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SUMMARY

The performance of classification models is often assessed in terms of how well
it separates a set of known observations into appropriate classes. If the
validation sets used for such analyses are redundant due to bias in sampling, the
relevance of the conclusions drawn to prospective work in which new kinds of
positives are sought may be compromised. In the case of the various virtual
screening techniques used in modern drug discovery, such bias generally
appears as over-representation of particular structural subclasses in the test set.
We show how clustering by substructural similarity, followed by applying
arithmetic and harmonic weighting schemes to receiver operating characteristic
(ROC) curves, can be used to identify validation sets that are biased due to such
redundancies. This can be accomplished qualitatively by direct examination or
quantitatively by comparing the areas under the respective linear or semilog
curves (AUCs or pAUCs).
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1. INTRODUCTION

Large-scale combinatorial synthesis and high-throughput screening (HTS) once
held out the promise of making prediction of biological activity on the basis of
chemical structure a matter of purely historical interest, but that possibility has
not been realized. Instead, chemometric tools (virtual screens, or vHTSs) have
become critically important for determining which of the many possible focused
libraries should be pursued; for identifying important lead series that may have
been missed by HTS; and for identifying structural series large enough to
establish quantitative structure-activity relationships (QSARs). Several different
kinds of virtual screen are now in use, each serving a somewhat different
purpose in lead discovery and optimization. The primary use of substructural
and topological similarity searching is to identify analogs for follow-on synthesis
or purchase. Docking and similarity methods based on pharmacophores, shape
and other high-level properties, in contrast, are used to identify potential lead-
and scaffold hops — alternative chemistries that can serve as a hedge against
potential development issues involving ADME and pharmacokinetic problems

with lead classes already in hand.

It is tempting to search for a “philosopher’s stone” for vHTS methods that will be
suitable for all targets, but the reality is that different methods are suitable for
different targets and will continue to be so for the foreseeable future. Even within
a class of methods — e.g., docking — all tools are not equally well-suited to all

1234 50 researchers need to be able to compare the performance of

targets,
different methods on different ligand classes and against different targets. As for
any chemometric method, some kind of calibration is necessary to evaluate
performance. The area under the curve for receiver operating characteristic plots
(ROC AUC) has proven itself particularly useful as a summary statistic for

comparing how well various VHTS methods work.>¢7:39

An ROC curve is a plot of the fraction of true positives recovered at a given



stringency against the fraction of negative examples that score as well or better
than the worst of those true positives — i.e., of the sensitivity a against the
specificity p. The curve is drawn using data obtained for a validation set of
reference observations made up of known positives — in this case, compounds
known to bind to the target protein - and known negative examples — in this case,

“decoy” compounds that are known (or, more often, presumed) not to bind.

Unfortunately, the reference sets used for carrying out such evaluations are
generally drawn from compound collections accumulated over many years’ time.
Hence their composition reflects many historical influences, including incidental
development series as well as the particular offensive and defensive patent
strategies employed over the years; those strategies, in turn, reflect fashions and
trends in pharmaceutical development. Such any such data set tends to be

structurally “clumpy”'®112

and the bias in sampling represented by that
clumpiness compromises many of the otherwise excellent statistical properties of
an ROC analysis carried out on truly independent observations.®'#"* The lack of
robustness that results from any such bias can seriously skew retrospective
analyses and mislead researchers as to which method is likely to give the best

prospective performance.

This distortion can be addressed by clustering the positive examples into more or
less “natural” groups, then including one representative from each group (or
subclass) in a revised validation set. "' Unfortunately, doing so often reduces
the number of positives to the point that it is hard to conclude anything about the
validation analysis with confidence. Moreover, it is not obvious a priori which

positive will be most representative in a given situation.

