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Abstract
Global climate models (GCMs) have become increasingly important for climate change
science and provide the basis for most impact studies. Since impact models are highly
sensitive to input climate data, GCM skill is crucial for getting better short-, medium- and
long-term outlooks for agricultural production and food security. The Coupled Model
Intercomparison Project (CMIP) phase 5 ensemble is likely to underpin the majority of
climate impact assessments over the next few years. We assess 24 CMIP3 and 26 CMIP5
simulations of present climate against climate observations for five tropical regions, as well as
regional improvements in model skill and, through literature review, the sensitivities of impact
estimates to model error. Climatological means of seasonal mean temperatures depict mean
errors between 1 and 18 ◦C (2–130% with respect to mean), whereas seasonal precipitation
and wet-day frequency depict larger errors, often offsetting observed means and variability
beyond 100%. Simulated interannual climate variability in GCMs warrants particular
attention, given that no single GCM matches observations in more than 30% of the areas for
monthly precipitation and wet-day frequency, 50% for diurnal range and 70% for mean
temperatures. We report improvements in mean climate skill of 5–15% for climatological
mean temperatures, 3–5% for diurnal range and 1–2% in precipitation. At these improvement
rates, we estimate that at least 5–30 years of CMIP work is required to improve regional
temperature simulations and at least 30–50 years for precipitation simulations, for these to be
directly input into impact models. We conclude with some recommendations for the use of
CMIP5 in agricultural impact studies.
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1. Introduction

The impacts of climate change on agriculture are highly
uncertain [1–3]. There is some consensus on the sign
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Figure 1. Regions and countries analyzed in the present study. For visualization purposes, country names were reduced to their 3-letter
unique identifier (ISO), and are noted as follows: Andes: COL (Colombia), ECU (Ecuador), PER (Peru), BOL (Bolivia), PRY (Paraguay);
East Africa: ETH (Ethiopia), UGA (Uganda), KEN (Kenya), TZA (Tanzania); West Africa: SEN (Senegal), MLI (Mali), NER (Niger), BFA
(Burkina Faso), GHA (Ghana); Southern Africa: MOZ (Mozambique), ZWE (Zimbabwe), BWA (Botswana), NAM (Namibia), ZAF (South
Africa); South Asia: IND (India), NPL (Nepal), BGD (Bangladesh).

of change, however, with negative effects expected on
tropical annual cereals and grain legumes [1, 2, 4, 5],
and positive impacts predicted for root crops [4, 6]. In
assessing such impacts and any required adaptation options
to abate them, future projections of climate and agricultural
systems play an important role [7–9]. Nonetheless, future
outlooks of agricultural production and food security
are contingent on the skill of GCMs in reproducing
seasonal rainfall and temperatures [10–12]. Thus, accurate
climate change projections are important for developing
appropriate and effective adaptation strategies and better
target global emissions reduction goals. In improving
projections, enhancing our understanding of important modes
of variability [13, 14], the role of the different forcings in
the climate system [15], as well as the responses of plants
to environmental factors [16] are key steps to reducing the
uncertainties that can potentially constrain adaptation [17].

The Coupled Model Intercomparison Project (CMIP) has
significantly contributed to these needs, as it has coordinated
nearly 20 years of climate model improvement. To date,
more than 70% of impact studies carried out have used
the CMIP-related model simulations (particularly those of
CMIP3) as the only source of future climate projections [7,
8]. Moreover, recent estimates of global warming in CMIP
models have proven to be robust [18, 19], thus enhancing
our confidence on CMIP models climate projections [19].
Hence, it appears evident that the recent release of the CMIP5
(the latest phase of CMIP) ensemble [20] will likely form
the basis of many future impact prediction studies. There is
expectation that the increased model resolution and model
complexity [20] would result in an overall reduction of model
bias [21]. Nevertheless, while errors in CMIP5 GCMs have
been diagnosed on a global level for key climate system
features [15, 21, 22], regional assessments of model skill
have been attempted for a limited number of regions [23, 24].
Importantly, as a general rule such studies are not related to
agricultural impact assessment.

