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Assessing climate impacts and adaptation options requires judicious use of finite 

computational resources as well as appropriate degrees of integration and specialization  

in the climate impacts research community.

C	LIMATE IMPACTS. Atmospheric concentra- 
	 tions of carbon dioxide, methane, and nitrous- 
	oxide are now substantially higher than they 

have been for hundreds of thousands of years (Spahni 
et al. 2005; Siegenthaler et al. 2005) and there is every 
indication that they are continuing to rise at alarming 
rates (Anderson and Bows 2008). This will have wide-
ranging global impacts, affecting food production 
systems, human health, energy demand, and water 
availability. Crops, for example, will increasingly be 
grown in a warmer environment with higher levels 
of carbon dioxide. In addition to these large-scale 

changes, regional changes in climate, especially 
extremes of temperature and rainfall, will produce 
localized stresses on food production. To understand 
the potential risks to future food production, we need 
assessments of both the mean large-scale impacts 
of climate change and the more local and regional 
impacts. Furthermore, regional variations in agricul-
tural systems and the broader food production and 
distribution systems must be taken into account.

Climate change is increasingly seen not only 
as a problem for the future but also as a current 
or emergent problem. Adaptation efforts need to 
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be based on sound understanding of impacts on a 
range of spatial and temporal scales (see, e.g., Adger 
et al. 2005; Challinor 2009). Can decisions based 
on short-lead-time forecasts really be a form of ad-
aptation to climate change? After all, attribution of 
climate impacts to anthropogenic or natural sources 
is not trivial and can only be done probabilistically. 
Fortunately, for practical purposes—especially for 
adaptation—such attribution is often unnecessary. 
Adaptation efforts are therefore underpinned by both 
seasonal forecasting of climate and its impacts (e.g., 
WCRP 2007) and longer-term assessments of the sort 
reviewed by the Intergovernmental Panel on Climate 
Change (IPCC; Easterling et al. 2007).

Changes in the way that science is perceived and 
funded increasingly encourage researchers to focus 
on real-world problems using a combination of dis-
ciplines (see Robinson 2008). Weather and climate 
research naturally lend themselves to a use-inspired 
approach (Pielke and Carbone 2002). In addition 
to the influence of societal demand, research into 
climate and its impacts is inf luenced by ongoing 
improvements in resources. In particular, increases 
in computational capacity allow our models to be 
increasingly complex, to operate on increasingly 
fine spatial grids, and to quantify more fully the 
uncertainty in our predictions. However, computer 
power is still limited, so these demands compete with 
each other.

This paper asks how, given these ongoing develop-
ments, climate impacts research can most effectively 
underpin and inform adaptation. The focus is primar-
ily on food crops, although the commonality in meth-
odology and the disparity in spatial scale between 
climate models and most impacts models implies 
broader relevance. First, we discuss uncertainty in 
the simulation of climate and its impacts. Second, we 
examine crop modeling methods. A discussion on 
model complexity and spatial scale follows, first for 
impacts models and then for climate models. Finally, 
using existing projects and studies, we ask how, given 
the competing demands on computer power, climate 
impacts research can best use the methods and com-
putational resources at its disposal.

ENSEMBLE CLIMATE IMPACTS ASSESS-
MENT. Climate change prediction contains many 
inherent uncertainties (Schellnhuber et al. 2006): 
uncertainties in projected emissions, and resultant 
concentrations, of greenhouse gases mean that the 
climate forcing cannot be known precisely. The re-
sponse of climate to a projected forcing, as calculated 
by climate models, is also uncertain. Any forecast of 

weather (beyond a few days), climate variability, or 
climate change cannot be made deterministically. 
This is because sensitivity to uncertainty in the model 
initial conditions, as well as uncertainties caused by 
parameterized model physics, limits the predictabil-
ity of the atmosphere. The response of physical and 
biological systems, such as crop growth or disease 
dynamics, to any projected climate also contains 
uncertainties (see, e.g., Mearns et al. 2003).

