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Modelling Capillary Break-up of Particulate Suspensions

Claire McIlroy1, a) and Oliver G. Harlen1, b)

Department of Applied Mathematics, University of Leeds, Leeds, LS2 9JT,

UK

(Dated: 4 March 2014)

We have constructed a simple one-dimensional model of capillary break-up to demon-

strate the thinning behaviour of particulate suspensions previously observed in ex-

periments. The presence of particles increases the bulk viscosity of a fluid and so is

expected to retard thinning and consequently delay the time to break-up. However,

experimental measurements suggest that once the filament thins to approximately

five particle diameters, the thinning no longer follows the behaviour predicted by

the bulk viscosity; instead thinning is ‘accelerated’ due to the effects of finite parti-

cle size. Our model shows that accelerated thinning arises from variations in local

particle density. As the filament thins, fluctuations in the local volume fraction are

amplified, leading ultimately to particle-free sections in the filament. The local vis-

cosity of the fluid is determined from the local particle density, which is found by

tracking individual particles within the suspension. In regions of low particle den-

sity, the fluid is less viscous and can therefore thin more easily. Thus, we are able

to model the accelerated thinning regime found in experiments. Furthermore, we

observe a final thinning regime in which the thinning is no longer affected by particle

dynamics but follows the behaviour of the solvent.

a)Electronic mail: mm07c2m@leeds.ac.uk
b)Electronic mail: o.g.harlen@leeds.ac.uk
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I. INTRODUCTION

Inkjet printing is fast becoming a versatile, widely used manufacturing tool. A diverse

range of materials can be manipulated using inkjet technology, the most common being

particulate suspensions. Most graphical inks contain solid pigment particles rather than

dyes and in many non-graphical applications, such as printed electronics, the functional

components of the ink are solid particles. Solid-laden inks are also required in ceramic

manufacture and textile printing. However, there is relatively little known about particulate

effects on the stability and break-up of liquid jets compared to Newtonian fluids or even

other complex fluids such as polymer solutions.

The detachment dynamics for simple Newtonian fluids are now well understood1. Surface

tension acts to destabilise a liquid jet, driving the free surface to minimise its surface energy

and break up into spherical droplets. Viscous forces resist this thinning action and enables

the liquid to be drawn into thin, uniform filaments before ultimately breaking up. Eggers2

developed the theory for the universal pinch off of an axisymmetric free surface, which states

that the decay of a Newtonian jet depends on a balance of surface tension γ, inertia and

viscosity µ, such that the minimum filament radius obeys the thinning law

hmin = 0.0304
γ

µ
(t− tb), (1)

where tb denotes the break-up time. This thinning law applies to cases of moderate Ohne-

sorge number, which is defined as

Oh =
µ√
ργR

,

where ρ is the fluid density and R is the jet radius. At extreme values of the Ohnesorge num-

ber, viscosity or inertia may dominate the dynamics giving different thinning laws. For highly

viscous fluids with large Ohnesorge numbers, inertia may be neglected and Papageorgiou3

determined the thinning law

hmin = 0.0709
γ

µ
(t− tb), (2)

whereas for inertially dominated liquids the thinning may be described by4

hmin = 0.64

(
γ

ρ

)1/3

(t− tb)2/3. (3)

Both the inertial and viscous regimes eventually cross over to the universal Eggers solution at

some critical radius1. In the case of inertial flow, as the filament radius becomes thinner, the
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local Ohnesorge number increases so that eventually viscous effects are significant. On the

other hand, inertia becomes surprisingly important near to break-up for viscosity dominated

flows. In each case the local balance induces a transition to the Eggers regime (1) in which

all three forces are significant.

Campo-Deano et al.5 propose that the critical Ohnesorge number defining the boundary

between viscosity and inertia dominated regimes is

Oh∗ = 0.2077,

with excellent agreement to their experimental results. Thus, for fluids with Oh < Oh∗

behaviour is initially governed by inertial forces, whereas a viscosity dominated regime is

observed for fluids such that Oh > Oh∗. Ultimately, thinning adopts the universal Eggers

regime (1), however, the critical radius at which this transition occurs may not be within ob-

servable limits. For inkjet printing applications, stable drop generation for Newtonian fluids

is limited to a narrow range of viscosities6,7 corresponding roughly to Ohnesorge numbers in

the range 0.1 < Oh < 1. If the Ohnesorge number is too high, then viscous forces prevent

break off of the ligament from the nozzle. On the other hand, if the Ohnesorge number

is too low, then surface tension causes the trailing ligament to break up into a number of

unwanted satellite drops.