If impact studies that use CMIP5 are to be designed and
interpreted judiciously, a critical and obvious step from the
impact community is to assess the skill of impact-relevant
variables in CMIP5 model simulations of historical climate.
This would foster agricultural researchers’ engagement in
the climate model discussion and can help agricultural
researchers in deciding how to use CMIP5 model projections
into impact models [25]. Furthermore, a better understanding
of CMIP5 will facilitate researchers to revisit and, where
necessary, make adjustments to national communications
to the United Nations, national adaptation plans, scientific
priority setting and research experiments aimed at informing
climate change impacts and adaptation [26, 27].

In this paper, we assessed the skill5 [28] of 24 CMIP3
(supplementary table S1 available at stacks.iop.org/ERL/8/
024018/mmedia) and 26 CMIP5 GCMs (supplementary table
S2 available at stacks.iop.org/ERL/8/024018/mmedia) in five
regions of the tropical world (Andes, West Africa, East Africa,
Southern Africa and South Asia, figure 1)—chosen due to
their vulnerability to climate change [1, 2, 4]. We assessed
four variables as key climate fields exerting control on crops:
mean temperature, daily temperature extremes (i.e. diurnal
temperature range), precipitation, and wet-day frequency. We
used four sets of observation-based data to develop robust
measures of model skill: University of East Anglia Climatic
Research Unit datasets [29], WorldClim [30], various sources
of weather stations, and the ERA-40 reanalysis [31]. Model
improvements were assessed for the five regions and
compared across variables and seasons. Finally, we analyzed
the implications of model errors for agricultural impact
assessment, and elucidate some options for using CMIP5 data
into impact models.

5 Skill in this study is referred to as the capacity of a climate model to
represent a certain aspect of present climate (see [28]).
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2. Materials and methods

Skill was assessed here using a set of metrics chosen to
be in agreement with impacts and climate literature, and to
be easily interpretable in both contexts. We divided skill in
climate models in two different aspects: (1) mean climate, and
(2) interannual variability. Although there are many measures
of model skill [32], our measures are aimed at providing
information that can be easily interpreted in an agricultural
context. Mean climate is assessed using four metrics, and the
interannual variability is assessed using only one metric.

We gathered data for precipitation, wet-day fre-
quency, mean temperatures and diurnal temperature range
for both GCMs and observations, and performed analy-
ses for four seasons (December–January–February (DJF),
March–April–May (MAM), June–July–August (JJA) and
September–October–November (SON) and annual means
(temperature and diurnal temperature range) and totals
(precipitation, wet-day frequency).

2.1. Evaluation datasets

Here we have used various sets of observed data for all
calculations. We have also used reanalysis data as it is
considered to be in the upper bound of climate model
skill [33]. We preferred to use various sources of observational
data (of different nature) as this allows a more robust
treatment of observational uncertainties. Each dataset used
here would have biases and/or different degrees of suitability
when an assessment of climate models is intended (e.g. station
data may not be compared directly with coarse GCM grid
cells, while reanalysis data for precipitation is expected to
have large biases). For this reason, most studies assessing
GCM predictions would attempt to use various different sets
of observations, and so we have adopted a similar approach
(see e.g. [23]).

For assessing mean climates, we have used four different
sources of observation-based data:

(1) CL-WST: Following [30], data were gathered from the
Global Historical Climatology Network [34] (GHCN),
the World Meteorological Organization Climatology
Normals (WMO CLINO), FAOCLIM 2.0 (Food and
Agriculture Organization of the United Nations Agro-
Climatic database) [35], and a number of other minor
sources (see [36]). The final dataset contained data for
35 608 locations (precipitation), 16 875 locations (mean
temperature), and 12 458 locations (diurnal temperature
range) at the global level. Wet-day frequency data were
not available in this dataset.

(2) CL-WCL: Global interpolated surfaces were downloaded
from WorldClim [30] representative for the period
1950–2000. Global gridded data were downloaded at the
resolution of 10 arcmin. Monthly maximum and minimum
temperatures were used to compute diurnal temperature
range. The final dataset comprised monthly climatological
means of precipitation, mean temperature and diurnal
temperature range for the 12 months of the year). As in

CL-WST, wet-day frequency data were not available in
CL-WCL.