Multiple climate simulations, known as ensembles, 
are used to sample the inherent uncertainties outlined 
above. Scenarios of future greenhouse gas emissions 
are used to sample the possible ranges of climate 
forcings. Uncertainty in the model initial conditions 
can be assessed by running a model many times with 
different initial conditions. Uncertainty in model 
structure (e.g., representation of atmospheric physics) 
can be assessed by using more than one model (e.g., 
Randall et al. 2007) or by varying model parameters 
(e.g., Murphy et al. 2004; Stainforth et al. 2005). On 
seasonal time scales, ensembles that use more than 
one model can give more skilful results on average 
than any single model ensemble (Hagedorn et al. 
2005). Such multimodel ensembles are an efficient 
way of providing information for climate impacts 
because a range of existing models are used, thus 
making good use of globally available computer re-
sources (see, e.g., Palmer et al. 2004, 2005). Because 
the models used for both seasonal and multidecadal 
time scales are based on simulation of the same 
fundamental processes, skill at the shorter time 
scale in part supports our confidence in longer-term 
projections. However, skill at one time scale does not 
imply skill at the other, since the principal source of 
uncertainty varies with lead time: initial conditions 
are important at seasonal time scales but less so at 
multidecadal time scales, whereas model structure 
is important in both cases.

There are currently efforts to consider holistically 
the broad range of time scales in climate prediction 
and to move toward seamless weekly-to-decadal 
ensemble prediction of the complete climate system 
(see, e.g., WCRP 2007). In particular, decadal time 
scales may prove to have both quality (i.e., skill) 
and value (Troccoli and Palmer 2007). Such systems 
may be able to capture the emergent climate change 
signal. It has been suggested, by using a simple 
model (Cox and Stephenson 2007), that total uncer-
tainty in climate prediction may be at a minimum at 
30–50-yr lead time, when the uncertainty in initial 
conditions will have fallen significantly but the 
uncertainty in greenhouse gas emissions is not yet 
prohibitively large.
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In agricultural impacts, the methods used to 
bridge the gap in spatial scale on which crop and cli-
mate models operate compound the inaccuracy and 
imprecision in the climate model (Hansen and Jones 
2000). Furthermore, current and future adaptive crop 
management practices are not known with precision. 
Despite these uncertainties, a consensus on some 
impacts is emerging. However, such conclusions need 
to be continually updated as knowledge advances. For 
example, even though a consensus is emerging on the 
response of crop yield to mean temperature changes 
(Easterling et al. 2007), the response functions are not 
universally applicable (Challinor et al. 2009). Further-
more, the response of crops to pests, weeds, diseases, 
and climate extremes is still not well understood.

Recent years have seen a move toward the use 
of ensemble methods with impact modeling (e.g., 
Collins and Knight 2007; Lejenäs 2005; Challinor 
et al. 2005a) so that at least some of the uncertainties 
in prediction are quantified. Although the quantifica-
tion of uncertainty is being increasingly recognized 
as important in the broader scientific literature, it is 
only relatively recently that its importance is being 
recognized in regional impacts assessments (e.g., 
Cruz et al. 2007). Because the impacts model itself 
can be a significant source of uncertainty (Challinor 
et al. 2005c, 2008), we now look in some detail at the 
methods available for crop yield modeling.

CROP MODELING FOR CLIMATE IMPACTS 
RESEARCH. There are three broad (and to some 
extent overlapping and complementary) approaches 
to crop yield modeling. The first uses simple em-
pirical (e.g., Lobell et al. 2008) or semiempirical (e.g., 
Iglesias et al. 2000) parameterizations of crop yield. 
This method has the advantage of being applicable 
on large spatial scales, thus facilitating the quanti-
fication of impacts in human terms such as levels of 
risk of hunger (e.g., Parry et al. 2004, 
2005). One disadvantage of this 
method is the potential to introduce 
significant errors through the lin-
earization of the equations for crop 
yield (Challinor et al. 2006) and/or 
the use of monthly data (e.g., Fischer 
et al. 2005), which may not be able to 
account sufficiently for subseasonal 
variability in weather. Interestingly, 
at least one study of this first kind 
reports that the skill of the param-
eterization of crop yield was lowest 
in the tropics (Parry et al. 2004). The 
validity of empirical methods may be 

compromised when used with data outside the range 
for which they were fitted (e.g., climate change).