An alternative approach is to weight the positives in different classes differently.
Two schemes for doing so were recently proposed in a purely theoretical paper
by Clark and Webster-Clark'®: arithmetic weighting, which gives every ligand in a

class equal weight and gives every class the same overall influence; and



harmonic weighting, which gives earlier hits within each class greater weight and
favors larger classes somewhat. That publication showed how the qualitative and
quantitative behavior of artificially constructed data sets depended on whether
they were biased or unbiased. Here we have analyzed results from two different
kinds of vHTS system (docking and functional circular fingerprint similarity) and

find that bias can be a problem in real-world validation sets.

The weighting technique described is likely to be applicable to any instance
where the there is or may be substantial sampling bias in the calibration set

against which a model’s performance is evaluated.

2. METHODOLOGY

2.1. Data sets and VHTS.

Ligands, decoys and targets for the docking analyses were taken directly from
the Database of Useful Decoys (DUD).* Structures for 24 targets —
acetylcholinesterase (ache); adenosine deaminase (ada); ampC -lactamase
(ampc); catechol O-methyltransferase (comt); cyclooxygenase isoforms 1 and 2
(cox1 and cox2); dihydrofolate reductase (dhfr); epidermal growth factor receptor
(egfr); fibroblast growth factor receptor kinase (fgfr1); factor Xa (fXa); glycinamide
ribonucleotide reductase (gart); reverse transciptase from human
immunodeficiency virus (hivrt); hydroxymethylglutarylCoA reductase (hmga);
human heat shock protein 90 (hsp90); enoyl acylcarrier protein reductase (inha);
mineralocorticoid receptor (mr); poly(ADP-ribose) polymerase (parp);
progesterone receptor (pr); S-adenosylhomocysteine hydrolase (sahh); sarc
tyrosine kinase (sarc); thrombin; thymidine kinase (tk); trypsin; and vascular
endothelial growth factor receptor kinase (vegfr2) — were downloaded from the
UCSF web site'” and run through Surflex-Dock.'®'® The DUD data set includes
about 37 negative examples (decoys) chosen to roughly match the overall
physical properties of each positive example (known active), thereby reducing

the risk of artificial enrichment.,?' Hence the total number of compounds



docked against each was approximately N = 37n, where n is the number of
positives connected with each target.* When multiple tautomers or protonation
states were present in the database, the best-scoring form was used for the ROC
analyses described here. Default values were used for all run parameters and
no attempt was made to optimize the results. In particular, no effort was made to
improve performance by using multiple starting configurations, applying pre- or

post-optimization of ligand geometries, or allowing rings to flex.

For circular fingerprint screening, exemplars of six pharmacological classes
(Figure 1) taken from the MDL Drug Data Report (MDDR)? were used as queries
to rank the remainder of the database (ca. 102,000 compounds) in order of
Tanimoto similarity to each query.?*?* Compounds annotated as belonging to the
same pharmacological class as the query were considered “positive” for
subsequent ROC analyses; the number ranged from 636 to 1130 following
standardization with Concord.?® All compounds in the MDDR (ca. 102,000) not
annotated as belonging to the same pharmacological class as the query were
used as decoys. VHTS was carried out in SciTegic Pipeline Pilot?®® using the
functional circular fingerprints (FCFP_4) derived from their smiles strings. These
fingerprints encode the topological relationship between the pharmacophoric

features within a molecular structure. %’
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Figure 1. Target structures used for FCFP_4 screens run against the
MDDR.



Cluster analysis was carried out by converting structures to SLN format?® and
clustered in SYBYL?® based on the Tanimoto similarity of their UNITY*
fingerprints. In contrast to FCFPs, these fingerprints encode the various
substructures found within a molecule. Complete-linkage hierarchical
agglomerative clustering was used. In this method, the similarity between
clusters was taken as the minimum similarity between the fingerprints for any pair
of structures in which one is drawn from each of the clusters being compared,
which tends to keep clusters “tight” by keeping the similarity between all
individuals within a cluster relatively high.*' Appropriate clustering levels were
identified by examination of sorted distances between clustering levels —i.e., the
degree of dissimilarity between the pair of clusters consolidated in going from k
to k - 1 clusters — with the proviso that each level included increase the number
of clusters by two- to four-fold, if possible. The number of positives in each class

are listed in Table 1, along with the clustering levels used for each target.

