, Where Jy is the effective displacement value corresponding
to the onset of damage. Therefore, during this initial phase,

t=a  if Omax < 0o (27)

where oy is the initial elastic stiffness of the interface. If the effective trac-
tion should exceed the maximum value of ¢, the interface enters a damaged
state and the constitutive relation changes to reflect linear softening in the
material, so that

t=t, 9% if § > 0y, 0 = Omax (28)
5. — &
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Figure 2: Cohesive law for tensile tractions, showing the loading path and a potential
unloading path

If the effective displacement reaches the critical value d. during loading then
the interface is broken irreversibly, creating a free surface, and

t=0  if x> 00 (29)

If the effective opening rate becomes negative (5 < 0) at any time after
damage has occured then the interface is said to be unloading. In this state
the constitutive behaviour is once again linear-elastic, but with a reduced
stiffness. Then,

S TS Y (30)

Omax
where t,.¢ is the effective traction corresponding to the effective displace-
ment d,.. Together, these relations describe all four of the possible states
for an interface: undamaged (linear-elastic), undergoing damage (softening),
unloading (linear-elastic, reduced stiffness) and broken (zero traction/free
surface).
The effective penalty parameter v of (25) is given by

Qg if 5max S 50
Vs =

31
tmax/(smax lf 5max > 50 ( )

We assume that the gap across the interface does not close again after break-
ing. To model such problems, the definition could be extended so that the
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interface has stiffness in compression (6 < 0) even after the maximum dis-
placement has been reached (Opay > 0.).

At each time step, the effective relative displacement ¢ is computed for
each interface so that any changes in the state of the interface may be de-
tected. For affected elements the damage model is implemented by com-
puting the associated effective tractions and then updating the constitutive
matrix for those elements via Equation (25).

Finally, we introduce the cohesive fracture energy G, a fundamental
parameter of the cohesive zone model regarded as a material constant, which
represents the work of separation per unit area of cohesive surface. It is given
by the area under the traction-displacement curve, which, for the formulation
described above, gives

dc
G.— / £ do = Lede (32)
0 2

This relationships allows the traction-displacement curve to be fully de-
scribed by . (representing the yield strength of the material), and the frac-
ture energy G., both of which can be obtained by experimental testing of a
specimen.

With the inclusion of a damage law, we must also consider how the con-
stitutive matrix D,, may change as damage occurs; i.e., identify the damage
parameters which determine =, in the nonlinear constitutive matrix

D, = Yul (33)

One option is to form a new damage law specifically for the mass matrix of the
element as opposed to the traditional traction-displacement used to govern
the stiffness of the interface. However, this would effectively constitute a
new set of velocity constraints, whereas our goal is to enforce the nonlinear
displacement constraints (in the form of cohesive surfaces) which have already
been derived. Consequently, we adopt the same cohesive law for both mass
and stiffness matrices, which, with the reintroduction of the penalty ratio
R gives v, = 7s/R. The penalty ratio may be used to control the relative
influence of the stiffness and mass penalty matrices. Note by adopting this
method, the assumption that Dy = RD,, (and therefore K, = RM,) is valid
throughout the analysis.
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3. Example: elastic wave propagation

In order to test the interface element formulation, we consider a rectan-
gular region of elastic material modelled using the finite element method. A
regular grid of square elements is used to mesh the domain. Two-dimensional
interface elements are then inserted between the FE continuum elements in
the right half of the mesh to observe what effect this has on wave propaga-
tion through the medium, as shown in Figure 3. At this point, the interfaces
are non-breaking and do not suffer damage, and the interface constitutive
matrices are given simply by Dy = oI and Dy, = a,,1 regardless of inter-
face tractions. (This corresponds to a cohesive surface formulation where the
maximum traction ¢. is never exceeded.)

In the following work we define a dimensionless penalty factor that gives a
measure of penalty parameter magnitude. The parameters o and ay, control
the accuracy of constraint imposition, but are only effective if they are several
orders of magnitude larger than the existing entries in the system matrices
K and M. We therefore define

s

ieP
m
o dm 35
p maX(Mii) ( )
ieP

where P is the set of all DOF numbers associated with the constraint. Then,
the stiffness and mass penalty factors ps and p,, give a measure of the mag-
nitude (and therefore effectiveness) of the penalty parameters as and o,
respectively.