The second method takes model-derived cli-
mate projections, sometimes scaled down in space 
(Busuioc et al. 2001), to provide inputs to detailed 
process-based crop models (Carbone et al. 2003). This 
method, which has been used by many authors (e.g., 
Izaurralde et al. 2003; Southworth et al. 2002; Luo and 
Lin 1999; Mavromatis and Jones 1999), can capture 
the complex biophysical processes associated with cli-
mate change that are usually overlooked by studies of 
the first kind. However, these models may sometimes 
be overparameterized (Cox et al. 2006). The use of 
many parameters produces results that are location 
specific because the yields depend on the specific 
crop variety, soils, and management practices used. 
Although this can be useful for decision support, it 
presents a problem when estimates over large areas 
are required. While this problem can be overcome 
through the identification of representative farms, 
this choice can itself be problematic (Antle 1996; Luo 
and Lin 1999). Furthermore, unless any downscaling 
methods used are dynamic, there is a risk of nonsta-
tionarity in the downscaling relationships (Jenkins 
and Lowe 2003), thus putting into question their use 
in future climates (Challinor et al. 2005b).

The third method used to quantify the impacts of 
climate change on food production is process-based 
crop modeling at the scale of the climate model. This 
may be carried out using field-scale models, either 
directly (e.g., de Wit et al. 2005; Xiong et al. 2007) or 
in a manner that accounts for subgrid heterogeneity 
(e.g., Irmak et al. 2005; Jagtap and Jones 2002; Haskett 
et al. 1995). Alternatively, a “large area” process-based 
model—with a focus on the influence of weather and 
climate on crop growth and development—can be 
designed to capitalize on known large-scale relation-
ships between climate and crop yield (e.g., Challinor 

Fig. 1. Observed (solid line) and simulated (dashed line) groundnut 
yields for all India, using the General Large-Area Model for annual 
crops (GLAM) driven by observed weather data on a 2.5° grid 
(Challinor et al. 2004). Observed yields have been linearly detrended 
to 1966 levels.
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et al. 2003, 2004). Figure 1 shows that a large-area 
crop model can simulate interannual variability in 
crop yield well when forced with observed weather 
data. The skill seen at the country level masks re-
gional variations in skill. However, the importance 
of low skill in regions that are not major producers 
of the crop is small, since the country-level results are 
area weighted according to cropped area. Simulation 
using climate model output leaves crop simulations 
prone to the propagation of errors from the climate 
model or other input data, which can be significant. 
Despite this, the method has shown promising re-
sults in current climates in India (Challinor et al. 
2005a,b) and in other tropical regions (Osborne 2004; 
Chee-Kiat 2006).

These assessments build confidence in the use 
of this method with climate change scenarios and 
permit the quantification of uncertainty in a man-
ner that is substantially different from the common 
approach of random sampling of uncertainty using 
a range of crops, locations, models, or scenarios (see, 
e.g., Challinor and Wheeler 2008a,b). While large-
area crop modeling can omit important finescale 
information (Baron et al. 2005), the spatial scale of the 
large-area approach becomes increasingly relevant 
to the scale of crop production as computer power 
increases, allowing finer resolution of climate and 
improved climate simulation skill. Further discussion 
on the large-area approach can be found in Wheeler 
et al. (2007) and Challinor (2008). A broader look at 
a range of approaches is presented by Hansen et al. 
(2006).