Table 1. Number of individual actives for each class and number of clusters

considered.
Target | Cluster Target | Cluster Target | Cluster Levels
Levels Levels
trypsin | 442 dhfr 201,23,9 |tk 22
fXa 134, 16, 6 inha 85,8 hivrt 40
thrombin | 65, 12 comt 11 ache 105, 11,5
cox2 348,71,17,6 | src 155, 16, 4
sahh 17 ada 17
gart 21 gpb 27 renin® 641, 48, 20, 6
ampc 21 cox1 25,6, 4 angio 913, 106, 16, 10




mr 15 fgfr1 118, 5 hivp 584, 60, 21, 6

parp 33 egfr 444 27,11 | thrombin | 752, 96, 23, 7
hsp90 24 vrgfr2 74 5HT1a 824, 89, 20,7
hmga 35 pr 27 cox 636, 42,27, 7

® The first clustering level given is for singletons in each case and indicates the
number of active ligands provided for the corresponding target.

® Ligands for targets highlighted in italics were from the MDDR; others are from
the DUD data set.

2.2. Weighting schemes for a.

The uneven distribution of positives across structural class can be addressed by
recognizing that not all positives are created equal. This was done here by
examining two alternatives to the uniform weighting usually used for each true

positive’s contribution to a:

uniform: w; « 1
arithmetic: wj o« 1/n;

harmonic: w; < 1/i

where w; is the weight for the "-ranked member of the /" cluster and n; is the
number of positives in the jth cluster. The plotted a; in each case is the sum of
weights for all positives scoring as well or better than the corresponding
observation divided by the sum of weights across all n positives in the validation

set. For uniform weighting, this normalization factor is simply n.

Arithmetic weighting gives each class of positive the same overall influence on
the AUC statistic, and is equivalent to averaging the results for all possible

combinations of subsets in which one example is taken from each cluster.




Harmonic weighting recognizes two practical realities: that larger clusters are
more valuable than smaller ones, if only because they can reveal meaningful
structure-activity relationships (SARs); and that earlier hits within each class are
more informative than are later ones. Overall influence of a class on the AUC
increases roughly as the natural logarithm of the cluster size under a harmonic
weighting scheme, which is consistent with the fact that small lead series are

usually of less practical value than are more fleshed-out series.

For clarity, a logarithmic scale is used for the false positive rate § in the ROC
plots, which is problematic for nominal frequencies of zero. This situation arises
because the number of negative examples used to estimate the values of p is
finite. The resulting granularity limits the accuracy with which the actual false
positive rate for the pool of all possible structures is being estimated. Itis
common in such situations to make a continuity correction.*** A value of 0.5/(N-
n), where N is the total number of structures in the data set and n is the number
of positives, is a good estimate poto use when no false positives are observed in
a particular sample (i.e., validation set). Here, we set 3y to the more conservative
1/(N-n), which provides a direct visual reminder of the size of the decoy set as

well as avoiding the need to take the logarithm of zero.
2.3. Summary statistics.

Full ROC plots are useful for making qualitative comparisons but are
cumbersome when more than a few curves are involved. Quantitative
comparisons are generally made by comparing the areas under the respective
curves instead. For the finite data sets used for validation, this area is estimated

by summation across all positives:

K 7 K n

1 1 J
AUC=—E (1-p.. =]——§ E B 1
Wl/( ﬁ 1/) y W!/[)) ij ( )

= =1 =t

where fj is the estimated false positive rate for "-best score from the /" class

and the normalization factor y = ZZw;.



As a practical matter, vHTS is generally used as a pre-filter for focused library
synthesis programs or biochemical screening, which means that only differences
in scores among the top 1-10% for the data set are meaningful. Several
investigators have expressed concern about the appropriateness of the classical
ROC AUC because of this and have recommended exponential weighting
schemes that favor “early hits.” *** Harmonic weighting favors early hits
naturally, with the best-scoring hit in each class (i.e., cluster or series) receiving
twice the weight of the second-best hit, three times the weight of the third-best

and so on. This effect is only seen within classes, however.