(3) CL-CRU: The University of East Anglia Climatic
Research Unit (CRU) high resolution interpolated clima-
tology version 2.0 [29]. This dataset holds significant
similarities to WorldClim in terms of input data, methods
and gridded data [30], but is acknowledged to be more
robust, as input data quality checking is reported to be
much more rigorous [29]. We downloaded data at the
only available resolution (10 arcmin) for monthly total
precipitation, wet-day frequency, mean temperature, and
diurnal temperature range.

(4) CL-E40: Finally, the open-access version (i.e. 2.5◦ ×
2.5◦) of the European Centre for Medium-Range Weather
Forecasts (ECMWF) 40+ Reanalysis (ERA-40) [31] was
used as it is a fair intermediate between observations
and climate model outputs [37]. We used ERA-40 as
it has shown better skill than other available reanalysis
products [23], and the alternative use of bias-corrected
reanalysis was deemed unnecessary owing to the
sometimes unexpected effects of bias correction [25],
particularly in areas where moist convection is the main
driver of regional precipitation as well as the similarity
in temperature data in reanalysis and bias-corrected
reanalysis datasets. Daily mean, maximum and minimum
temperatures and total precipitation were retrieved from
the ECMWF archive (at http://data-portal.ecmwf.int/
data/d/era40 daily/) for the period 1961–2000. Wet-day
frequency was calculated as for all other datasets as
the number of days in a month with precipitation
above 0.1 mm, whereas diurnal temperature range
was calculated as the difference between maximum
and minimum temperatures. Daily data were then
aggregated to the monthly level from which mean
monthly climatology was calculated. This yielded gridded
(2.5◦×2.5◦) global datasets of total precipitation, wet-day
frequency, mean temperature and diurnal temperature
range for each month, as averages of all years in the period
1961–2000.

Data for assessing interannual variability were compiled
from three sources:

(1) TS-CRU: the CRU time series (CRU-TS3.0 at www.cru.
uea.ac.uk/cru/data/hrg) of monthly precipitation, wet-day
frequency, mean temperature and diurnal temperature
range for the period 1961–2000 were downloaded at the
resolution of 0.5◦;

(2) TS-WST: monthly time series of precipitation, mean,
maximum and minimum temperature were downloaded
from the GHCN version 2 [34] dataset and were then
combined with precipitation series that were previously
assembled by researchers at CIAT [36]. The CIAT weather
station database contained data only for precipitation, and
so this was the only variable for which the two sources
(i.e. GHCN and CIAT) accounted data (i.e. temperature
data consisted only of GHCN stations). The final dataset,
at the global level, comprised 29 736 rainfall locations
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(CIAT and GHCN), 7198 mean temperature locations
(only GHCN), and 4959 diurnal temperature locations
(only GHCN); although not all locations had data for
all months and years and many had data for less than
10 years. Wet-day frequency data were not available in
TS-WST.

(3) TS-E40: the ERA-40 daily data were again used but this
time only aggregated to the monthly level for each year,
which produced monthly gridded (2.5◦×2.5◦) datasets of
total precipitation, wet-day frequency, mean temperature
and diurnal temperature range for every year between
1961 and 2000.

All these datasets can be grouped in three categories:
(1) point-based data (CL-WST, TS-WST), (2) gridded
observed data (CL-CRU, CL-WCL, TS-CRU), and (3)
gridded reanalysis data (CL-E40, TS-E40). By including these
three types of data we expect to provide a broader picture of
climate model skill than if only one type of data were used.
Data were in all cases gridded to climate model resolution by
averaging onto the model grid and these further re-gridded to
1◦ × 1◦ for presenting all results.

2.2. Climate model simulations

GCM data were downloaded from the CMIP3 [38] and the
CMIP5 archives [20]. For CMIP3, only monthly precipitation,
maximum, minimum and mean temperature data were
available for the 20th century simulation (i.e. 20C3M).
Wet-day frequency was thus not analyzed in CMIP3. Data
were downloaded for 24 GCMs (supplementary table S1
available at stacks.iop.org/ERL/8/024018/mmedia), with only
three models having missing data for maximum and minimum
temperatures. Time series of monthly total precipitation and
means of mean monthly temperature and diurnal temperature
range were computed (‘TS-C3’). From these, climatological
means were further calculated (‘CL-C3’).