COMPLEXITY, SPATIAL SCALE, AND CALI-
BRATION OF IMPACTS MODELS. The variety 
of methods used to assess impacts on crop yields can 
lead to large variation in results (see, e.g., Challinor 
et al. 2007b). The range of processes involved in de-
termining yield and the range of associated spatial 
scales make it impossible to simulate the crop–climate 
system entirely realistically. Some sort of aggregation 
of environmental variables is therefore needed to 
assess practically all climate impacts. This process, 
together with the associated process of reductionism, 
masks complexity in the system. The larger the spatial 
scale of the model, the greater the level of aggrega-
tion needed [whether at the input or output stage; see 
Hansen and Jones (2000)]. Therefore, the spatial scale 
of an environmental model is related to its complexity. 
A model should be sufficiently complex to capture 
the response of the system to the environment while 
minimizing the number of parameters that cannot be 
estimated directly from data (Sinclair and Seligman 

2000). The appropriate level of complexity can be 
assessed prior to modeling by testing observed data 
for relationships between weather/climate and the 
impact variable (e.g., Challinor et al. 2003).

Despite a growing interest in food quality (Porter 
and Semenov 2005), yield is often the only output 
variable of interest in studies of the impacts of climate 
change on crops. Apart from remotely sensed data on 
leaf area index (LAI), which can be incorporated into 
crop modeling studies (Guerif and Duke 2000; Jones 
and Barnes 2001), yield and cropped area are also 
often the only observed crop variable available over 
large areas. Hence, modeling over large areas (the first 
and third methods described above) tends to simulate 
only yield and biomass (e.g., Fischer et al. 2005), or 
else a more mechanistic approach is taken, with yield 
as the only variable used to calibrate the crop model 
(e.g., Challinor et al. 2005a). Alternatively, the crop 
model can be calibrated at a site, using more detailed 
data (the second method described above), producing 
more location-specific information.

Where there is a shortage of observed data for 
calibration, a model with many parameters is likely 
to have a relatively large number of unconstrained 
parameters, thus increasing the risk of reproducing 
observed yields without correctly representing the 
processes involved. Such overtuning decreases the 
credibility of the model when it is run with climate 
model output. Through an appropriate choice of 
model complexity, the risk of overtuning can be mini-
mized. Provided this is done, it is likely that a range 
of impacts models can profitably be used, rather than 
having faith in one or two “validated” models. For 
example, in hydrological modeling, there is evidence 
that many models can give a good fit to observations, 
leading some authors to conclude that there may be 
more than one acceptable model (Beven 2006). Thus, 
no single method of determining climate impacts can 
claim to be a panacea. This view is consistent with a 
more generalized analysis of computer simulations of 
real-world processes (Goldstein and Rougier 2004).

Unfortunately, relatively few crop yield studies 
use more than one crop model. Exceptions include 
the study of Ewert et al. (2002), who used three field-
scale crop simulation models and found that they 
were all able to adequately reproduce observations. 
However, they concluded that the relationships that 
determine yield variation at larger spatial scales were 
still uncertain. This was subsequently confirmed by 
Challinor and Wheeler (2008a,b), who combined a 
large-area crop model ensemble with simulations of 
field-scale models, which were carried out to assess 
the robustness of the ensemble results. Such dis-
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agreement between impacts models (as with climate 
models) should be seen as an opportunity to increase 
understanding and ultimately improve model skill. 
Because different models may perform well in dif-
ferent environments (e.g., water- or nutrient-limited 
crop growth), this process of learning is likely to 
create natural opportunities for synergy.

Many of the challenges posed by the integration 
of crop and climate models are similar for other 
biological systems, such as the dynamical systems 
that represent the transmission of infectious diseases 
by vectors. The most important of these diseases is 
malaria. It is estimated that annually over 350–500 
million clinical episodes occur worldwide (WHO 
2005) and epidemics cause up to 310,000 deaths per 
year in Africa (Worrall et al. 2004). Malaria incidence 
has been simulated using output from seasonal en-
semble prediction systems with both a statistical ma-
laria model (Thomson et al. 2006) and a dynamical 
malaria model (Morse et al. 2005). Forthcoming work 
will link climate model output to models of bubonic 
plague (Begon et al. 2006), blue tongue (Purse et al. 
2005), and Rift Valley fever (Lacaux et al. 2007).

