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Abstract
Tools for projecting crop productivity under a range of conditions, and assessing adaptation
options, are an important part of the endeavour to prioritize investment in adaptation. We
present ensemble projections of crop productivity that account for biophysical processes,
inherent uncertainty and adaptation, using spring wheat in Northeast China as a case study. A
parallel ‘vulnerability index’ approach uses quantitative socio-economic data to account for
autonomous farmer adaptation.

The simulations show crop failure rates increasing under climate change, due to increasing
extremes of both heat and water stress. Crop failure rates increase with mean temperature, with
increases in maximum failure rates being greater than those in median failure rates. The results
suggest that significant adaptation is possible through either socio-economic measures such as
greater investment, or biophysical measures such as drought or heat tolerance in crops. The
results also show that adaptation becomes increasingly necessitated as mean temperature and
the associated number of extremes rise. The results, and the limitations of this study, also
suggest directions for research for linking climate and crop models, socio-economic analyses
and crop variety trial data in order to prioritize options such as capacity building, plant breeding
and biotechnology.
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S Online supplementary data available from stacks.iop.org/ERL/5/034012/mmedia

1. Introduction

The world faces an enormous challenge over the coming
decades, as a combination of environmental change and a
growing population make food security harder to achieve.

A number of studies have examined aspects of this multi-
facetted issue, demonstrating that there is no panacea, since
inherent trade-offs exist in maintaining food security [1, 2].
However, it has proven difficult to include this qualitative
increase in understanding within quantitative models of future
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crop production [3]. Part of such an effort involves the
development of tools to project crop productivity under a
range of different climate, technological and socio-economic
conditions. We focus here one aspect of this issue: the
constraints and opportunities associated with climate change.
As mean temperature increases, the magnitude of impacts on
ecosystems tends to increase [4]. Furthermore, there may be
threshold values of carbon dioxide, or of mean temperature,
beyond which ecosystem services undergo a step change in
productivity [5, 6]. Opportunities associated with climate
change include productivity gains through the expansion of
land suitable for crops as climate changes.

Progress in understanding the biophysical impact of
climate change on crops has been significant and has included
an understanding of the importance of changes in both
the mean and extremes of climate [7]. Changes in mean
temperatures can shorten the time to maturity of a crop, thus
reducing yield. Experimental studies have also shown that even
a few days of temperature above a threshold value, if coincident
with anthesis, can significantly reduce yield, through affecting
subsequent reproductive processes [8]. Irrespective of whether
agricultural technology is able to increase yields over the
coming decades, drought and heat stress are likely to be
increasingly important in determining crop productivity in
many regions [4]. This issue is currently being addressed
through investment in the development of drought and heat-
tolerant crops, and also through examining how to empower
and encourage farmer adaptation to climate change at a range
of spatial scales [9]. Methods have also been developed
to explore and quantify exposure to socio-economic and
climatic stresses across a range of sectors at a range of
scales, from household through to national [10, 11]. The
complexity of these stresses, and of the interactions between
them, means that projecting the likely influence of climate
change on food systems requires careful selection of the
aspects studied; selecting too narrow a part of the system
is likely to lead incorrect conclusions. Thus explicit and
careful account of uncertainty, such as is now common in
climate modelling through the use of ensembles [12], is critical
to projecting changes in food productivity. Ensemble and
perturbed parameter approaches are becoming an increasingly
common method of projecting future yields, assessing the
relative contributions of crop and climate uncertainty [13],
optimize parameters [14] and support the development of
probabilistic assessments [15].

The projection of future impacts of climate is particularly
difficult in the case of extreme weather and climate events.
Integrating our quantitative understanding of the future
likelihood of extremes with efforts to understand how farmers
may adapt requires weather and climate data at high temporal
resolution and process-based crop models that can quantify the
importance of high-frequency variability, as well as grounded
socio-economic insights into farm management options. Thus
studies tend to be either focused relatively narrowly, using
process-based models to determine the response of crops to
weather and climate (see e.g. [7]), or else they do not consider
biophysical processes at all. For example, empirically based
studies (e.g. [16]) tend to analyse the impacts of climate on

mean yields at large scales, and implicitly include autonomous
adaptation, but do not analyse extreme climate events; though
there are notable exceptions [17].