Stress wave propagation through the rectangular system is shown qualita-
tively in Figure 4, for a stiffness penalised system. The material has arbitrary
properties Young’s modulus £ = 1 Pa, mass density p = 1 kg/m?, Poisson’s
ratio v = 0, and plane stress is assumed. The point load F' = 1072 N is
applied from the beginning of the analysis until time ¢ = 0.1 s. The element
side length is A = 0.02 m for all elements (giving a total of 5000 elements).

In order to quantify errors, a reference solution (shown in Figure 4a)
is first produced by omitting interface elements entirely. By introducing
interface elements with low stiffness penalty parameters, as in Figure 4b,
we can easily observe the effects of the added interfaces. Note that the
analysis concludes before any wave reflections occur at the boundaries of the
region, and hence wave propagation on the left-hand side of the material
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Figure 3: Diagram of rectangular elastic region showing fixed supports (indicated by
hashed edges) and interface elements (dotted lines), for an element size of h = 0.1 m.

appear quite unaffected by the interfaces. In the interface process window,
however, stress wave propagation is slowed considerably by the additional
elastic strain manifesting between the continuum elements, a phenomenon
known as artificial compliance. This is clearly evident in the stress error
field, shown in Figure 4c.

Figure 4 demonstrates the need for well-enforced interface constraints. If
no damage has occurred, a continuum that includes cohesive surfaces and
the interface-free continuum should ideally behave identically, with zero dis-
placement across an interface. Using penalty methods, this is only possible
in the limit as penalty parameters tend to infinity, but cohesive surfaces can
be practically transparent if the initial penalty is large enough. Of course,
with stiffness-type penalties this introduces concerns with regards to time
step stability.

In order to assess the performance of the stiffness, mass and bipenalty
methods, we now turn our attention to the error norm of the stress profiles
for a number of analysis types. Figure 5 shows the Ly norm of the error in
stress profile, ||e,||, between two analyses with and without penalty-based
interface elements, for a range of penalty factors. Note that the quantity
represented by the x-axis (penalty factor, p) represents the penalty factor
that has been used as input in each case. For the stiffness penalty analyses
this is the stiffness penalty factor pg, and for the mass and bipenalty analysis
it is the mass penalty factor p,,, since for the bipenalty method, the stiffness
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(a) No interfaces (b) Low stiffness penalty (ps = 100)

(c) Absolute error field

Figure 4: Von Mises stress profiles at time ¢t = 0.8 s, including error field.

parameters are calculated based on a suitable penalty ratio R.

Figure 6 shows the time steps used for the analysis on a logarithmic
scale. For mass and bipenalty methods, suitable time steps are estimated
using the maximum eigenvalue of all individual elements, whereas for the
stiffness penalty method the maximum eigenvalue of the full constrained
system must be used. This data shows that achieving high accuracy using
stiffness-type penalties quickly becomes very expensive as penalty parameters
are increased; indeed, for stiffness penalty factors ps > 10® the tests became
prohibitively expensive.

4. Example: crack propagation in PMMA plate

For validation of the formulation in a dynamic setting, we turn our atten-
tion to an experiment carried out by Combescure et al. [5], who investigate
crack propagation through a polymethyl methacrylate (PMMA) plate under
impact loading. The experiment uses a Hopkinson bar to apply load to the
left-hand side of the PMMA specimen shown in Figure 7, which features a
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Figure 5: Stress error norm at time ¢ = 0.8 s [or the stiflness, mass and bipenalty methods.

pre-existing crack emanating from a central hole. The specimen suffers frac-
ture damage during the first 500 ps after impact, and the crack tip position
is measured during this time to obtain a detailed crack propagation history.

