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Projections of climate change impacts on crop yields are inherently uncertain1. 1 

Uncertainty is often quantified when projecting future greenhouse gas emissions 2 

and their influence on climate2. However, multi-model uncertainty analysis of crop 3 

responses to climate change is rare since systematic and objective comparisons 4 

among  process-based crop simulation models1, 3 are difficult4. Here we present the 5 

largest standardized model intercomparison for climate change impacts to date. 6 

We found that individual crop models are able to simulate measured wheat grain 7 

yields accurately under a range of environments, particularly if the input 8 

information is sufficient. However, simulated climate change impacts vary across 9 

models due to differences in model structures and parameter values.  10 

 A greater proportion of the uncertainty in climate change impact projections was 11 

due to variations among crop models than to variations among downscaled general 12 

circulation models (GCMs). Uncertainties in simulated impacts increased with 13 

CO2 concentrations and associated warming. These impact uncertainties can be 14 

reduced by improving temperature and CO2 relationships in models and better 15 

quantified through use of multi-model ensembles. Less uncertainty in describing 16 

how climate change may affect agricultural productivity will aid adaptation 17 

strategy development and policymaking.  18 

 19 
_________________________________________________ 20 
 21 
Uncertainties in projections of climate change impacts on future crop yields derive from 22 

different sources in modeling. The trajectories of future greenhouse gas emissions 23 

cannot be projected easily as they are strongly influenced by political and socio-24 

economic development. A range of  plausible projections (scenarios) of emissions are 25 

used instead2. Projecting the effects of emissions on climate and the downscaling of 26 

climate data itself, are both inherently uncertain, since different general circulation 27 

model ensembles5 and downscaling methods6 give different results. Finally, uncertainty 28 

in simulating the response of crops to altered climate can be attributed to differences in 29 

the structures of crop models and how model parameters are set. Process-based crop 30 

models account for many of the interactions among climate, crop, soil and management 31 

effects and are the most common tools for assessing climate change impacts on crop 32 

productivity. Many crop model impact assessments have been carried out for specific 33 
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locations7, agricultural regions8, and the globe9. Statistical methods have also been used 1 

to analyze trends in yields driven by climate10, but interactions between climate and 2 

non-climate factors confound results11. This hinders the attribution of causality12 and 3 

development of appropriate adaptation strategies. 4 

 5 

Uncertainty, any departure from the unachievable ideal of completely deterministic 6 

knowledge of a system13, has been addressed by the climate science community through 7 

probabilistic projections based on multiple GCMs or regional climate model 8 

ensembles14. However, most climate change agricultural impact assessments have used 9 

a single crop model3, limiting the quantification of uncertainty15. Since crop models 10 

differ in the way they simulate dynamic processes, set parameters, and use input 11 

variables3, large differences in simulation results have been reported16. While 12 

uncertainty of crop model projections is sometimes assessed by using more than one 13 

crop model16 or by perturbing crop model parameters17, coordinating comprehensive 14 

assessments has proven difficult4.  15 

 16 

To estimate the uncertainty associated with studies of climate impacts on crop yields, 17 

we used 27 different wheat crop models (Supplementary Tables S1 and S2) at four sites 18 

representing very different production environments (Fig. 1a). Simulated grain yields 19 

varied widely, although median values were close to observed grain yields across 20 

single-year-experiments for four representative environments (Supplementary Table S3) 21 

in The Netherlands, Argentina, India and Australia (Fig.1a, b). This phenomenon was 22 

previously reported in another multi-model comparison with fewer models16, and is 23 

comparable to the improved seasonal climate simulations produced with multiple 24 

GCMs18. The range of simulated yields was reduced significantly after full calibration, 25 

such that >50% of yields from calibrated models were within the mean coefficient of 26 

variation (CV%) (+/- 13.5%) of  >300 wheat field experiments19 (Fig. 1c). Similar 27 

patterns were found for other simulated aspects of wheat growth (Fig. 1d). Hence, crop 28 

models are able to simulate measured grain yield and other crop components accurately 29 

under diverse environments if input information is sufficient. 30 

 31 



 