Process-based modelling can be used to analyse extremes
of weather and climate using known causal mechanisms.
Integrated assessments (e.g. [18]) tend to focus less on
fundamental processes, but have the advantage of combining
biophysical and broader socio-economic drivers of change,
such world trade or access to land or labour. Accounting
for both the biophysical and socio-economic implications of
climate change within a single process-based model has proven
difficult. A first step in this direction is the development
of methods to explore the socio-economic reasons why crop
losses can be high during relatively minor meteorological
droughts, whilst in other cases, crop losses can be minimal
during relatively large meteorological droughts [19]. Through
this work, and subsequent modelling [20], a framework is
emerging whereby socio-economic factors can be included
in crop-climate models, thus permitting an estimate of how
current and future socio-economic conditions may affect
adaptation [7].

Projecting future crop productivity requires that three
elements are captured: first, the fundamental biophysical
processes that determine productivity; second, the uncertainty
associated with those processes; and third, the influence of
adaptation. This study aims to quantify these influences
using two parallel and linked approaches: process-based
crop modelling and an analysis of adaptive capacity in the
region based on the calculation of an index that quantifies the
vulnerability of crop yields to drought. Subject to data and
simulation constraints, the methodology is applicable to any
crop in any region of the globe. We choose spring wheat
in northeast China, a critical grain producing region where
climate change has the potential to increase vulnerability if
farmers are unable to adapt under the rapidly changing socio-
economic conditions.

2. Materials and methods

2.1. Crop and climate simulation

Crop yield data and socio-economic data were obtained
from the Chinese Natural Resources Database, Institute
of Geographical Sciences and Natural Resources Research,
Chinese Academy of Sciences (www.naturalresources.csdb.
cn/index.asp). Climate model output was taken from the
coupled atmosphere–ocean simulations of the Hadley centre
quantifying uncertainty in model prediction (QUMP) project in
which climate-modelling uncertainties are sampled by varying
uncertain model parameters [21]. The data used were taken
from the unperturbed baseline climate (1950–1989) and the
seventeen-member projection ensemble forced by the SRES
A1B emissions scenario for 1990–2099. We used daily solar
radiation, rainfall and maximum and minimum temperature
output from the model. The study region comprises 18 climate
model grid cells across four provinces (presented in figure 1).
The baseline simulation period was the maximum possible
given the data—i.e. the period for which both historical climate
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Figure 1. The study region, showing the four provinces and the
model grid with simulation cells shaded.

simulation and observed crop yield data exist, namely 1980–
1989. The projection period was the full 1990–2099 period
simulated by the perturbed parameter ensemble (PPE) study.
More details of the climate ensemble are provided in the
supplementary data, section S1 (available at stacks.iop.org/
ERL/5/034012/mmedia).

Crop yields were simulated using the general large
area model for annual crops (GLAM; [22]). This model,
which is freely available for non-commercial use via a
licence agreement5, has been used to simulate the mean and
variability of yields in current and future climates across the
tropics [22–31]. The model was calibrated and run according
to standard parameter perturbation procedures that account for
uncertainty in the simulation of both baseline and projected
yields. As with the vast majority of crop modelling studies,
the model does not attempt to simulate trends in yield due to
changes in technology; rather it quantifies the impact of climate
variability and of the trend due to rising CO2 concentrations.
In order to account for the uncertainty due to the technology
trend, the model was calibrated and run using values of mean
yield for the four year periods at the beginning and end of
the baseline period. The baseline simulations also accounted
for uncertainty in the planting date, by using two plausible
values of the first day of the planting window, resulting
in four baseline simulations. The projection simulations,
in addition to these four parameter perturbations, quantified
uncertainty due to the magnitude of the CO2 fertilization effect,
by co-varying the parameters responsible for transpiration
efficiency and water use, resulting in eight parameter sets.
These eight parameter sets were used with all 17 of the
realizations of future climate, resulting in 136 projections.
Each of these projections was carried out for four adaptation
cases: none, temperature, water, and temperature plus water.
Temperature adaptation refers here to complete tolerance to
threshold temperature exceedance during anthesis—a process
discussed briefly in section 1. Water adaptation removes any
limitations on growth due to water stress. Thus the three
adaptation simulations represent an upper limit on the extent

5 See www.see.leeds.ac.uk/research/icas/climate change/glam/glam.html.

of biophysical adaptation possible. Progress towards this
limit may be achieved through using or developing appropriate
stress-tolerant varieties or, in the case of water, through ample
irrigation. More details of crop model, its calibration and
the simulations performed are presented in the supplementary
data, section S2 (available at stacks.iop.org/ERL/5/034012/
mmedia).