The existence of universal thinning laws initiated the use of capillary break-up as a rhe-

ological technique, allowing direct access to the viscosity of the fluid. Stretching a liquid

sample between two end plates induces a strong extensional flow and thus allows the study

of viscous properties under extensional deformation. Capillary break-up experiments have

proved effective in measuring the extensional properties of polymeric fluids, such as relax-

ation time and extensional viscosity5,8,9. Furthermore, recent studies have demonstrated

that extensional rheometry can be successfully performed on particulate suspensions10–12.

However, the detachment dynamics of particle-laden fluids are not yet fully understood.

The presence of particles in a solvent increases the bulk viscosity of a fluid. Thus, particles

are expected to retard the thinning process and consequently delay the time to break-up.

However, experimental measurements using the pendant-drop technique13–15 suggest that

once the filament has thinned to approximately five particle diameters, the thinning no longer

follows the behaviour predicted by the bulk viscosity. In fact, the thinning is ‘accelerated’

due to the effects of finite particle size. Furthermore, the thinning dynamics of particulate
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fluids are found to be less predictable than those of continuous fluids.

In particular, experiments on non-colloidal particle suspensions show a faster thinning

rate than that predicted by the Papageorgiou regime for the bulk viscosity. For concen-

trated particle suspensions φav ≥ 20%, Bonnoit et al.13 claim that this accelerated regime

is independent of the initial volume fraction and can be described as the thinning of a vis-

cous fluid with viscosity equal to that of a suspension of volume fraction 17%. However,

for inkjet printing purposes the solutions are generally more dilute. For smaller volume

fractions φav < 6%, van Deen et al.16 show that even the presence of a single particle in the

thinning filament modifies the detachment dynamics, again accelerating the thinning rate.

A mathematical model has recently been developed to study the dynamics of filament

evolution towards break-up in the presence of an embedded, solid, spherical particle17. A

single particle is modelled as a ‘stresslet’ and assumed to remain stationary at the jet mid-

point. Initially the jet evolves much like a pure liquid jet, until stretching-induced stresslet

flow begins to alter the dynamics. This particle induced flow causes strong local deformation

of the free surface and their results demonstrate the formation of a liquid bulge around the

particle, with the point of pinch off shifting from the centre to accommodate the particle.

Their results explain the observations in experiments14 that if a large enough number of

particles become trapped in the filament region during the thinning process, then thinning

is resisted rather than accelerated. The properties of particles suspended within a thinning

filament are found to be critical to the stability of a liquid jet. However, this model does not

explain the accelerated dynamics that is generally observed in experiments of particulate

suspensions.

Our hypothesis is that the accelerated thinning regime arises from variations in the local

particle density. As the filament thins, the variations are amplified leading ultimately to

sections of the filament containing no particles at all. Sections of the filament that have a

low particle density consequently have a lower viscosity and can therefore thin more easily.

Similar fluctuations in particle density have been observed by Roche et al.18 during the

thinning of a liquid bridge; close to break-up, certain regions within the bridge become

jammed whilst particles experience a significant flow in other areas. To test our hypothesis,

we have constructed a simple one-dimensional model of capillary break-up in which the

viscosity is determined from the local particle density, found by tracking individual particles

within the suspension. The particles are assumed to be non-Brownian so that they are simply
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advected with the fluid velocity. Since the particles only contribute to the dynamics through

the local viscosity, the direct effects of hydrodynamic interactions between the particles and

the effects of the individual particles on the shape of the free surface are not included.

Nevertheless, our model is able to reproduce the accelerated thinning found in experiments.