5 
 

To illustrate the possible changes in uncertainty of simulated impacts, we analyzed the 1 

sensitivity of models to a combination of changes in precipitation and increases in both 2 

temperature and atmospheric CO2 concentration (734 ppm, compared to baseline at 360 3 

ppm) based on a location-specific scenario that best approximated the ensemble of high-4 

emission late-century climate projections (see Supplementary Table S3). Simulated 5 

climate change yield responses of all partially calibrated crop models had CV values 6 

between 20% and 30% (Fig. 2a); these were reduced by 2% to 7% when models were 7 

fully calibrated. However, the CV of simulated impacts using the 50% best-performing 8 

calibrated models (based on RMSE across all locations) was about 2% higher  than 9 

using all models, and this only decreased when the 50% of models closest to observed 10 

yields at each location were used (Fig. 2a). Uncertainty in simulated climate change 11 

impacts differed across the environments (Fig. 2a). In addition, uncertainty in simulated 12 

impacts varied with soil (Fig. 2b) and crop management (Fig. 2c and d). Hence, the 13 

overall growing environment, in particular the soil and crop management, affects the 14 

range of simulated grain yields across models, thus adding to uncertainty in responses 15 

coming from individual models. Therefore, selecting a subset of models that perform 16 

best in current environments does not reduce uncertainty in simulated climate change 17 

impacts.  18 

 19 

Changes in atmospheric CO2, temperature and precipitation are key drivers of the 20 

responses of crops to climate change20. Simulated impacts of elevated CO2 on yields 21 

varied relatively little across models (50% of model results were within +/- 20% of the 22 

median response) (Fig. 3a-d and Supplementary Fig. S5), but the variation across 80% 23 

of the crop models increased under elevated CO2 concentration mostly in the low-24 

yielding environment of Australia (see box-plot whiskers in Fig. 3d). However, the 25 

uncertainty in simulated yields did not increase with increasing CO2 in the other 26 

environments. This is not surprising as elevated CO2 affects fewer processes than 27 

increased temperature and because several of the wheat models have used observations 28 

from free-air CO2 enrichment (FACE) experiments to improve model processes related 29 

to high CO2
21, 22. But none of the models have been tested with elevated CO2 in 30 

combination with high temperature. The majority of simulated yield responses to an 180 31 

ppm CO2 increase at current temperatures (Fig. 3a-d) were within the range of 32 
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measured responses, ranging from 8% to 26% with elevated atmospheric CO2 1 

concentrations (Fig. 3e) across experiments conducted in the USA, Germany and 2 

China23, 24 (see also Supplementary Information, page 11 last paragraph).  3 

 4 

In contrast to the mean response of yields to CO2, uncertainty in simulated yield 5 

showed a strong dependency on temperature, particularly when the temperature increase 6 

exceeded 3oC with associated changes in atmospheric CO2. The median model response 7 

to a 3oC increase in temperature (Fig. 3a-d and Supplementary Fig. S5) is consistent 8 

with general field observations (Fig. 3e); observed wheat grain yields declined by 3% to 9 

10% per oC increase in mean temperature24,10 (see also Supplementary Information, 10 

page 11 last paragraph). The increased range of impacts at high temperatures (50% of 11 

models were between 20% and 40% of the median response on either side) indicated an 12 

increased model uncertainty with increasing temperature, partly related to simulated 13 

phenology (Supplementary Fig. S3), e.g. phenology is often enhanced with increasing 14 

temperature resulting in less time for light interception and photosynthesis and 15 

consequently less biomass and yield,  an increased frequency of high temperature events 16 

and its simulated impact on crop growth (Supplementary Fig. S4)25, and high 17 

temperature interactions with elevated CO2 (Fig. 3). However, accounting for a process 18 

such as high temperature stress impact in a model does not necessarily result in 19 

correctly simulating that effect (Supplementary Fig. S4), as the modelled process itself, 20 

e.g. leaf area or biomass growth interacts with other model processes in determining the 21 

final yield response of a model. Precipitation affected simulated yields, but precipitation 22 

change had little impact on the range of simulated responses (Supplementary Fig. S2). 23 