An alternative approach is to reduce the contribution of “late” hits by applying a
logarithmic transform to the x-axis of the ROC curve, an action which is effective
across all classes. Doing so is broadly consistent with the exponential weighting
schemes proposed by others but avoids the need to specify a weighting factor a
priori. Like the AUC, the logarithmic integral (pAUC) is estimated from a

summation across all positives:

pAUC = i nEJ Wy [-log,,(B)]= %i HEJ Wi logm(#) (2)

1
Y = =1 =

The AUC is equal to the average true negative rate (1-) and the pAUC is equal
to the average stringency (log1o(1/p)).

3. RESULTS AND DISCUSSION

Performance statistics for docking the 24 sets of DUD positives into their
respective targets are shown in Figure 2, as are the results for the six FCFP
similarity screens; both linear (AUC; black bars) and logarithmic (pAUC; red bars)
summations are shown. The docking results are broadly consistent with those
reported for other docking programs, with a median AUC of 0.632. Only eight of
the docking trials (32%) yielded an AUC greater than or equal to 0.70, and
performance on five targets fell below the value of 0.500 expected for guessing

at random. Performance on acetyl cholinesterase (ache), in fact, was

10



substantially worse than random. The AUC statistics for the ligand-based
screen are nominally much better, with a median value of 0.865; the weakest

result was for cyclooxygenase, which had an AUC of 0.59.

The logarithmic integrals (pAUCs) are plotted in Figure 2 as red bars alongside
the linear integrals shown in black. In principle, an ROC curve can be thought of
as representing a sample drawn from a pair of Gaussian distributions. Were that
simple scenario always applicable in practice, applying the log transform — which
is monotonic — should not affect the rank-ordering of a series of ROCs. The
results presented in Fig. 3 show that this is indeed generally the case, but not
always: mineralocorticoid receptor (mr), dihydrofolate reductase (dhfr), tyrosine
kinase SRC (src), fibroblast growth factor receptor kinase (fgfr1) and epidermal
growth factor receptor (egfr) stand out as exceptions. Nonetheless, only four
docking targets (16%) yield pAUCs that rise above the 1.0 threshold where the
average positive is recovered among the top 10% of the data set. Five of the six
ligand similarity screens (83%) rise above this level, and two (33%) yield pAUC
values above 2.0, indicating that the average positive falls in the top 1% of the

data set.
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Figure 2. Summary statistics for VHTS using uniform weighting. Areas under
the curve were calculated across a range of target types for both
docking and FCFP similarity screens. AUCs where ordinates were
scaled linearly are shown as black bars, whereas logarithmically
scaled integrals (pAUCs) are indicated by red bars. The
corresponding values for random guessing are 0.5 and 0.432
(=1/1oge(10)), respectively. The target abbreviations used are taken
from Huang et al.* for the DUD data sets and those provided in
Figure 1 otherwise. Targets are sorted in order of decreasing AUC
for each screen type.

The differences in the validation sets used in the two cases make fair
comparisons based on summary statistics problematic at best.* Comparisons of
VvHTS performance were not the goal of this work, however. In fact, suboptimal
performance is desirable for assessing bias, since it tends to exaggerate the
differential effects of weighting on the ROC curves: it would be hard to see any
change in the plots if all of the positives outscore all of the decoys. As others
have noted, using default settings is unlikely to yield optimal docking

performance in general.'®*® In the particular case of Surflex-Dock, allowing

12



multiple starting configurations, geometry optimization and ring flexibility — none
of which was done here — improves docking scores, particularly for true
positives,>” albeit at the cost of reduced processing speed. Furthermore, only the
matched sets of DUD decoys were used here, not the less demanding
consolidated set. Some of the matched decoys that score well represent
inappropriate protonation states or tautomers, and others are close structural
analogs of true positives that one would want to test for activity in any event.
Removing such “false false positives” improves the performance statistics
substantially, but has no impact on the relative change caused by using a

different weighting scheme, which is the focus of this paper.