II. A ONE-DIMENSIONAL MODEL

A. Modelling Capillary Break-up

We shall consider the thinning and break-up of a liquid bridge held between two end

plates, as used in capillary break-up experiments5. With the exception of the boundary

conditions applied at the ends, this is equivalent to the break-up of an infinite jet and so

local thinning behaviour is expected to be the same. We assume that the liquid bridge is

long and thin so that we can treat it as a slender, axisymmetric jet1.

The slender-jet approximation assumes that velocity and stress are independent of the

cross-sectional area. We can therefore assume that the kinematics of the motion are one-

dimensional and variables depend only on axial position z and time t. A one-dimensional

model is surprisingly accurate, even if the long-wavelength assumption is not well defined as

in the liquid bridge problem19,20. In their study of falling particle plumes, Crosby & Lister21

conclude that the effect of particle density modes in the r and θ directions are unimportant.

Thus, we shall assume that particle density varies only with the axial coordinate z.

Denoting the jet radius h(z, t) and the velocity v(z, t), we have the following governing

equations, as derived by Forest & Wang22. Conservation of mass yields

∂h2

∂t
+

∂

∂z
(h2v) = 0, (4)

and conservation of momentum is given by

∂

∂t
(h2v) +

∂

∂z
(h2v2) =

∂

∂z

(
h2

(
K + 3Oh

∂v

∂z

))
, (5)

where the curvature term is defined as23

K =
hzz

(1 + h2
z)3/2

+
1

h(1 + h2
z)1/2

,

for the first hz and second hzz derivatives of h. Here the governing equations have been

non-dimensionalised using the Rayleigh time scale TR =
√
ρR3

0/γ for initial jet radius R0.
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The dimensionless Ohnesorge number Oh is defined for initial jet radius R0 and describes

the importance of the resisting viscous forces compared to the driving surface tension.

To simulate a capillary break-up experiment, we assume Dirichlet boundary conditions

such that the free surface h is fixed and there is zero axial velocity v at the end-plates. The

end-plates have radius 2 mm and are held at fixed separation distance 6 mm. The initial

shape of the free surface is modelled as an arc of a circle, with mid-filament radius set to

R0 = 1 mm to induce capillary thinning.

The governing equations (4) and (5) are solved via a Lax-Wendroff scheme, which is

second-order accurate in both time and space. The equations are solved on a uniform mesh

for nodes j = 1, . . . , J . The mesh size dz satisfies the Courant stability condition vdt ≤ dz

for time step dt. The stability of this explicit method is also subject to the condition that

the time step dt must be less than the diffusion time h2/Oh, thus is restricted at high

viscosities24. Hence, for Oh > 3, we have used an implicit numerical scheme.

B. Modelling Particle Motion

Initially, particles are uniformly distributed at random locations throughout the fluid.

We assume that the number of particles N is much larger than the number of mesh nodes

J . The initial particle positions zp for p = 1, . . . , N are assigned as follows.

We define the accumulated volume V (z) as

V (z) = π

∫ z

0

h2(z′)dz′. (6)

A corresponding V position is chosen for each particle from a uniform distribution on the

interval [0, Vtot], where Vtot is the volume of the entire liquid bridge. Then, the corresponding

value of zp is found by inverting equation (6). In subsequent motion, we assume that each

particle moves with the axial velocity v(zp, t) obtained by linear interpolation between grid

points. The distribution of particles is then determined from particle position. A diagram

of particle motion within the liquid bridge is shown in Figure 1.

Brownian motion opposes the creation of particle density gradients, however, in our

model, we assume that the particles are sufficiently large that Brownian motion is negligible.

The importance of particle diffusion on the length scale of the particle radius r is measured
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FIG. 1. A one-dimensional model to represent the capillary thinning of a particulate suspension.

Particles are sorted into ‘bins’ of length bz. Shaded particles are allocated to a bin according to

their position.

by the Peclet number,

Pe =
6πµsε̇r

3

kBT
,

for the Boltzman constant kB and absolute temperature T . The characteristic stretching

rate ε̇ is defined by the time scale of the flow, which is taken to be the smaller of the inverse

Rayleigh time scale
√
γ/ρR3

0 or the inverse viscous time scale γ/µR0. For an extension rate

of ε̇ ∼ 10 s−1, which is typical of capillary thinning experiments, the Peclet number for 1 µm

particles is of the order Pe ∼ 104 for solvent viscosity 389 mPa.s and filament radius 1 mm.