A key issue in modeling crop yields and diseases 
is that biological systems have critical thresholds and 
nonlinear responses to the climatic drivers. One ex-
ample is the impact of extreme temperatures during 
the flowering of crop (see, e.g., Wheeler et al. 2000). 
As a result of this nonlinearity, skill in the forecasting 
of weather or climate does not necessarily imply skill 
when that forecast is used to drive an impacts model 
(see Morse et al. 2005).

COMPLEXITY AND SPATIAL RESOLUTION 
IN CLIMATE MODELING. As with impacts mod-
eling, there is range of possible levels of complexity 
and spatial scales in climate models. The spatial reso-
lution of the model determines the spatial scale of the 
processes that can be represented and is therefore an 
important factor in determining model skill (we will 
return to this issue later on). Complexity is also an 
important determinant of skill. Recent decades have 
seen an increasing number of processes represented  
in climate models. The importance of coupling be-
tween the ocean and atmosphere—seen, for example, 
in El Niño–Southern Oscillation—led to the inclu-
sion of ocean models. Similarly, the importance of 
land surface processes for representing weather and 
climate has been increasingly recognized (e.g., Pielke 
et al. 1998). Simulated climate is sensitive to historical 
(Chase et al. 2000; Reale and Dirmeyer 2000; Reale 
and Shukla 2000) and projected (Feddema et al. 2005) 
changes to the land surface. Land surface processes 

have been shown to impact the representation of 
climate and its variability at the regional scale in 
Europe (Heck et al. 2001; Vidale et al. 2003, 2007). 
The importance of representing the water and carbon 
cycles concurrently has also been recognized (Arora 
2002; Bonan 2008). Thus, the next generation of cli-
mate models will in fact be earth system models. The 
skill of dynamical forecast systems has been shown 
to improve following the implementation of more 
realistic land surface parameterizations (Beljaars 
et al. 1996).

Coupled crop–climate models. Continuing with our 
primary theme of crops, we now consider the simu-
lation of cropped land surface within climate/earth 
system models. Because cropped land is managed, we 
must consider not just biological and physical inter-
actions in earth system models, but also human, and 
therefore ultimately socioeconomic, processes. Such 
is the level of complexity that is required if we are to 
simulate real-world processes.

As population, and hence demand for food, con-
tinues to grow, croplands will expand into land pre-
viously occupied by natural ecosystems. Increasing 
demand for biofuels compounds this pressure on land 
use. The associated changes at the land surface may 
have significant impacts on the climate via altera-
tions to the surface energy balance and hydrological 
cycle, such as those that have been observed and 
modeled for past land cover changes. For example, 
the replacement of forests in the eastern United States 
by crops led to a significant summertime cooling 
(Bonan 1997).

Observations suggest that including crop–climate 
feedbacks may improve the skill of seasonal fore-
casts over cropped regions. McPherson et al. (2004) 
observed different weather patterns over the winter 
wheat growing area of Oklahoma compared to the 
adjacent grasslands and attributed this to the differ-
ent seasonal development of vegetated canopy for the 
crop compared to the grasslands. Regional climate 
modeling has shown that including a better represen-
tation of croplands and their dynamical response to 
seasonal weather can improve the simulation of near-
surface climate (Tsvetsinskaya et al. 2001). Therefore, 
including prognostic croplands in seasonal forecast 
models may improve the ability to simulate surface 
climate over croplands, potentially improving crop 
simulation. Osborne et al. (2007) incorporated crop 
growth parameterizations of a large-area crop model 
into the land surface scheme of a climate model, 
thereby developing a tool to examine the importance 
of land–atmosphere feedbacks for crop impact projec-
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tions. However, direct comparison of coupled crop–
climate simulations with offline crop simulations is 
challenging (Wheeler et al. 2007).