In relation to CMIP3, CMIP5 has a wider range of
numerical experiments [20], and data for a larger number of
models and model ensembles. CMIP3 historical (‘20C3M’)
simulations included 24 CGCMs, whereas CMIP5’s included
more than 35 CGCMs [20]. Here, 26 of these presented data
for the historical simulation at the time queried (February
2012), although the total number of simulations is 70
(supplementary table S2 available at stacks.iop.org/ERL/8/
024018/mmedia), owing to individual ensemble members.
CMIP5’s experimental design includes individual perturbed
physics and initial conditions ensemble members for a number
of models and higher resolution models (supplementary
figure S1 available at stacks.iop.org/ERL/8/024018/mmedia).
Similarly, models have increased their complexity by
including atmospheric chemistry, aerosols, the carbon cycle,
and experiments at decadal timescales [20]. Available daily
outputs of historical simulations (a total of 70, supplementary
table S2) for the variables of interest were downloaded and
processed for the years 1961–2000 in order to produce time
series of total monthly precipitation, the number of wet days,
and means for mean temperature and diurnal temperature

range (‘TS-C5’). Using these, climatological means for the
same variables (‘CL-C5’) were produced. For both CMIP3
and CMIP5 ensembles multi-model means (MMM) were
calculated using the climatological means and monthly time
series of all GCM simulations.

2.3. Assessment of mean climates

Climate models and the MMM were assessed for their ability
to represent mean climates for each of the four variables.
Performance was assessed for five regions (figure 1). For
each region and season we compared the climate model
predictions and the observed (or reanalysis) data using all
pixels in that particular geographic domain, thus assessing
the time-mean geographic pattern. We used four metrics: (1)
the Pearson product-moment correlation coefficient (R); (2)
the root mean squared error (RMSE, equation (1)); (3) the
RMSE normalized by the observed mean times 100 (RMSEM,
equation (1)); and (4) the RMSE normalized by the observed
standard deviation times 100 (RMSESD).

RMSEM =
RMSE

X̄
=

√∑n
i=1(Xi−Yi)

2

n∑n
i=1 Xi
n

(1)

where X and Y are the observed and GCM values
(respectively) for a grid cell (i) in a given season (e.g. the
JJA season) over a domain with n grid cells. X-bar is the
average of observed values. Throughout the paper, we mostly
report and conclude based on the RMSEM because (1) it was
generally a better indicator of model skill as it allowed better
comparisons across climate models, regions and seasons than
the RMSE; (2) high values of r were not always associated
with high similarity between predicted and observed values;
(3) errors generally exceeded observed spatial variability by
a factor of 1.5 or more, and (4) the alternative use of the
standard deviation of the time series as normalizing factor was
not possible due to the unavailability of these data for all mean
climate datasets.

2.4. Assessment of interannual variability

Interannual variability in climate models was assessed
following [32, 39], in which an interannual variability
index (VI) is calculated for each climate model run as the
differences between the ratios of model (M, termed TS-C3
and TS-C5 here) and observed (O, consisting of three different
datasets: TS-CRU, TS-WST, and TS-E40) standard deviations
(equation (2))

VIi
v =

(
σ i

Mv

σ i
Ov

−
σ i

Ov

σ i
Mv

)2

(2)

where σ is the standard deviation of the time series
(1961–2000 in this study) of a variable (v) for a given grid
point (i). The index is always positive and with no upper limit.
As opposed to all mean climate calculations, VI calculations
were performed individually for each grid cell using all years
in the period 1961–2000.
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2.5. Assessment of climate model improvements

In order to compare the two model ensembles, we first present
some advantages of CMIP5 in terms of experimental design
and model resolution. We then draw probability density
functions (PDFs) using country and season values of each
climate model of each ensemble. Finally, we select thresholds
to classify the values of RMSEM,RMSESD, and VI. These
thresholds were then used to separate individual countries
and seasons. By counting the per cent of country-season
combinations above or below these thresholds out of the
total (total being 22 countries times 4 seasons = 88), a more
objective comparison of the differences between regions,
model ensembles, and variables was achieved. For RMSEM
and RMSESD we chose a value of 40% (chosen to be in
agreement with the value of VI chosen). For VI, we focused
on the work of [39], who defined the upper bound of skilled
models to be at 0.5. A value of VI below 0.5 ensures
that simulated interannual variability is between −25 and
+40% of the observed value. Albeit somewhat arbitrary,
the thresholds chosen are consistent between them, and are
likely to be representative of boundaries beyond which impact
models would be severely constrained [40]. The use of other
(albeit close to the present ones) thresholds showed no effect
on our conclusions.