Thus, the large Peclet number assumption is valid for the pendant drop experiments13,14,

where the particle sizes are around ∼ 40− 250 µm. For inkjet printing applications, where

inks are much less viscous (say 11 mPa.s) and typical nozzle length scales are around R0 ∼ 50

µm, the extension rates are around ε̇ ∼ 104 s−1 and the limiting particle size is approximately

∼ 10 nm.

C. Local Viscosity of Suspensions

The average volume fraction of particles in a suspension is given by

φav =
N

Vtot

V p,

where V p is the particle volume, which for spherical particles is

V p =
4

3
πr3.
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FIG. 2. (a) Plot showing the bulk viscosity Ohav obtained from the Krieger-Dougherty model as

a function of particulate volume fraction for various values of solvent viscosity Ohs. (b) Effective

particle radius r as a function of the total number of particles N for various volume fractions φav.

Thus, particle size can be varied by changing the total number of particles N for a given

average volume fraction φav.

We determine the local particle volume fraction by dividing the filament into a number

of ‘bins’, as shown in Figure 1. The length of each bin bz is set to ∼ 2r so that the length

scale for volume fraction perturbations is set equal to the particle diameter. This bin size is

typically larger than the grid resolution used in the velocity calculation.

The local viscosity is determined by the Krieger-Dougherty model25 so that the local

Ohnesorge number in equation (5) is given by

Ohi = Ohs

(
1− φi

φmax

)−2

, i = 1, . . . J, (7)

for local volume fraction φi and solvent Ohnesorge number Ohs. Here φmax is the maximum

packing coefficient, which is found from numerical simulations to be φmax = 0.64 for random

close-packing of monodisperse spheres26. This maximum packing condition implicitly con-

strains the number of particles that can occupy a particular axial position. For a uniform

distribution of particles, the average or bulk viscosity Ohav can be calculated by evaluating

the Krieger-Dougherty model at the average volume fraction φav.

The concentration dependence of the bulk viscosity predicted by the Krieger-Dougherty

model is plotted in Figure 2 for a range of solvent viscosities Ohs. Also shown in Figure

2 is the dependence of particle size on the total number of particles for a range of average

volume fractions. For example, a suspension of φav = 20% particles will increase a solvent
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viscosity of Ohs = 0.1 to the bulk value Ohav = 0.22 and for N = 100000 particles the

effective particle radius is r = 0.024.

III. RESULTS

A. Newtonian Behaviour

As discussed in the introduction, the thinning dynamics of a liquid bridge are governed by

a balance of surface tension, viscosity and inertia characterised by the Ohnesorge number.

Under the action of surface tension the liquid bridge develops into two hemispherical drops

connected by a thin filament. In Figure 3 we compare the evolution of the minimum filament

radius predicted by our model for two Newtonian fluids of differing viscosities.

In Figure 3(a) we show the results for a fluid with Oh = 0.2 (typical of inkjet printing

fluids for which 0.1 < Oh < 1), where the origin of time is shifted to the break-up time.

Since Oh < Oh∗ the thinning is initially dominated by inertia and is seen to follow the

inertial regime given by equation (3). The Ohnesorge number of this Newtonian fluid is

close to the critical value Oh∗ = 0.2077, thus we are able to observe the transition to the

universal Eggers regime given by equation (1). This transition occurs when the filament

radius has thinned to approximately hmin ∼ 0.05.

In contrast, a fully developed viscous regime is seen for Oh = 1.5 in Figure 3(b), where
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FIG. 3. (a) Newtonian model Oh = 0.2 for filament thinning compared to the inertial regime (3)

and the Eggers regime (1). (b) Newtonian model Oh = 1.5 compared to the Papageorgiou viscous

regime (2).
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the radial decay follows Papageorgiou’s linear thinning regime (2). These results are in

agreement with the experimental observations of Campo Deano et al.5.