2.2. Vulnerability index

The crop modelling described above accounts only for the
biophysical processes determining yield. A parallel approach
was used to assess the vulnerability of crop yield to drought
indicated by socio-economic metrics. This method uses
modelling based on the province-scale socio-economic data to
account for cases when crop losses were high during relatively
minor meteorological droughts versus cases when crop losses
were minimal during relatively large meteorological droughts.
Mechanisms leading to this observation include, for example,
the use of farm labour to minimize the impact of poor irrigation
systems [32]. Following [20], a vulnerability index (VI) was
defined as the ratio of a crop failure index to a drought index.
The crop failure index is the detrended yield for that year,
which represents an ‘expected harvest’ based on a long-term
trend, divided by the actual harvest for the year (H). The
drought index is the mean growing season rainfall, averaged
over the full time period, divided by the actual rainfall in
a season. This is equivalent to an anomaly approach, with
high indices indicating below-average values. Thus a high
vulnerability index identifies years and/or regions where the
yield loss was large relative to the size of the drought. A low
value of VI indicates that the efficacy of the socio-economic
adaptation to drought is high, for example due to good water
management, increasing fertilizer, per capita investments in
agriculture, and falling numbers of rural households (see
section 3.1). The analyses used here differs in only three ways
from that of [20]: (i) March to August rainfall was used instead
of annual, since this matches the core crop cultivation period;
(ii) yield was used, instead of production, in order to enable
combination with crop model results; (iii) the time period used
was 1980–2001, so that the analysis is representative of the
baseline period. The period chosen for the VI analysis extends
beyond the baseline period, in order to gain a greater sample
of values. The sensitivity of VI to this choice is not large,
except for when an earlier starting year—1968—is chosen,
and the maximum VI rises from 1.51 to 2.06. However, this
results in very little difference in projected crop failures from
the GLAM no-adaptation simulations, since any at value of
VI above 1.51 is associated with sufficiently high vulnerability
that no significant adaptation takes place.

The above analysis resulted in a time series of historical
vulnerability index (VI) for each of the four provinces. These
time series were reduced to three scenarios of VI (low, medium
and high), each consisting of a single value for the entire
spatio-temporal domain. These values were the minimum,
mean and maximum values of historical VI across the four
provinces and across the full time series (0.54, 0.97, and 1.51,
respectively). It is unlikely that any of these values is a truly
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(a) (b)

Figure 2. The percentage of harvests failing under no adaptation (‘none’) and the three biophysical adaptation options for crop failure, which
is defined as yields less than (a) one and (b) two standard deviations below the corresponding baseline mean. Each box and whiskers shows
the median, inter-quartile range and maximum and minimum values, calculated from the 136 projected 110-year time series of crop yield. The
horizontal line shows the baseline failure rate, which is the average of the failure rates in the four baseline simulations.

representative time series of VI, since VI is itself a function of
yield and fluctuates from year to year. However, constructing
a time series of VI with the proper covariances is likely taking
the analysis beyond its domain of applicability, since it would
be overly prescriptive and insufficiently explanatory.

The crop modelling and VI analyses were combined by
applying these scenarios of VI to drought-induced crop failure
events identified by the crop model (i.e. those years where the
none and water simulations described above resulted in crop
failure and no crop failure, respectively). For each grid cell and
each ensemble member, model crop failures were identified as
those years when simulated yields were less than either one
or two standard deviations (of the baseline simulation time
series with the corresponding planting window and calibration
parameter) below the projected time series mean. For each
of these identified failures, a ‘socio-economic’ yield anomaly
was calculated, by using the PPE rainfall anomaly and the
vulnerability index. This yield anomaly was used to determine
the number of ‘socio-economic’ crop failures, defined using
the same yield threshold as for the model crop failures. By
quantifying the number of model crop failures that are deemed
avoidable for a given value of VI, this method resulted in an
assessment of the potential for socio-economic adaptation to
water stress.