 24 

If averaging multi-model simulations is superior to a single crop4 or climate26 model 25 

simulation because the ratio of signal (mean change) to noise (variation) increases with 26 

the number of models and errors tend to cancel each other out, we should be able, with 27 

caution27, to estimate how many models would be required for robust projections. We 28 

assessed this by randomly choosing 260 subsets of the crop models, and computing the 29 

mean and spread of simulated results (Supplementary Fig. S1). As the variation in 30 

yields was about 13.5% around the mean in field experiments19, we considered 31 

projections to be robust if the range of projections was within 13.5% of the mean. The 32 
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number of models required for robust assessments of climate change varied depending 1 

on the magnitude of temperature change and interactions with the change in 2 

atmospheric CO2 (Fig. 4a). For example, at least five models are needed for robust 3 

assessments of yield impacts for increases of up to 3oC and 540 ppm of CO2. Fewer 4 

models are needed for smaller changes and more models for greater changes in 5 

temperature (Fig. 4a).  6 

 7 

When simulating impacts assuming a mid-century A2 emissions scenario (556 ppm of 8 

CO2) for climate projections from 16 downscaled GCMs using 26 wheat models, a 9 

greater proportion of the uncertainty in yields was due to variations among crop models 10 

than to variations among the downscaled GCMs (Fig. 4b). In contrast, GCM uncertainty 11 

tends to dominate in perturbed single crop model parameter studies28. The variation of 12 

simulated yields for the scenario ensemble was greater for low-yielding environments, 13 

while absolute values were similar to observations across yield levels and within the 14 

range of field experimental variation19. Smaller projected climate changes, e.g. for low 15 

emissions or early-century timeframes, result in less variation in simulated impacts, 16 

larger climate changes result in more variation (Figure 3).  17 

 18 

We conclude that projections from individual crop models fail to represent the 19 

significant uncertainties known to exist in crop responses to climate change. On the 20 

other hand, model ensembles have the potential to quantify the significant, and hitherto 21 

uncharacterized, crop component of uncertainty. Crop models need to be improved to 22 

more accurately reflect how heat stress and high temperature-by-CO2 interactions affect 23 

plant growth and yield formation. 24 

 25 

Methods 26 

 27 

Twenty-seven wheat crop simulation models (Supplementary Table S1 and S2) were 28 

tested within the Agricultural Model Intercomparison and Improvement Project29 29 

(AgMIP; www.agmip.org), with data from quality-assessed field experiments (sentinel 30 

site data) from four contrasting environments using standardized protocols, including 31 

partial and full model calibration experiments, to assess the role of crop model-based 32 

http://www.agmip.org/
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uncertainties in projections of climate change impacts (Fig. 1a; Supplementary 1 

Information). Model simulations were executed by individual modeling groups.  2 

 3 

  4 
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Figure captions 1 
        2 
Figure 1 | Wheat model-observation comparisons. (a) Global map of wheat production30 showing 3 
experimental sites (stars) representative of CIMMYT mega-environments (ME, broadly indicated by 4 
circles, http://wheatatlas.cimmyt.org). (b) Observed (x) and simulated (box plots) grain yields from 5 
single-year-experiments for The Netherlands (NL), Argentina (AR), India (IN) and Australia (AU). 6 
Simulated yields are from 27 different wheat crop models. Partially calibrated simulated yields (larger 7 
boxes) - researchers had no access to observed grain yields and growth dynamics (blind test). Calibrated 8 
simulated yields (smaller boxes) - researchers had access to observed grain yields and growth dynamics. 9 
In each box plot, vertical lines represent, from left to right, the 10th percentile, 25th percentile, median, 10 
75th percentile and 90th percentile of simulations. Standard deviation for observed yields (based on 11 
measurements of four replicates) is shown as an error bar if known. (c) Number of models within mean 12 
field experimental variation (13.5%)19 for partially calibrated (open bars) and fully calibrated models 13 
(grey bars) for single locations (NL, AR, IN and AU for each country) and combinations of locations. (d) 14 
Relative root mean square errors (RMSE) of simulation-observation comparisons for partially calibrated 15 
(open bar) and fully calibrated models (grey bars) of grain yield components across all four locations. 16 
LAI, leaf area index; ET, evapotranspiration. 17 