B. The Effect of Particles on Thinning Behaviour

The addition of particles to a Newtonian solvent increases the bulk viscosity of the fluid,

as predicted by the Krieger-Dougherty equation (7). For solvent viscosity Ohs = 0.1, the

addition of φav = 20% particles to the Newtonian solvent increases the viscosity to the bulk

value Ohav = 0.22. The increased resistance acts to retard the thinning process and Figure

4 shows that the time to break-up for a Newtonian fluid with the bulk viscosity is nearly

twice as long as that of the solvent viscosity.
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FIG. 4. Radial decay profiles of pure solvent Ohs = 0.1, bulk viscosity Ohav = 0.22 and the

corresponding particulate suspension of volume fraction φav = 20% and particle size r = 0.024.

The shaded area shows that standard deviation from the mean for ten realisations.

Figure 4 also shows the mean radial decay profile of ten realisations predicted by our

particle model, where the effective particle size is r = 0.024 relative to the initial mid-

filament radius; the shaded region indicates the standard deviation from the mean. The

particulate suspension is seen initially to follow the behaviour of the bulk viscosity. However,

as the filament radius decays we observe accelerated thinning and the time to break-up is

consequently reduced. The results of choosing different bin sizes are shown in Figure 5 and

compared to the bulk viscosity model. The difference in the radial decay profile for different

bin lengths is small compared to the effect of particles on the bulk behaviour. Furthermore,
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FIG. 5. Radial decay profile of a particle suspension for varying bin size bz compared to the bulk

viscosity model for suspension properties Ohs = 0.1, φav = 20%, r = 0.024

the difference due to changing bin size is within the standard deviation measured for the

suspension shown in Figure 4. Consequently, the specific bin size does not significantly affect

the dynamics provided bz < 2r but remains small compared to the filament length.

To understand particle effects on the thinning behaviour, we study the evolution of the

local particle density. Since the particles move with the fluid velocity, they are transported

out of the thinning filament and into the end drops as the filament radius decays. Thus,

although the average particle density in the filament remains constant, large fluctuations

in the local particle density appear, as shown in Figure 6(a). Near to break-up, there are

regions deplete of particles as well as regions of high density.

Figure 6(b) shows that the particle fluctuations are mirrored in the fluid viscosity so

that there are regions of both high and low viscosity in the filament compared to the bulk

viscosity Ohav = 0.22. The viscosity is reduced to that of the solvent Ohs = 0.1 in areas

devoid of particles. It is these areas of low viscosity that allow the filament to neck and thin

faster than a Newtonian fluid of the bulk viscosity.

The free surface evolution profile of the particulate suspension is shown in Figure 7(a).

Although our model is unable to predict individual particle effects on the free surface, close

to break-up the profile appears ‘lumpy’ with variations in filament thickness that reflect

variations in particle concentration. Particle-rich regions appear as bulges that correspond

to clusters of particles. In the region containing no particles, the free surface is able to thin

down and form a uniform filament, as observed in the corresponding Newtonian case shown
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FIG. 7. Free surface evolution profile of (a) suspension with properties Ohs = 0.1, φav = 20%,

r = 0.024, (b) bulk viscosity Newtonian fluid Ohav = 0.22.

in Figure 7(b).

A plot of particle evolution with time is shown in Figure 8, which provides a spatio-

temporal diagram of the variation in volume fraction with radial decay and axial position.

We illustrate two different scenarios in Figures 8(a) and 8(b); first, we show the full parti-

cle model, where the onset of particle fluctuations is fed back into the fluid viscosity and

therefore affects the local thinning dynamics; second, we show a hypothetical case in which

viscous feedback is neglected and we consider only the motion of the particles in a fluid of

uniform viscosity. The latter case is referred to as the average viscosity model. By compar-

ing Figures 8(a) and 8(b), we can examine how the dynamics affect fluctuations in particle

density.
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FIG. 8. (a) Evolution of volume fraction variations for one realisation in the case Ohs = 0.1,

φav = 20%, r = 0.024 predicted by the particle model. (b) Evolution of particle fluctuations for

the same suspension properties but for a hypothetically imposed uniform viscosity Oh = 0.22 (see

text for details). Each are compared to the free surface profile at the point of break-up.