The methods used have the advantage of quantitatively
integrating biophysical and socio-economic approaches to
the prediction of crop failure. Weaknesses include the
uncertainties outside of the four quantified (i.e. climate,
planting date, response to CO2 and crop model calibration) and
the omission of non-climatic drivers in the crop model. Thus
field-based modelling studies and inter-comparisons would
complement the modelling results presented here (see [7]). In
addition, the crop model takes no account of flood damage. We
note also that the uncertainties analysed have only been partly
quantified—the uncertainty in climate, for example, is for one
climate model under an A1B scenario only. No attempt has
been made to project changes in farming practice out to the
end of the century. Nonetheless, the VI analysis does provide
a tentative indication of the influence of farming methods on
the incidence of crop failure. Also, the fundamental processes

simulated by the crop model (extremes of water and heat
stress in particular) are likely to continue to be key drivers of
crop yield despite spatial and temporal variation in the crop
cultivation methods used; particularly since ongoing increases
in extreme events are expected under climate change [33]. We
also note that the vulnerability index analysis is predicated on
the relationship between yield anomaly and VI—and hence
implicitly seasonal total rainfall—being due to short-term
farmer adaptation. In reality, errors in observed yield and
rainfall, as well as other processes such as the impact of sub-
seasonal rainfall variability, weaken this relationship.

3. Results and discussion

3.1. Options for adaptation

3.1.1. Biophysical adaptation. The performance of the crop
model was assessed before proceeding with the projections to
the end of the century (supplementary data section S3 available
at stacks.iop.org/ERL/5/034012/mmedia). Figure 2 shows the
percentage of harvests failing across the full scenario period
and across all seventeen model grid cells. Without adaptation,
the percentage of harvests failing is in all cases higher than
the baseline value, confirming the importance of heat and
water stress quantified elsewhere (e.g. [33]). Comparing the
biophysical adaptation scenarios across figures 2(a) and (b)
shows that water stress plays a more important role than
temperature stress for yields between one and two standard
deviations below the baseline mean. For crop failures defined
as two standard deviations below the mean, adaptation to water
and temperature stress each have similar potential to maintain
crop failure at approximately the baseline rate. Temperature
and water adaptation together reduce crop failure to below
the baseline value. Whilst the analysis presented here stops
short of identifying specific varieties for drought and/or heat
tolerance, methods do exist to more closely link modelling
work with field studies in order to assess the potential for
adaptation contained within existing germplasm (e.g. [28, 34]).

The above analysis examines the potential for adaptation
across the whole projected time series, with no assessment
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(a) (b)

Figure 3. The percentage of harvests failing under no adaptation as a function of increase in (a) global mean temperature (GMT) and (b) local
mean temperature (LMT), for the full 136-member ensemble of crop yield. The numbers in brackets indicate the number of data points (note
that the 6◦–8◦ bin has a low population compared to the other three bins). GMT increase is defined using Jan–Dec data referenced to the
average GMT over the full baseline period. LMT increase is defined using the crop growth cycle period and is referenced to the average LMT
over the full baseline period. Crop failure is defined as yields less than two standard deviations below the corresponding baseline mean. Each
box and whiskers shows the median, inter-quartile range and maximum and minimum values. The horizontal line shows the baseline failure
rate, which is the average of the failure rates in the four baseline simulations.

(a) (b)

Figure 4. The percentage of harvests failing under no adaptation (‘none’), with full adaptation to water stress (‘water’) and for three scenarios
of vulnerability index (min, mean and max—0.54, 0.97 and 1.51) for crop failure defined as yields less than (a) one and (b) two standard
deviations below the corresponding baseline mean. Each box and whiskers shows the median, inter-quartile range and maximum and
minimum values, calculated from the 136 projected 110-year time series of crop yield. The horizontal line shows the baseline failure rate,
which is the average of the failure rates in the four baseline simulations.