 18 
Figure 2 | Variability in impact model uncertainty. (a) Coefficient of variation (CV%) for simulated yield 19 
response to a location-specific scenario representing GCM projections for the high-emission (A2) 20 
scenario for the late century (in relation to baseline 1981-2010, see Supplementary Table S3) with 27 21 
crop models. Models were partially calibrated (black) or fully calibrated (green). Alternatively, 50% of 22 
models with the closest simulations to the observed yields across all locations were used (blue) or 50% 23 
of models with the closest simulations to the observed yields per location (red).  CV% of simulated yield 24 
response with 27 fully calibrated crop models to the climate change scenario with (b) increased (solid 25 
red) and reduced (dashed red) soil water holding capacity, (c) early (solid red) and delayed (dashed red) 26 
sowing dates and (d) increased (solid red) and reduced (dashed red) N fertilizer applications (only 20 27 
models included N dynamics); fully calibrated 20 models which included N dynamics (dashed green). The 28 
fully calibrated simulation (green) from (a) is reproduced in (b), (c) and (d) for comparison. The 29 
Netherlands (NL), Argentina (AR), India (IN) and Australia (AU).   30 
  31 
Figure 3 | Sensitivity of simulated and observed wheat to temperature and CO2 change.  Simulated 32 
relative mean (30-year average, 1981-2010) grain yield change for increased temperatures and elevated 33 
atmospheric CO2 concentrations for (a) The Netherlands (NL), (b) Argentina (AR), (c) India (IN) and (d) 34 
Australia (AU). For each box plot, vertical lines represent, from left to right, the 10th percentile, 25th 35 
percentile, median, 75th percentile and 90th percentile of simulations based on multi-models. (e) 36 
Observed range of yield impacts with elevated CO2

23, 24. Observed range of yield impacts with  increased 37 
temperature24,10 .(extrapolated, based on separate experiments with 40-345 ppm elevated CO2 and 1.4-38 
4.0 ºC temperature increase, see Supplementary Information) 39 
   40 
Figure 4 | Size of model ensembles and impact model uncertainty. (a) Average number of crop models 41 
across locations required to reduce the simulated yield impact variation to within the mean field 42 
experimental coefficient of variation (CV%) of 13.5%19. Different colours indicate elevated atmospheric 43 
CO2 concentrations (black = 360 ppm, red = 450 ppm, blue = 540 ppm, green = 630 ppm, dark yellow = 44 
720 ppm) in combinations with temperature changes. Error bars show s.d. (b) Coefficient of variation 45 
due to crop model uncertainty (using 10th percentile to 90th percentile of simulations based on crop 46 
multi-models) in simulated 30-year average climate change yield impact (black) and due to variation in 47 
16 downscaled GCM (red, see Supplementary Tables S6 and S7) mid-century A2 emission scenarios 48 
(2040-2069). Numbers indicate current yields at each location (Supplementary Table S3).  49 

 50 

 51 
  52 



 

10 
 

References  1 
 2 
 3 

1. Godfray, H.C.J. et al. Food Security: The Challenge of Feeding 9 Billion People. 4 
Science 327, 812-818 (2010). 5 

2. Moss, R.H. et al. The next generation of scenarios for climate change research 6 
and assessment. Nature 463, 747-756 (2010). 7 