It is not only seasonal time scales at which crop–
climate feedbacks may be important. Croplands play 
an important role in the biogeochemical cycling of 
numerous elements, in particular carbon and nitro-
gen. In the past four decades world grain harvests 
have doubled because of an increase in world cropland 
area (~12%) and productivity gains from technology, 
such as high-yielding cultivars, chemical fertilizers, 
and extensive use of irrigation. This increase in crop-
ping system intensity has had considerable environ-
mental consequences (Foley et al. 2005). Assessments 
of environmental change will require representation 
of croplands and their interaction with the biogeo-
chemical cycles (Bondeau et al. 2007; Kucharik and 
Brye 2003).

The benefits of increased resolution. As more computer 
power becomes available for environmental modeling, 
the feasible resolution applied in global climate mod-
eling starts to be comparable to that used in current 
operational weather forecasting. For example, the 
Japanese Earth Simulator supercomputer (Habata et al. 
2004; Yokakawa et al. 1998), with a theoretical peak 
performance of 41 Tflops (26.6 Tflops sustained) was, 
at its introduction in 2002, about one order of magni-
tude more powerful than any computer available to 
individual weather or climate centers and three times 
more powerful than its nearest rival. Moreover, it could 
be dedicated to single, very large computational tasks 

that are impossible to execute on any other computer 
and could sustain a large concurrent number of op-
erational simulations of the more conventional type, 
being the equivalent of several joined research centers 
in one single facility. This machine has been used by 
the U.K.–Japan Climate Collaboration and U.K. High-
Resolution Global Environmental Model (HiGEM; 
Shaffrey et al. 2009) project to perform coupled climate 
model simulations with an atmospheric resolution 
of up to 60 km and an ocean resolution of 30 km. At 
present the 90-km HiGEM model has been integrated 
for several centuries and a higher-resolution version 
(NUGEM) with a 60-km atmospheric model has been 
run for several decades. The speed of such modeling 
systems permits the completion of very high-resolution 
climate integrations within weeks to months.

These developments allow weather phenom-
ena (e.g., fronts, blocking, cyclones, and potentially 
mesoscale convective complexes) to be realistically 
represented in climate simulations. The resolved 
weather (e.g., intense precipitation, winds associ-
ated with cyclones, and storm and river surges) can 
be used with impacts models, providing forcing 
variables at the proper spatial and temporal scales. 
Scientific issues such as the regional distribution and 
frequency of f loods and droughts can therefore be 
treated in “two-way” coupling mode, in which both 
the impact of localized phenomena associated with 
weather and their feedbacks to the atmosphere can be 
treated jointly. This localized skill was previously the 
exclusive domain of regional climate models, which 
are normally run as stand-alone downscaling tools, 

Fig. 2. (top) June–August precipitation climatology (1 Jan 1979–31 Mar 1996—the AMIP2 period) for a chain of 
atmospheric climate models with increasing resolution from left to right: HadGAM (N96 = 135 km), HiGAM 
(N144 = 90 km), and NUGAM (N216 = 60 km). (bottom) Also shown are three observational datasets, from left 
to right: CMAP (1° = 100 km, approximately), CRU (0.5° = 50 km, approximately) and TRMM+GPCP (0.25°–1°, 
depending on the region).
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prior to running the impacts models themselves. 
Phenomena such as tropical cyclones are, however, 
hardly tractable with regional models, given the wide 
oceanic areas over which they develop and track and 
the high level of variability of their coupling with the 
mean state climate.

Figure 2 illustrates the level of regional detail in 
the simulation of precipitation that can be achieved 
by 60- and 90-km global atmospheric models over a 
135-km model. For models with higher resolutions, 
the rainfall interacts with the orography and coast-
lines in a manner more similar to the high-resolution 
observational dataset. The increase in resolution is 
driven by the desire to improve the simulation of 
climate. Both the increase in accuracy and the in-
crease in resolution per se are beneficial to impacts 
assessments also.