The plots obtained by applying the various alternative weighting schemes to two
artificial data sets'® are shown in Figure 3. To create the biased data set, higher
scores were systematically assigned to positives from larger ad hoc clusters.
Scores for the unbiased data set, on the other hand, were evenly distributed.
The corresponding semilog ROC plots for four different screens are shown in
Figure 4 for comparison, with weightings applied based on several levels of
UNITY fingerprint clustering in each case. A linear ROC plot for HIV-1 protease

inhibitors is shown as an inset.

The arithmetically weighted ROC (blue line) is shifted to the right for the artificial
data set that is biased by construction (Figure 3A), but is only sharpened
somewhat for the unbiased one (Figure 3B). Harmonic weighting (green line), in
contrast, shifts the ROC curve slightly to the right for the artificially biased case
but to the left for the unbiased one.'® The trends seen for HIV protease inhibitors
and angiotensin antagonists (Figure 4A and 4B) are qualitatively similar to the
result seen in Figure 3A, indicating that these validation sets are biased, a
conclusion that is underscored by the increasing shift when the number of
positive classes (clusters) is decreased. The curves for 5HT 4, agonists and
cyclooxygenase inhibitors, in contrast, mirror the behavior of those for the

unbiased artificial data set (Figure 4C and 4D, respectively).
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Figure 3. Nominal positives from artificially constructed data sets are plotted
using uniform (solid black lines), arithmetic (broken blue lines) of
harmonic (broken green lines) weighting schemes. The shaded
gray curve corresponds to random recovery of positives. (A)
Biased data set, in which high-scoring positives are found in large
clusters. (B) Unbiased data set, in which positives are distributed
evenly across clusters regardless of score.
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Figure 4. Results for FCFP_4 screens run against the MDDR. The ROC
curves obtained are shown with the “true positive” rate a calculated
using uniform (black), arithmetic (blue) or harmonic (green)
weighting at three clustering levels; the weight of each line
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indicates the coarseness of the clustering. The shaded gray curve
corresponds to random recovery of positives. (A) HIV-1 protease
inhibitors. (B) 5HT4, agonists. (C) Angiotensin Il AT1 antagonists.
(D) Cyclooxygenase inhibitors.

Fig. 5 shows the weighted AUC and pAUC values obtained for those targets for
which the number of positives was large enough to make clustering practical.
The values shown reflect progressive consolidation of clusters as one moves
from left to right, with the right-most bar corresponding to about 10 clusters in
each case. As one would hope, the indications of bias that are qualitatively
evident in the full ROC curves in Fig. 4 are mirrored in the summary statistics
shown Figure 5. The arithmetic AUC (Figure 5A) decreases sharply with
increasing cluster size in most cases (the biased ones) where the harmonic AUC
(Figure 5C) is relatively stable but is insensitive to cluster size in most cases
where the harmonic AUC increases (the unbiased ones) with increasing cluster
size. These trends are even more readily apparent in the logarithmic pAUCs
(Figure 5B and 5D). Not surprisingly, some validation sets clearly fall into one or
the other category vis a vis bias, whereas others (e.g., docking into COX-2 and
the FCFP screen for thrombin inhibitors) lie somewhere between the two

extremes.

It is possible, though unlikely, that a query or docking target will come from a
small cluster of positives. Were this to occur, the ROC curve would be shifted to
the left by arithmetic weighting and the corresponding AUC and pAUC would
increase. This may explain some cases where VHTS performance falls
significantly below the value expected for guessing at random. It is not the case
for docking into acetylcholinesterase, however; arithmetic weighting only makes
the AUC worse (Figure 5A). It seems more likely that poor performance in this
case reflects the unusual nature of the ligand, a small one that bears a positive

charge but is not a hydrogen bond donor.