of the manner in which this may change over time as the
magnitude of climate change increases. In studies of the
impacts of climate change, and in key syntheses such as that
of the Intergovernmental Panel on Climate Change [35], mean
temperature can provide a convenient metric for the magnitude
of climate change, since it measures one of the causal factors
contributing to crop yield change. Figure 3 presents the
projected yields subsampled according to both global and local
mean temperature increase. In both of these cases, crop failure
becomes increasingly likely as mean temperatures rise. Both
the median and maximum crop failure rates increase with
temperature, with increases in the maximum failure rate being
greatest. This increase is due to heat stress during anthesis,
as can be seen by comparing figure 3 with supplementary
figure S1 (available at stacks.iop.org/ERL/5/034012/mmedia).
Thus, adaptation to heat stress becomes increasingly important
as mean temperature, and the associated number of extremes,
rise. Whilst there is no full consensus in the literature on the
response of crops to local mean temperature [13], this result
is consistent with the results of controlled environment and

field-scale studies [8, 36], as well as analyses of larger-scale
yields [17].

3.1.2. Socio-economic adaptation. The performance of
the VI analysis was assessed before proceeding with the
generation of scenarios from the vulnerability index model
(supplementary data section S3 available at stacks.iop.org/
ERL/5/034012/mmedia). The three scenarios from the VI
model are compared to the crop model results in figure 4.
For crop failures defined as one standard deviation below the
baseline mean, it is clear that some socio-economic adaptation
is possible, but that there is insufficient precision in the value
of VI to determine the extent—all that can be said is that
the degree of adaptation lies between very near the maximum
and near the minimum adaptation possible, as indicated by
the crop model. For two standard deviation crop failures,
however, there is strong potential for adaptation to extremes
of water stress, with very nearly all the biophysical potential
identified by the crop model simulations being realized in all
three of the VI scenarios. Since the time series of historical
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VI showed no temporal trends (supplementary data section S3
available at stacks.iop.org/ERL/5/034012/mmedia), it is clear
that significant adaptation to future climates may be possible
with current socio-economic conditions.

The values of vulnerability index in this study are
based on the recent past (1980–2001). They therefore
represent a likely lower limit on socio-economic adaptation,
since the vulnerability of crop yields to drought may be
expected to decrease due to agricultural modernization [19].
Previous studies in northeast China have shown that the
vulnerability of wheat yields to drought is correlated with
data representing access to capital and land: increasing
fertilizer, per capita investments in agriculture, and falling
numbers of rural households are all associated with reduced
vulnerability [20, 37]. GDP, and the share of GDP generated
by agriculture, are both important proxy variables for these
changes [38]. For the current study, no significant correlations
were found between vulnerability index and GDP. This may
in part be due to a short time period, a lack of discrimination
in the data between winter and spring wheat, a lag between
investment and the impact of investment on vulnerability.
Hence whilst, GDP may continue to be one quantitative
proxy for adaptive capacity and vulnerability, specific macro-
and micro-level political and socio-economic contexts are
important in assessing future vulnerability (see [37, 39, 40]).
For example, countries in economic and political transition
might be expected to be highly vulnerable to drought, since
traditional drought coping strategies may be in declines, whilst
more modern strategies may not yet be in place.

3.1.3. Prioritizing adaptation efforts. The importance
of socio-economic context in assessing future vulnerability
of crop yields to drought suggests that there is a need
to focus on targeted measures to increase the resilience
of cropping systems, rather than rely on autonomous
adaptation. These measures may include institutional policies
to support adaptation; schemes to ensure that the requisite
crop varieties are available to farmers; crop insurance
schemes or weather derivatives to aid management of
climate variability; plant breeding; and building capacity for
agricultural extension services to effectively prepare farmers
for extreme events [41, 42]. Simulation results, such as
those presented here, can form part of the body of evidence
used to prioritize these methods. For example, arguments
can be made for a focus on addressing either water scarcity
(e.g. [43, 33]) or temperature stress (e.g. [40]). The analysis
above (figure 2) suggests that where high stability in yield
is required (i.e. crop failure threshold one standard deviation
from the mean), reducing water stress may more beneficial
than reducing temperature stress. However, in addition to the
potential benefits, the costs of—and fundamental physiological
limits to—achieving reductions in abiotic stresses must be
considered.