In particular, Figure 8(a) shows how the volume fraction variations grow with time for

one particular realisation of a suspension with Ohs = 0.1, φav = 20%, r = 0.024 whereas

Figure 8(b) shows how the fluctuations would have evolved if we hypothetically impose a

uniform viscosity Oh = 0.22, which corresponds to the average volume fraction used in the

full particle simulation. We continue by highlighting the differences between these two plots

and describing how particle fluctuations develop as a consequence of variations in the local

viscosity.

In each case, the initial statistically uniform state corresponding to hmin = 1 shows little

variation in the particle density. It is evident that fluctuations are amplified as the volume

of fluid in the filament is reduced, which can be observed in the development of light and

dark areas in Figure 8. For the average viscosity model shown in case (b), random clusters
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of particles form during radial decay, whereas the fluctuations in density develop much more

smoothly for the full particle simulation shown in case (a).

In the latter case, the particle density feeds back into the fluid viscosity. The higher

viscosity of particle-rich regions means that these tend not to thin further, but are advected

along the filament. On the other hand, in the light areas that contain a lower particle density,

the viscosity is reduced and consequently the region is able to thin more rapidly than the

rest of the fluid. The reduction in volume drives more particles out of the filament into the

end drops so that the low-viscosity region is able to develop into a uniform filament. We

observe that, in most realisations, the viscous feedback of the particle model allows a single,

uniform, low-viscosity filament to form between the two end drops. This is in contrast to the

average viscosity model, which neglects dynamic feedback, where we see alternating regions

of low and high volume fraction over the length of the filament. In our model, we neglect

the effects of individual particles on the free surface. These effects are expected to become

important only when the filament diameter is of the order of the particle diameter. However,

at this point we observe that the filament contains no particles at all and consequently the

local thinning dynamics at the minimum filament radius are unlikely to be affected by these

interactions.

Other structures are possible depending on the initial distribution of particles, as shown

in Figure 9. Instead of a single uniform filament, we observe an area of high particle density

located at the centre of the axis, with regions deplete of particles surrounding it. This
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FIG. 10. (a) Standard deviation of particle density from the average volume fraction φav = 20%

averaged over six realisations for suspension properties Ohs = 0.1, r = 0.024. (b) Difference

between the particle model and average viscosity model.

corresponds to the generation of a small satellite drop at the mid-filament point, which is

connected to the end drops by threads of liquid. Instead of being advected into the end

drops, particles remain trapped in the satellite indicated by the darker central region, which

does not thin down due to its high local viscosity. The surrounding areas have a lower

viscosity and are therefore able to thin more rapidly than the central droplet. This creates

two shorter, uniform filaments that suspend the particle dense satellite drop between the end

drops. Similar ‘beads-on-string’ morphologies have been observed by Zimoch & McKinley27

and also compared to a one-dimensional model. For this ‘beads-on-string’ case, the particle

interactions with the free surface are more important and our model assumptions do not

hold in the region of the bead. However, our model will still capture the differential thinning

of the connecting filaments that contain no particles.

We have calculated the standard deviation of particle density from the average volume

fraction φav = 20% and taken the mean over six realisations. Figure 10(a) compares the

particle model to the average viscosity model without dynamics and Figure 10(b) highlights

the difference between the two cases. The variation in particle fluctuations is equivalent in

the initial stages of thinning. The effect of viscosity variation on the distribution becomes

evident at approximately hmin ∼ 0.1, where the fluctuations observed in the particle model

grow more slowly than in the case without viscosity feedback. In this example the dimen-

sionless particle radius is calculated to be r = 0.024. Thus, the point at which finite size
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FIG. 11. Radial decay profile of a particulate suspension Ohs = 0.1, φav = 20% for varying particle

size.

affects the dynamics occurs when the filament radius has reduced to around four-five times

the particle radius. This observation is not affected by the bin discretisation, as we have

shown in Figure 5. This change in dynamics agrees with experimental observations that the

dynamics follow that of the bulk viscosity up to the point where the filament diameter has

thinned to approximately five particle diameters15.

Figure 11 shows the effect of increasing particle size on the mean minimum filament

radius and the time to break-up. As particle size increases, the total number of particles in

the simulation decreases and as a consequence the statistical variability between realisations

increases. Therefore more realisations are required in order to determine the mean break-up

time. We observe that the thinning behaviour is equivalent for each particle radii until finite

size affects the dynamics at approximately hmin ∼ 5r. For larger particles, fluctuations

in volume fraction are amplified and these variations occur earlier in the thinning process.