3. White, J.W., Hoogenboom, G., Kimball, B.A. & Wall, G.W. Methodologies for 8 
simulating impacts of climate change on crop production. Field Crops Research 9 
124, 357-368 (2011). 10 

4. Rötter, R.P., Carter, T.R., Olesen, J.E. & Porter, J.R. Crop-climate models need 11 
an overhaul. Nature Climate Change 1, 175-177 (2011). 12 

5. Meehl, G.A. et al. The WCRP CMIP3 multimodel dataset - A new era in climate 13 
change research. Bulletin of the American Meteorological Society 88, 1383-1394 14 
(2007). 15 

6. Wilby, R.L. et al. A review of climate risk information for adaptation and 16 
development planning. International Journal of Climatology 29, 1193-1215 17 
(2009). 18 

7. Semenov, M.A., Wolf, J., Evans, L.G., Eckersten, H. & Iglesias, A. Comparison 19 
of wheat simulation models under climate change .2. Application of climate 20 
change scenarios. Climate Research 7, 271-281 (1996). 21 

8. Tao, F., Zhang, Z., Liu, J. & Yokozawa, M. Modelling the impacts of weather 22 
and climate variability on crop productivity over a large area: A new super-23 
ensemble-based probabilistic projection. Agricultural and Forest Meteorology 24 
149, 1266-1278 (2009). 25 

9. Rosenzweig, C. & Parry, M.L. Potential impact of climate change on world food 26 
supply. Nature 367, 133-138 (1994). 27 

10. Lobell, D.B., Schlenker, W. & Costa-Roberts, J. Climate Trends and Global 28 
Crop Production Since 1980. Science 333, 616-620 (2011). 29 

11. Lobell, D.B. & Burke, M.B. On the use of statistical models to predict crop yield 30 
responses to climate change. Agricultural and Forest Meteorology 150, 1443-31 
1452 (2010). 32 

12. Gifford, R. et al. Climate change and Australian wheat yield. Nature 391, 448-33 
449 (1998). 34 

13. Harris, G.R., Collins, M., Sexton, D.M.H., Murphy, J.M. & Booth, B.B.B. 35 
Probabilistic projections for 21st century European climate. Natural Hazards 36 
and Earth System Sciences 10, 2009-2020 (2010). 37 

14. Semenov, M.A. & Stratonovitch, P. Use of multi-model ensembles from global 38 
climate models for assessment of climate change impacts. Climate Research 41, 39 
1-14 (2010). 40 

15. Müller, C. Agriculture: Harvesting from uncertainties. Nature Climate Change 41 
1, 253-254 (2011). 42 

16. Palosuo, T. et al. Simulation of winter wheat yield and its variability in different 43 
climates of Europe: A comparison of eight crop growth models. European 44 
Journal of Agronomy 35, 103-114 (2011). 45 

17. Challinor, A.J., Simelton, E.S., Fraser, E.D.G., Hemming, D. & Collins, M. 46 
Increased crop failure due to climate change: assessing adaptation options using 47 



 

11 
 

models and socio-economic data for wheat in China. Environmental Research 1 
Letters 5 (2010). 2 

18. Hagedorn, R., Doblas-Reyes, F.J. & Palmer, T.N. The rationale behind the 3 
success of multi-model ensembles in seasonal forecasting - I. Basic concept. 4 
Tellus Series a-Dynamic Meteorology and Oceanography 57, 219-233 (2005). 5 

19. Taylor, S.L., Payton, M.E. & Raun, W.R. Relationship between mean yield, 6 
coefficient of variation, mean square error, and plot size in wheat field 7 
experiments. Communications in Soil Science and Plant Analysis 30, 1439-1447 8 
(1999). 9 

20. Hatfield, J.L. et al. Climate Impacts on Agriculture: Implications for Crop 10 
Production. Agronomy Journal 103, 351-370 (2011). 11 