Through focusing on crop failure, this study has
highlighted the importance of future climate variability, on
seasonal to sub-seasonal timescales, in determining crop yield.
The effect of mean temperature, mediated through changes
in crop development rate and subsequent duration, is also

important in this regard. Whilst not the case for the current
study, this process can be the dominant influence on yield in the
absence of a change in crop variety [24, 25]. However, longer
duration varieties can be developed to compensate for increases
in mean temperature (e.g. [13]), thus mitigating this effect.
Whether the dominant process is due to means or extremes,
detailed process-based modelling of crops, combined carefully
with observations of physiological traits, can contribute to this
effort by informing plant breeding (e.g. [44]).

Biophysical and socio-economic approaches to adaptation
are inherently linked. The development of stress-tolerant
crop does not naturally lead to its availability to the
farmers who need it, for example. Thus, it is difficult
to accurately quantify the relative costs and benefits of the
available adaptation options. Nonetheless, the relationship
between mean temperature increase and crop failure (figure 3)
demonstrates the importance of this endeavour. The work
presented here shows the potential for both biophysical and
socio-economic measures to provide adaptation to climate
change.

3.2. Limitations and future work

Some of the limitations of this study (see section 2.2)
indicate possible topics for future progress in research. The
crop model simulations focus on the response of crops to
climate, ignoring other important drivers of crop yield. For
example, increases occurrence of pests and diseases may
result in additional stresses that cannot easily be adapted to.
The simulations also ignore socio-economic drivers of crop
productivity. Conversely, the vulnerability analysis assumes
that in all instances when rainfall and crop yield are not
correlated, this is due to socio-economic adaptation; it does
not account for, for example, sub-seasonal rainfall variability,
as the crop model does. These limitations are the reason for
presenting these analyses together, rather than only one of
them. They also point the way towards improved methods in
the future. In particular, the work presented here suggests the
following areas of research.

(1) If we are to understand the potential for biophysical
adaptation of crop productivity to climate change, existing
crop germplasm needs to be linked with crop models in
a way that is relevant to regional-scale production. Such
work has begun (e.g. [44, 13, 45]). Further progress
is likely to result from closer integration of models
with detailed field trial data, for example through the
use of ‘virtual crops’ that can be compared to both
existing germplasm and the potential for new varieties
through breeding (see e.g. [46]) and biotechnology. Closer
integration of this kind is starting to take place, for
example within the Climate Change, Agriculture and Food
Security programme (www.ccafs.cgiar.org).

(2) The dependence of crop failure rates on future climate, and
the inherent uncertainty in prediction of future climates,
implies a need for end-to-end analyses of the cascade of
uncertainty from climate to crop production. Through
understanding this causal chain of uncertainty, key
observations needed to constrain ensemble simulations
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may be found. If such analyses can be conducted
from a decision-making perspective—rather than being
motivated purely for the sake of understanding, they may
permit the development of risk-based, targeted adaptation
plans. Efforts to take a decision-based approached have
increased in recent years (see e.g. [47], www.equip.leeds.
ac.uk).

(3) Food security research involves many perspectives. A
key challenge is integrating these perspectives holistically
using appropriate quantitative and qualitative methods.
This study, amongst others (e.g. [48]), can be seen as
a first step in one aspect of this integration. It may
be that biophysical and socio-economic perspectives can
be integrated more closely, for example by using socio-
economic variables to constrain crop model parameters,
or by seeking to explain discrepancies between observed
and simulated yields using socio-economic variables [49].
However such integration is achieved, it should lead
to a more complete understanding of the response to
climate change of the human and biophysical elements
of crop production. This in itself should improve our
understanding of how national and regional policy can be
used to support adaptation, for example through improved
access to suitable crop varieties.

4. Conclusions

The results from this study suggest that climate change will
result in increasing spring wheat crop failure in northeast China
due to increasing extremes of both heat and water stress. The
simulations show significant potential for adaptation through
both socio-economic and biophysical measures. The methods
used could form part of a methodology to link climate and
crop models, socio-economic analyses and crop variety trial
data. By examining at the regional scale the range of abiotic
stresses likely to be experienced by crop production systems
in the future, the relative importance of these stresses could
be determined using a risk-based or probabilistic framework.
This work could in turn be used with analyses of current and
potential future germplasm, and socio-economic conditions,
in order to prioritize efforts to adapt regional-scale crop
production to climate change, using a range of measures such
as policy, plant breeding and biotechnology.
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