Increasing resolution globally, then, is one way 
to improve the skill of our climate impacts assess-
ments. Resolution can also be increased locally. The 
use of variable-resolution models for the atmosphere 
is an area of active research (e.g., Läuter et al. 2007; 
Bonaventura and Ringler 2005; Fournier et al. 2004; 
Bacon et al. 2000; Jablonowski et al. 2006; Randall 
et al. 2002; Weller and Weller 2008). This allows high 
resolution in an area of interest, or where errors are 
large, without the prohibitive 
expense of high resolution 
globally. These techniques may 
also prove more efficient on 
massively parallel computers 
because calculations on lati-
tude–longitude grids are done 
on latitude bands, a system that 
does not parallelize well. Vari-
able resolution is an attractive 
alternative to using a regional 
model (Fox-Rabinovitz et al. 
2006) both because regional 
models have large errors near 
the boundaries (e.g., Jones 
et al. 1997, 2004) and because 
there is no possibility for the 
small scales resolved by the 
regional model to inf luence 
global scales. Adaptive grids 
may have an immense benefit 
for resolving areas of severe 
weather or mountains—areas 
that degrade the accuracy 
of current models because 
they are underresolved—more 
accurately.

MAKING BEST USE OF OUR COMPU-
TATIONAL RESOURCES. Despite the above 
ongoing increases in computer power and improve-
ments in techniques, resources are still finite. It is 
therefore likely that the impacts modeler will con-
tinue to be faced with a choice between adequate 
ensemble size and adequate spatial resolution. It is 
also clear that complexity is important for the impacts 
modeler because complexity can be associated with 
increases in the skill of the climate simulations. The 
impacts model can also be part of that complexity, 
as it is in coupled crop–climate modeling. Thus, 
resources are divided among the simulation of pro-
cesses (complexity), the length of simulations, the 
sampling of uncertainty (ensemble size), and spatial 
resolution (grid cell size), as shown in Fig. 3.

Broadly speaking, short-range (< 1 week) weather 
forecasting has tended to date to use increases in 
computer power to increase resolution, whereas 
climate modeling has tended to focus primarily on 
simulating an increasing number of processes (e.g., 
chemical and biological process in the ocean and the 
land), with some additional sampling of uncertainty 
using ensembles. However, because the number of 
interactions among physical, chemical, and biological 
systems increases as the number of resolved processes 

Fig. 3. Schematic representation of the trade-offs in climate modeling. 
Additional computer power is required whenever the spatial resolution 
or simulation length is increased or when additional ensemble members 
or processes are added. Triangles represent surfaces of approximately 
constant computer power.
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increases, it is likely that the additional complexity 
brings with it demands for increased resolution and 
increased sampling of uncertainty. Climate change 
simulations are particularly expensive computation-
ally because they must extend many decades into the 
future, and often the past, using a short time step 
(significantly less than 1 hour).

One size does not f it all. How should the choice 
of modeling approach be made? Methods vary 
according to the particular research objectives 
identified. Some projects focus on a limited set 
of processes only. For example, to improve repre-
sentation of land surface processes, a project has 
been set up to enable off line running (i.e., with 
prescribed meteorology and thus no feedbacks to 
the atmosphere) of the land surface model of the 
Unified Model of the Met Office. The resulting 
model, the Joint U.K. Land Environment Simulator 
(JULES; www.jchmr.org/jules/), is under ongoing 
development that is independent of that of the par-
ent climate model. Because of its focus on earth 
system processes and feedbacks, the U.K. project 
Quantifying and Understanding the Earth System 
(QUEST; http://quest.bris.ac.uk/) takes a more in-
tegrative approach to coupled modeling. The focus 
in both of these projects is on processes rather than 
on ensembles or on high-resolution modeling. In 
contrast, the U.K. HiGEM and U.K.–Japan Climate 
Collaboration projects are focusing on the benefits 
of increased spatial resolution, as outlined above.