Thus, increasing particle size further reduces the average time to break up. For very small

particles r � 0.01, Newtonian behaviour will be recovered.

For a range of Ohnesorge numbers, volume fractions and particle sizes, we find that the

mean time to break-up of a particulate suspension is reduced in each case, in comparison

with the break-up time of the corresponding Newtonian fluid of the bulk viscosity. However,

variation from the mean break-up time is found to increase with each of these properties.

The values of the standard deviation normalised by the mean break-up time, averaged over

ten realisations, are shown in Figure 12. Hence, as seen in experiments, the behaviour of

16



 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 10  15  20  25  30

S
ta

nd
ar

d 
D

ev
ia

tio
n 

/ M
ea

n 
B

re
ak

up
 T

im
e

Average Volume Fraction

(a) Solvent Viscosity and Volume Fraction

Oh=0.05

Oh=0.10

Oh=0.20

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.01  0.015  0.02  0.025  0.03  0.035  0.04  0.045  0.05  0.055

S
ta

nd
ar

d 
D

ev
ia

tio
n 

/ M
ea

n 
B

re
ak

up
 T

im
e

Particle Radius

(b) Particle Size

Oh=0.1, phi=20%

FIG. 12. Standard deviation divided by mean break-up time averaged over ten realisations. (a)

Increasing solvent viscosity Ohs and volume fraction φav. (b) Increasing particle size.

particulate suspensions is less predictable than that of the equivalent continuum fluid.

Although on average the time to break-up for a particulate suspension is decreased com-

pared to that of the continuous fluid, this may not necessarily be the case for a single reali-

sation. Our model demonstrates that as particle size and volume fraction are increased, the

standard deviation from the mean break-up time is increased. The spread of break-up times

depends upon the distribution of particles as break up approaches. In general a particle-free

filament, having a lower viscosity than the bulk, is generated and we observe accelerated

thinning due to particle effects. However, in some cases particles become trapped in the

filament region creating areas of high viscosity compared to the bulk. These structures may

change the whole pinch off dynamics depending on the number of particles that are trapped

in the filament.

Experiments have shown that, for small numbers of particles in the filament, finite size

effects induce accelerated thinning as discussed above. On the other hand, if a sufficiently

large number of particles become trapped in the filament region, then the effect tends to

be stabilising; the individual motions of the particles are restricted and the necking of the

filament is slowed14. Hammeed & Morris17 study this mechanism further by modelling the

local deformation of the fluid interface due to particle-induced flow. They show that for a

single particle located at the centre of a thinning filament, the thinning rate is decreased for

larger particle sizes. Consequently, the larger the particle trapped in the filament, the more

stable the filament is and break-up time is consequently delayed.
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Our model does not include this stabilisation mechanism, which occurs at a later stage

in the development when the minimum filament radius is less than the particle radius.

However, our model does predict that thinning becomes more varied as particle size and

volume fraction are increased. Fluctuations in the particle density become more random and

so it is more likely that more particles become trapped in the filament for highly concentrated

suspensions containing larger particles. Thus, the stabilising effect of increasing particle size

or volume fraction may decrease the number of satellite drops produced during jetting.

C. Thinning Regimes of Particulate Suspensions

We have already observed that the initial thinning behaviour of a particulate suspension

follows that of the corresponding Newtonian fluid of bulk viscosity. As the filament radius

is reduced, the thinning enters an accelerated thinning regime due to finite size effects.

For solvent viscosity Ohs = 0.2 we have tested a range of average volume fractions φav =

0.15, 0.20, 0.25. The thinning profiles for each fraction collapse onto a single curve near the

break-up point, as shown in Figure 13, where the origin of time has been shifted to the

break-up time. This suggests that the thinning behaviour near to break-up is independent

of the initial volume fraction φav. The accelerated regime we observe is not only faster than

the rate of the corresponding Newtonian fluid of bulk viscosity, it is faster than the thinning

rate of the pure solvent, which is also shown in Figure 13.
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FIG. 13. Radial decay profiles near to the point of break-up for a range of average volume fractions

φav = 0.15, 0.20, 0.25 compared to that of the solvent Ohs = 0.2.
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r = 0.02 compared to the Papageorgiou regime (2) for the solvent Ohs = 2.5 and the bulk viscosity

Ohav = 3.5.