3. Results

3.1. Skill of historical climate simulations

The ability of CMIP GCMs to represent geographical
variation in mean climate over a year is neither uniform
nor consistent. The lowest performance is observed for
precipitation in the DJF period. Conversely, seasonal mean
temperatures show the highest correlations and overall lowest
RMSEM and RMSESD values (figure 2, supplementary figures
S2–S7 available at stacks.iop.org/ERL/8/024018/mmedia).
Seasonal mean temperatures in the CMIP3 model ensemble
depict RMSE between 1 and 18 ◦C (RMSEM between
2 and 130%), whereas those of CMIP5 show RMSE in
the range 1–16 ◦C (5–100% of the mean, 5–600% of the
standard deviation) (figure 2, supplementary figures S2–S7).
However, the majority of models depict RMSE < 5 ◦C in
both ensembles (figure 2, supplementary figures S2 and S5).
Only in Nepal the majority of models show RMSE > 10 ◦C
in all seasons, owing to the temperature variations across
the Himalayas [32]. In Africa, errors are lower, with CMIP3
model RMSE values generally between 2 and 10 ◦C (5–40%
of the mean, supplementary figure S6). CMIP5 models show
lower values for all metrics. In particular for CMIP5, South
African countries show RMSE values generally below 2 ◦C
(10% of the mean, supplementary figure S3). Results are
consistent between observed and reanalysis datasets, hence
we focus on observed datasets.

Diurnal temperature range shows higher values for all
skill metrics, particularly for the Andes, where RMSE reached
15 ◦C in the Andes (Ecuador, Peru, and Bolivia). Most models
in both ensembles depict errors above 40% with respect to

the mean for all seasons and regions (figure 2, supplementary
figures S2–S3), but RMSE values are very large in relation
to spatial variability, and typically exceed 100%. Across
Africa, night-day temperature differences are simulated more
accurately as compared to Asia and the Andes (figure 2,
supplementary figures S2–S7). Errors in precipitation are
closely tied to errors in the wet-day frequency. Models
overestimate the number of days, while underestimating the
total rainfall [32]. Particularly in monsoon-driven seasonal
climates such as those of West Africa and South Asia, RMSE
values for seasonal precipitation and wet-day frequency (the
latter only for CMIP5) are large both in absolute terms and in
relation to the mean and variability (figure 2, supplementary
figures S2–S7). In both ensembles, precipitation errors are
the largest in South Asia (in Bangladesh RMSE values
reach 2000 mm season−1), followed by the Andes, where
RMSE values typically exceed 500 mm season−1 (50% of
the mean) (figure 1, supplementary figures S2–S7). Seasonal
precipitation RMSE is typically below 500 mm season−1

across African countries. Wet-day frequency RMSE varies
between 150 and 200 days yr−1.

We find interannual variability significantly misrepre-
sented in both model ensembles. Some models, however,
show strengths in some of the regions: at all grid cells, there
is always at least one GCM with VI < 0.5, but in all cases
the ensemble maxima are above this threshold. This indicated
that models’ skill in simulated interannual variability is
generally not geographically consistent. Accurate simulations
of interannual variability (i.e. VI < 0.5) are only achieved for
mean temperature across West Africa and Southern Africa,
in addition to precipitation in Southern Africa (only for
CMIP5) (supplementary figure S8). The wet-day frequency,
only analyzed for CMIP5, is the most poorly simulated of all
variables, owing the its limited predictability [11].