The diversity of modeling approaches creates 
opportunities for synergy. Consider, for example, two 
European Union Framework 6 projects: ENSEMBLES 
(www.ensembles-eu.org/) is a program working 
on the prediction of climate variability and climate 
change at lead times from seasons, through decades, 
to centuries. Research is centered on the estimation 
of uncertainty and the investigation of feedbacks in 
the earth system. African Monsoon Multidisciplinary 
Analyses (AMMA; www.amma-international.org) 
is an observational and modeling program that is 
investigating the West African monsoon. It is made 
up of a series of pan-national and national projects 
and has developed from a French initiative. It aims to 
improve our understanding of the rainfall variability 
in the region and to provide the underpinning science 
to allow this knowledge to be applied to the rain-fed 
agricultural systems, water resource development, 
and human health in the region.

ENSEMBLES, then, has a focus on long-range 
prediction with a global remit, whereas AMMA is a 
program driven by regional observation and backed 

up by modeling. What both programs have in com-
mon is the need to connect to users of the modeling 
and observational products. This commonality 
between the two programs has lead to a formalized 
agreement for the ENSEMBLES work to make a sec-
ondary focus on West Africa. Both programs have 
cutting-edge themes: in ENSEMBLES this is based 
on large computer resources being made available 
to run relatively low-resolution ensembles of global 
models over a range of forecast lead times. AMMA, 
in contrast, focuses on higher-resolution modeling. In 
AMMA, state-of-the-art observations from aircraft 
and ground-based instruments were performed to 
help diagnose errors in current forecast model per-
formance and to allow the next generation of models 
to be improved. While both programs integrate 
across a spectrum of applied theoretical activities, 
ENSEMBLES sits further from the immediacy of 
application of AMMA.

This analysis highlights the importance of comple-
mentarity across studies, which increases the effi-
ciency with which resources are used. The choice of 
focus depends on the problem being posed: the time 
scale of interest, the size and location of the region of 
interest, its meteorology (especially the predictability 
of climate), and the perceived needs of stakeholders. 
Synthesizing the broad range of knowledge that re-
sults from this work is a challenging task. Synthesis 
reports, such as those of the IPCC (Easterling et al. 
2007), and projects, such as those described above, 
facilitate creative dialogue. They also create synergy 
by combining resources effectively to produce large 
datasets that can be used by impacts modelers.

Achieving synergy. How is synergy best achieved? Pielke 
and Carbone (2002) conclude that in the quest to 
meet society’s needs, strong leadership in weather 
and weather impacts research is required. Is this the 
case for climate impacts research? The funding pro-
cess involves creative thinking by researchers, who 
must identify novel approaches if their ideas are to 
be funded. Some degree of synergy is implicit in this 
process. Of course, leadership is required in the set-
ting of the funding agenda. Perhaps the greatest chal-
lenge here is to encourage the most productive mix of 
blue skies and applied research. In reality, there is a 
spectrum of approaches between these two, including 
fundamental issue-driven (e.g., Robinson 2008) and 
use-inspired (e.g., Pielke and Carbone 2002) research. 
In the field of climate impacts, these approaches can 
provide some of the tools needed to assess vulner-
ability (e.g., O’Brien et al. 2004; Challinor et al. 
2007b; Cox and Stephenson 2007; Lobell et al. 2008) 
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and adaptive capacity (e.g., Kates 2000; Fraser 2007; 
Challinor et al. 2007a, 2008).

Development of these tools is facilitated by dia-
logue and cooperation between academics in relevant 
disciplines. This can be encouraged through specific 
studies (e.g., Huntingford et al. 2005), larger projects 
such as those outlined above, and issue-focused 
discussion meetings (e.g., Slingo et al. 2005). Under-
pinning this, awareness of the need for communica-
tion, synergy, and issue-based approaches should 
be promoted from school to the doctoral level and 
beyond.
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