We have seen that as the filament becomes devoid of particles, the viscosity is reduced

to that of the solvent. Thus, we would expect to observe a transition from the acceleration

phase to a final regime in which the thinning follows the behaviour of the solvent. However,

in these cases it is difficult to determine a final thinning regime adopted by the suspension

in comparison to the solvent behaviour since Ohs ≈ Oh∗. For Newtonian fluids having this

Ohnesorge number, we observe a transition to the universal Eggers regime, which occurs at

around the same radius that finite size affects the dynamics. Thus, at this low Ohnesorge

number, inertia still plays a significant role in the thinning process and may obscure dynamics

due to particle effects.

In order to avoid this, we consider a larger Ohnesorge number for which a fully developed

Papageorgiou regime (2) is observed. Figure 14 illustrates the thinning profile of a particulate

suspension with solvent viscosity equivalent to Ohs = 2.5. For volume fraction φav = 10%,

the bulk viscosity increases to Ohav = 3.5 and for this suspension, the effective particle size

is given by r = 0.02.

The thinning profile of the suspension initially follows the bulk behaviour and Figure 14

shows that the radial decay obeys Papageorgiou’s thinning law for the bulk viscosity (2).

We then observe a transition to the accelerated thinning regime due to finite size effects at

approximately hmin ∼ 5r; particles are forced into the end drops and particle-free regions

develop. Again, the rate of the accelerated regime is seen to be faster than the thinning
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rate of the pure solvent given by Papageorgiou’s law (2), which is valid for long, uniform

filaments. Acceleration is attributed to the fact that a depleted filament is not yet slender,

thus has a relatively high curvature and therefore must thin faster than a uniform filament

in order to conserve volume28. When the filament becomes sufficiently long and thin, the

thinning dynamics enter a final regime. Figure 14 shows that the transition into this regime

occurs at around hmin ∼ r and the thinning behaviour can be described solely by the solvent

properties, characterised by Papageorgiou’s law for the solvent viscosity (2).

If large numbers of particles become trapped within the filament, then the generation of

a slender filament may be restricted. Our model predicts this is more likely to occur for

higher volume fractions. For these cases, we propose that the solvent regime will be observed

once the filament has thinned to less than the particle radius. A liquid bridge of solvent

is suspended between two individual particles, which subsequently forms a slender filament

following Papageorgiou’s law for the solvent viscosity. However, our model is valid only for

hmin > r, since we neglect individual particle effects on the free surface.

IV. CONCLUSION

We have developed a simple one-dimensional model of capillary break-up to demonstrate

experimental observations of drop formation from suspensions. A two-stage thinning model

has previously been suggested14 based on the idea that the initial and final thinning dynamics

involve a transition from a regime where particle effects are governed by bulk properties, to

one where finite size effects dominate the behaviour.

For an initially uniform distribution of particles, our model predicts that as a liquid

filament thins, fluctuations in the local particle density are amplified resulting in areas of

both high and low particle density. These fluctuations are reflected in the fluid viscosity.

Initially, the particulate suspension behaves like a Newtonian fluid with the corresponding

bulk viscosity, however, the development of low-viscosity regions allows the filament to thin

more easily. We therefore observe an accelerated thinning regime in which the thinning

rate is faster than that of the bulk and the solvent behaviour. Furthermore, our model

is able to quantify that finite size effects dominate when the filament radius has thinned

to approximately five times the radius of the particle, as seen in large scale pendant-drop

experiments13–15.
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For high-viscosity suspensions, we observe a transition from the accelerated regime to an

ultimate thinning regime once the depleted filament has become sufficiently long and thin.

Since the filament is particle-free, the thinning is no longer governed by finite size effects but

follows the behaviour of the pure solvent, which is characterised by Papageorgiou’s thinning

law. For low-viscosity suspensions, a slender filament is not generated at this final stage and

the solvent regime is not observed.
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