3.2. Improvement in climate models

Our comparison of CMIP5 with its predecessor indicates
that gains in skill have occurred mainly in simulated mean
temperatures and diurnal range. We report an increase
in the frequency of the left-hand side of the PDFs of
RMSEM. Increases are in the range 5–15% for climatological
mean temperatures and 3–5% for climatological diurnal
range (figure 3, supplementary figure S9). This result
is consistent throughout the seasons. Conversely, gains
in skill in reproducing seasonal precipitation are limited
to the JJA season, with gains being limited to 1–2%
increases in frequency of low RMSEM values (supplementary
figure S10). Improvements in interannual variability occur
to a lesser extent, but are consistent for the three variables
(supplementary figures S11 and S12). Improvements in
interannual variability are the largest in the JJA season, where
increases in the frequency of values of VI below 0.5 are 1–5%,
with little difference across variables. Importantly, the spread
of the PDFs (i.e. shading in figure 3, and supplementary
figures S9–S11) is lower in CMIP5 in relation to CMIP3,
although the differences are not large.
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Figure 2. RMSE of all 70 CMIP5 climate model runs and the multi-model-mean across three regions and four seasons (and the annual
totals or means). Plots show the distribution of all seasons and the annual total or mean for three different variables. Thick vertical lines (and
notches) within the box show the median, boxes extend the interquartile range and whiskers extend 5% and 95% of the distributions.
Individual points plotted along the boxes in different colors show performance for individual seasons and the annual mean (or total), as
indicated by the bottom legend. Region and country typology as indicated in figure 1. See supplementary figure S2 (available at stacks.iop.
org/ERL/8/024018/mmedia) for the remaining two regions.

We report significant regional differences in the
increases in model skill from one ensemble to the other
(figure 4, supplementary figures S12–S13). Gains in mean
climate model skill are larger in South Asia for all
variables. Conversely, interannual variability improved more
significantly over West Africa, where skill is already relatively
high (figure 4, bottom).

3.3. Implications for agricultural impact assessment

In CMIP5, model complexity has increased [19, 20].
This implies that while newly incorporated processes have

increased the physical plausibility of the models, skill has
either maintained or increased (figure 3). This is likely to
be an important step forward, but still only one of many
needed if the final aim is to facilitate impact assessment
and adaptation. Two comparisons were hereby performed to
investigate the potential effect of GCM errors on agricultural
impact modeling. First, we compared temperature thresholds
in 12 major crops (table 1) with the mean RMSE in CMIP5’s
mean climatological temperatures. We find that, if GCM
outputs are used with no bias treatment into crop models,
threshold exceedance could be increased by 6–69% for all
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Figure 3. Improvement in skill to simulate climatological mean seasonal temperatures in CMIP5 (red) climate models with respect to
CMIP3 (blue). The continuous lines show the average probability density function (PDF) of all GCMs in each ensemble and the shading
shows ± one standard deviation. Dashed lines show the PDF of the MMM. Individual GCM PDFs (including that of the MMM) were
constructed using all country-season combinations of all observed datasets, except the ERA-40 reanalysis.

crops as a cause of climate model error. Although this risk
has decreased by roughly 15% from CMIP3 to CMIP5 (owing
to an average reduction of 15% in RMSE), this comparison
suggests that raw CMIP5 simulated regional temperatures are
of limited use for agricultural impact research.

Second, we used recent literature to illustrate the degree
of sensitivity of cropping systems to variation in prevailing
climate conditions. Although differences between future and
current yields are expected to arise primarily from the climate
change signal [26], model errors could bias such signal [41],
hence biasing estimates of future cropping system sensitivity
to climate. We find large sensitivities in cropping systems to
+2 ◦C increases in mean temperature and 20% decreases in
seasonal rainfall (figure 5). Median sensitivity to temperature
ranges from −23% (wheat) to −12% (sorghum), whereas
that related to 20% increase in precipitation was −2.5%
for maize, −7.5% for sorghum and −6% for wheat. In our
analyses, GCMs exceeded 20% RMSEM in the majority of
cases (supplementary figure S3) and 2 ◦C in the majority of
seasons, particularly in the Andes, East Africa and South Asia
(figure 2).

Temperature is the primary driver of crop phenology,
but also affects fertility, canopy growth, plant senescence
and nutrient absorption. On the other hand, total seasonal
rainfall as well as the number of days with rainfall are major
drivers in the world’s 50% of agricultural lands that are

rainfed [42]. Especially for regions where crops suffer from
limited water availability, biased seasonal rainfall or wrongly
timed rainfall can have large effect in model simulations [40].
Water-induced crop failures are to a large extent dependent
on seasonally timed stresses that trigger death of either
photosynthetic or reproductive organs in the plant. Thus, lack
of soil moisture due to biased input rainfall can constrain
the predictability of future crop failures (see [43]). Although
the absolute effects of model errors over impact estimates
are difficult to determine without crop model simulations
being carried out, we argue that the use of raw CMIP5 data
into impact models could significantly under- or overestimate
cropping system sensitivity by 2.5–7.5% for precipitation-
driven areas and 1.3–23% for temperature-driven areas.