In this section we simulate the experiment numerically using bipenalty
cohesive surfaces. Only the PMMA plate is considered, since the initial
contact with the Hopkinson bar on the left-hand side of the specimen can be
modelled with prescribed velocities, while contact at the other end is handled
with absorbing boundary conditions. Given material properties for the plate
include Young’s modulus £ = 4.25 GPa, mass density p = 1180 kg/m?,
Poisson’s ratio v = 0.42 and fracture toughness Kjc = 1.47 MPay/m.

For the cohesive bipenalty formulation we require the damage parameters
t. and G¢ (from which we can calculate d.). The cohesive fracture energy can
be calculated from the fracture toughness via Go = Ki/E. The yield stress
t. is not given, and so initially a range of values are tested, from 10-100 kPa.

The final crack path for t. = 15 KPa is shown in Figure 8. Although
the total length of the path is not captured by the simulation, the initial
portion of the crack is reproduced very well. Note that since the crack is
required to move along element boundaries it cannot generally move in a
perfectly straight line, which adds extra length to the simulated crack path.
This in turn adds to the amount of energy required to open the crack, which
may help to explain why the numerical path is somewhat shorter than the
experimental result.

The growth of the crack over time is compared to experimental obser-
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vations in Figure 9. The experimental results show the crack beginning to
form at around 200 ps, stopping briefly when it reaches x ~ 90 mm, before
continuing to its end point. While in the numerical tests crack initiation is
about 25 ps early, and crack speed propagation is generally higher than in
experiments, the stop-start behaviour of the crack propagation is captured
to some extent for ¢, = 12-18 kPa.

The mostly likely reason for disparities in the numerical tests is the ac-
curacy of the bilinear cohesive law. By refining the traction-displacement
relationship it may be possible to obtain more accurate results, although
this would likely require access to further experimental test data for the ma-
terial in question. An alternative cohesive model designed for the modelling
of PMMA is given by Elices et al. [7]

However, in general the bipenalty cohesive surfaces are well-suited to this
problem type, where high loading rates mean that the the explicit central
difference method is an obvious choice for the solution scheme. Since stiffness-
only elements lead to artificial compliance, an artificially lowered time step,
or else unexpected time step instabilities, their use is problematic. On the
other hand, the bipenalty method allows for time steps close to the critical
time step of the unconstrained problem, while allowing for a very high initial
stiffness.
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Figure 7: Geometry of the PMMA specimen (dimensions in mm).

5. Conclusion

The most significant advantage of the central difference method over im-
plicit time integration routines is that the computations carried out at each
time step are very efficient. The major disadvantage is that for stability, the
size of the time step must be relatively small. Traditional penalty methods,
such as those used in the formulation of cohesive surfaces, have little effect
on the actual computation, but can drastically reduce the critical time step.
Alternatively, the bipenalty method has no effect on the critical time step,
but it increases the cost of each time step computation by requiring that the
mass matrix of the system be non-diagonal.

We can therefore say that the bipenalty method is an appropriate choice
only in certain situations. If high accuracy is required (high penalty stiffness,
low compliance) and the number of bipenalised degrees of freedom is small
relative to size of the problem, then the extra computational effort required
to solve a small linear system may be offset by the fact that less time steps are
needed. Furthermore, the bipenalty method may provide a more robust so-
lution by ensuring time step stability in all circumstances, giving the analyst
more freedom to select suitable parameters; but, if cohesive surfaces must be
introduced throughout the whole continuum, a very large linear system of
equations would need to be solved at each time step.
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Figure 8: Experimental (red, dashed) and numerical (blue, solid) results for final crack
path (t. = 15 KPa).

In summary, the bipenalty method is a simple way to control the eigen-
values introduced when adding cohesive surfaces to an FE simulation. With
the introduction of a single extra parameter, the penalty ratio R, the analyst
can ensure that the critical time step of an explicit analysis is not affected
by the interfaces. But while the bipenalty method could theoretically be em-
ployed in any explicit dynamic problem involving cohesive surfaces, whether
or not the additional computational cost is justified depends entirely on the
problem under consideration; specifically, the number of constraints relative
to the size of the total system should be as small as possible.
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