The nominal performance statistics are much better for FCFPs, which encode the
atomic environments of generalized atom types: hydrogen bond donors and

acceptors; positive and negative ionizable centers; aromatic atoms; and

15



halogens.?” They are more closely related to substructural fingerprints than are
distance-based pharmacophores, though they focus on distinctive groups
(piperazines, tetrazoles, amidines etc.) rather than on literal substructures. Itis
not surprising, then, to find that their ROC statistics are generally biased upwards
with respect to the overall structural similarity assessed by UNITY fingerprint
similarity (Figure 5). It is interesting to note that the performance statistics for
thrombin, a target that appears in both sets of screens, converge once the
differing number and relative structural diversity of thrombin positives have been
adjusted for by clustering (Figure 5A and 5B). Results for cyclooxygenase are
similar, though the interpretation in that case is complicated by the fact that the
two enzyme isoforms are split out in the docking validation set but not in the
MDDR classifications. That FCFP and Surflex-Dock performances converge
suggests that bias is at least as much an attribute of the target — and the known

positives that are available — as of the screening method.
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Figure 5. Effect of data set bias on linear and logarithmic AUCs. Data sets
large enough to cluster meaningfully were evaluated by linear
(black shading to gray) or logarithmic (red shading to yellow)
integration of the arithmetically and harmonically weighted ROCs.
For each target, the cluster size increases from left to right;
conversely, the number of clusters decreases in the same sense.
In each case, the lowest clustering level obtained was comprised of
about ten clusters. (A) Linear integration of arithmetic weighting.
(B) Logarithmic integration of arithmetic weighting. (C) Linear
integration of harmonic weighting. (D) Logarithmic integration of
harmonic weighting.

The degree and kind of bias detected will necessarily depend on how positives
are clustered. The consistency of the trends seen here for each target as the
number of clusters is varied suggests that results are not likely to be terribly
sensitive to the details involved, e.g., to the particular fingerprint implementation
employed or to the similarity metric used.®*=° That said, fundamentally different
types of descriptors can be expected to yield somewhat different results. Atom
pair fingerprints, for example, encode the topological separation between atom
types40 rather than the presence or absence of particular substructures that is
encoded by substructural fingerprints. Clusters constructed using either type of
fingerprint give similar results for fXa, for example, but less bias is evident for
cox2 when the less localized atom pair descriptor is used (details not shown).
Which approach is most appropriate will be dictated by the kind of novelty that is
of most value in the application of interest. In particular, a similarity metric based
on central ring structures*' may an appropriate choice for virtual screening of
protein kinase inhibitors, for which direct hydrogen bonding interactions between
the ligand scaffold and the target’s protein backbone are particularly critical for
these targets.*> More generally, however, the multiple levels of granularity

afforded by hierarchical clustering is likely to be more productive.
4. CONCLUSION

If a reasonably large number of known positives are available that represent
several different positive subclasses, examining the effect of arithmetic weighting

on (p)AUCs makes it possible to minimize the risk of settling on a particular

17



model because of biased validation results. In this case, the risk is opting for a
screening tool that would constitute a slow and expensive way to address the
much simpler sub-classification problem of structural or property similarity.'*2%2'
Conversely, examining the effect of harmonic weighting can be used to identify
screens that effectively complement the relatively trivial similarity searches that
one is likely to run as follow-up to any virtual screen. Taken together, they also
help identify validation sets that are negatively biased in a particular situation,
e.g., because its domain of applicability extends into areas beyond those
represented in the test set by accidents of history or because a chosen target or

query is unduly incompatible with the positives in the validation set.

The two types of virtual screens to which weighted ROC analysis has been
applied here are fundamentally different, yet both exhibit a similar range of bias.
Moreover, the biases seen for the shared targets — thrombin and cyclooxygenase
— are similar, which supports the intuitive expectation that bias is likely to reflect
incidental effects specific to one or a few targets and, hence, need not be a
general problem for a particular method. It also implies that related approaches
may be useful for identifying sampling bias in other validation and calibration

work.
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