4. Discussion and conclusions

Several questions arise from the results presented here and
elsewhere [19, 32, 39]. The most overarching one, probably,
is whether climate change simulations are useful for impact
research. In other words, what kind of information can we
usefully extract from climate models? The usefulness of
climate model simulations within the context of agricultural
impact research is tied to the effect of model bias on
simulations of crop productivity. Literature on impacts
suggests the range of information extracted from climate
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Figure 4. Regional differences in seasonal model skill and gains in model skill for seasonal mean temperatures. Top: per cent of
country-season combinations where the RMSEM is above 40%. Bottom: per cent of grid cells within the analysis domain where VI is above
0.5. Bars show the average of all GCMs and error lines span the range of variation of individual GCM simulations of each ensemble. See
figure 1 for region names and countries included.

models is highly varied [7, 8], ranging from the sole use
of mean changes (see e.g. [44]) to the full coupling of
crop-climate models (see e.g. [45]). This variation is mostly
due to known and expected climate model errors (also see
section 3.3).

The seasonal and regional differences in model error
reported herein may also seriously hinder assessments of food
systems under future scenarios, as they may imply different
degrees of predictability in future impacts for crops sown at
different times in the same location or for different locations
sowing the same crop. In northern Indian rice-wheat systems,
for instance, the large GCM biases in monsoon rainfall would
make rice, sown in the rainy season, much more difficult to
simulate relative to wheat, which is sown in the winter season
under irrigation. Rice or wheat systems in Latin America or
Africa would be differently affected, thus further complicating

assessments of global food security and, in turn, decision
making. Therefore, identifying the correct pieces and amounts
of information within a GCM simulation that can be used
robustly into impact models is important for improving impact
estimates. In that sense, a better understanding of the causes of
limited model skill (see e.g. [25]) as well as of the key drivers
of crop yields (see e.g. [10]) is needed. Recent research has
validly focused on the ways to improve global and regional
climate model simulations so as to make them useful for
impact research [25, 41] and so we suggest this focus be
maintained.

Identifying relevant GCM output, however, also depends
on when model improvements will meet the (rather high)
input standards of the agricultural research community
(i.e. high accuracy at high spatio-temporal resolution).
Assuming improvements have a linear trend in time we
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Figure 5. Sensitivity of yield in major crops to +2 ◦C temperature (left) and −20% precipitation (right). Boxplots have been drawn using
existing literature (11 studies in total, see supplementary table S3 available at stacks.iop.org/ERL/8/024018/mmedia). As each crop is
plotted using independent research articles, the boxes span spatial variability in the crop’s response. Thick vertical lines (and notches)
within the box show the median, boxes extend the interquartile range and whiskers extend 5% and 95% of the distributions.

Table 1. Cardinal and extreme temperature thresholds (in ◦C) for major crops as reported in existing literature. Values in parenthesis
correspond to the ratio of mean climatological temperature RMSE (i.e. the mean of all CMIP5 models) to the threshold specified times 100.

Crop type Crop

Meana Extremesb

ReferenceTB TO TM TC1 TC2

Cereals Wheat 0 (Inf) 21 (13.2) 35 (7.9) 34 (8.2) 40 (7) [52, 53]
Maize 8 (34.8) 30 (9.3) 38 (7.3) 33 (8.4) 44 (6.3) [54, 55]
Rice 20 (13.9) 28 (9.9) 35 (7.9) 22 (12.6) 30 (9.3) [56, 57]
Barley 0 (Inf) 26 (10.7) 50 (5.6) 30 (9.3) 40 (7) [58, 59]
Sorghum 8 (34.8) 34 (8.2) 40 (7.0) 32 (8.7) 44 (6.3) [55, 60]
Millet 10 (27.8) 34 (8.2) 40 (7.0) 30 (9.3) 40 (7) [61, 62]