21. Long, S.P., Ainsworth, E.A., Leakey, A.D.B., Nosberger, J. & Ort, D.R. Food 12 
for thought: Lower-than-expected crop yield stimulation with rising CO2 13 
concentrations. Science 312, 1918-1921 (2006). 14 

22. Ewert, F., Porter, J.R. & Rounsevell, M.D.A. Crop models, CO2, and climate 15 
change. Science 315, 459-459 (2007). 16 

23. Kimball, B.A. in Handbook of climate change and agroecosystems - Impacts, 17 
adaptation, and mitigation (eds. Hillel, D. & Rosenzweig, C.) 87 -107 (Imperial 18 
College Press, Covent Garden, London, 2011). 19 

24. Amthor, J.S. Effects of atmospheric CO2 concentration on wheat yield: review 20 
of results from experiments using various approaches to control CO2 21 
concentration. Field Crops Research 73, 1-34 (2001). 22 

25. Asseng, S., Foster, I. & Turner, N.C. The impact of temperature variability on 23 
wheat yields. Global Change Biology 17, 997-1012 (2011). 24 

26. Tebaldi, C. & Knutti, R. The use of the multi-model ensemble in probabilistic 25 
climate projections. Philosophical Transactions of the Royal Society A - 26 
Mathematical Physical and Engineering Sciences 365, 2053-2075 (2007). 27 

27. Knutti, R. The end of model democracy? Climatic Change 102, 395-404 (2010). 28 
28. Challinor, A.J., Wheeler, T., Hemming, D. & Upadhyaya, H.D. Ensemble yield 29 

simulations: crop and climate uncertainties, sensitivity to temperature and 30 
genotypic adaptation to climate change. Climate Research 38, 117-127 (2009). 31 

29. Rosenzweig, C. et al. The Agricultural Model Intercomparison and 32 
Improvement Project (AgMIP): Protocols and pilot studies. Agricultural 33 
Forestry and Meteorology (2012). 34 

30. Monfreda, C., Ramankutty, N. & Foley, J.A. Farming the planet: 2. Geographic 35 
distribution of crop areas, yields, physiological types, and net primary 36 
production in the year 2000. Global Biogeochemical Cycles 22 (2008). 37 

 38 
 39 

 40 
Corresponding author 41 
Senthold Asseng, University of Florida, Email: sasseng@ufl.edu 42 
 43 
Author contribution 44 
 45 
S.A., F.E., C.R., J.W.J., J.L.H. motivated the study, S.A., F.E. coordinated the study, 46 
S.A., F.E. D.W., P.M., D.C., A.R. analysed data, D.C., A.R., P.T., R.P.R., N.B., B.B., 47 
D.R., P.B., P.S., L.H., M.A.S., P.S., C.S., G.O.L., P.K.A., S.N.K., R.C.I., J.W.W., 48 

mailto:sasseng@ufl.edu


 

12 
 

L.A.H., R.G., K.C.K., T.P., J.H., T.O., J.W., I.S., J.E.O., J.D., C.N., S.G., J.I., E.P., 1 
T.S., F.T., C.M., K.W., R.G., C.A., I.S., C.B., J.R.W., A.J.C. carried out crop model 2 
simulations and discussed the results, M.T., S.N.K., provided experimental data, S.A., 3 
F.E., C.R., J.W.J. wrote the paper. 4 
 5 


	S. AssengP1P, F. EwertP2P, C. RosenzweigP3P, J.W. JonesP1P, J.L. HatfieldP4P, A. RuaneP3P, K.J. BooteP5P, P. ThorburnP6P, R.P. RötterP7P, D. CammaranoP1P, N. BrissonP8,9,#P, B. BassoP10P, P. MartreP11,12P, P.K. AggarwalP13P, C. AnguloP2P, P. BertuzziP...
	P1PAgricultural & Biological Engineering Department, University of Florida, Gainesville, FL 32611, USA, email: sasseng@ufl.edu & jimj@ufl.edu & davide.cammarano@ufl.edu,