Legumes Groundnut 8 (34.8) 28 (9.9) 50 (5.6) 32 (8.7) 44 (6.3) [63, 64]
Soybean 7 (39.7) 32 (8.7) 45 (6.2) 30 (9.3) 44 (6.3) [55, 65]
Dry bean 5 (55.6) 30 (9.3) 40 (7.0) 28 (9.9) 40 (7.0) [55, 66]

Roots and tubers Cassava 15 (18.5) 30 (9.3) 45 (6.2) 35 (7.9) 45 (6.2) [67, 68]
Sweet potato 10 (27.8) 30 (9.3) 42 (6.6) 30 (9.3) 42 (6.6) [69]
Potato 4 (69.5) 15 (18.5) 28 (9.9) 22 (12.6) 28 (9.9) [70, 71]

a Cardinal temperature for development is based on a typical triangular function where TB is the base
temperature below which development ceases, TO is the temperature at which maximum development occurs,
and TM is the maximum temperature at which development occurs.
b Extreme temperatures are typical thresholds above which the reproductive capacity of the plant will start to
be affected by high temperatures (TC1) or when no reproduction will occur (TC2). Values for rice correspond
to night temperatures. Data for maize were unavailable and thus temperatures that would reduce (TC1) or stop
(TC2) photosynthesis are given. For cassava and sweet potato successful flowering is irrelevant for yield, thus
photosynthesis thresholds are provided instead.

estimate that at least 5–30 years of CMIP work are
required to improve regional temperature simulations, while
30–50 years may be required for sufficiently accurate regional
precipitation simulations, though these figures vary on a
regional basis (figure 4). Ideally, the ultimate goal should
be a complete coupling of crop and climate models, as this
would allow an appropriate treatment of the feedbacks in
the earth system [45]. Nonetheless, in ∼30 years, global
mean temperature would have already reached dangerous
levels [46], hence stressing the need to use climate model
information in an offline (i.e. not coupled), but robust and
informed way. Such informed way should include: (1) an
enhanced understanding of the impact of climate uncertainties

on impact estimates [26, 33], (2) improved quantification of
agricultural model uncertainty, (3) a more systematic focus
on the assessment of sensitivity of impact models to climate
model errors [40], (4) a better quantification of downscaling
and bias-correction uncertainty [47], (5) a better reporting
of results by reporting impacts using raw versus downscaled
and/or bias-corrected climate data [47]. Meanwhile, constant
improvement in skill of predictions at higher spatio-temporal
scales through more investment in climate modeling is
warranted in order to meet the largely unfulfilled needs of the
impact research communities [25].

A last crucial question is related to the implications of
model improvements (i.e. the differences in skill between
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CMIP3 and CMIP5) for impact research (also see section 3.3).
This is important because as GCM ensembles increase their
complexity, new research questions may arise, and also
because as simulations improve in skill, impact estimates may
change. It is likely that, provided enough time, CMIP5 will
be widely adopted by the impact research community (see
two recent examples in [48, 49]). We argue that at the very
least, the replacement of CMIP3 by CMIP5 could represent an
opportunity to capitalize on better climatological knowledge
to identify realistic climate projection ranges [15, 50],
and hence better constrain projections of crop productivity.
A larger and more complex ensemble [20] could also
be an opportunity to develop probabilistic (rather than
deterministic) projections of climate change impacts and
improve on the ways impact estimates are delivered to the
public. Further research is needed, however, to understand
the effects of the differences between the two ensembles on
impact estimates (see e.g. [48]).

If effective and appropriate agricultural adaptation is
to happen in the next 2–4 decades [51], uncertainties and
lack of skill in simulated regional climates need to be
communicated and understood by agricultural researchers and
policy makers. One of the main barriers to adaptation lies
within the skill with which climate models reproduce climate
conditions. Thus, as a critical and needed step towards a better
understanding of climate simulations for improving impact
predictions and reducing uncertainty, we have assessed the
skill of the two last CMIP model ensembles in reproducing
mean climates and interannual climate variability. Further
research is warranted on the diagnosis of errors in remaining
impact-relevant variables (e.g. dry-spell frequency, incoming
shortwave radiation, evapotranspiration, soil moisture), as
well as on the effects of the differences between the two
ensembles in impact estimates, as this would strengthen the
conclusions reached in the present study.
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