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ABSTRACT 

Stress dependent rock physics models are being used more routinely to link mechanical deformation and stress pertur-
bations to changes in seismic velocities and seismic anisotropy. In this paper, we invert for the effective non-linear mi-
crostructural parameters of 69 dry and saturated sandstone core samples. We evaluate the results in terms of the model 
input parameters of two non-linear rock physics models: A discrete and an analytic microstructural stress-dependent 
formulation. The results for the analytic model suggest that the global trend of the initial crack density is lower and ini-
tial aspect ratio is larger for the saturated samples compared to the corresponding dry samples. The initial aspect ratios 
for both the dry and saturated samples are tightly clustered between 0.0002 and 0.001, whereas the initial crack densi-
ties show more scatter. The results for the discrete model show higher crack densities for the saturated samples when 
compared to the corresponding dry samples. With increasing confining stress the crack densities decreases to almost 
identical values for both the dry and saturated samples. A key result of this paper is that there appears to be a stress de-
pendence of the compliance ratio N TB B  within many of the samples, possibly related to changing microcrack ge-

ometry with increasing confining stress. Furthermore, although the compliance ratio N TB B  for dry samples shows a 
diffuse distribution between 0.4 and 2.0, for saturated samples the distribution is very tightly clustered around 0.5. As 
confining stresses increase the compliance ratio distributions for the dry and saturated samples become more diffuse but 
still noticeably different. This result is significant because it reaffirms previous observations that the compliance ratio 
can be used as an indicator of fluid content within cracks and fractures. From a practical perspective, an overarching 
purpose of this paper is to investigate the range of input parameters of the microstructural models under both dry and 
saturated conditions to improve prediction of stress dependent seismic velocity and anisotropy observed in time-lapse 
seismic data due to hydro-mechanical effects related to fluid production and injection. 
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1. Introduction 

Non-linear or stress dependent rock physics models are 
being applied increasingly to model the influence of 
stress perturbations due to reservoir production and in-
jection activities on seismic velocities. Laboratory meas-
urement of non-linear rock physical properties of dry 
core samples can provide valuable information on the 
stress dependent elastic properties of reservoir rocks [1- 
3] and have the potential for up scaling to seismic fre-
quencies [4] as well as relating to static elasticity [5]. 
More importantly, core measurements can also be used to 
calibrate rock physics models [6] for the forward predic-
tion of the stress dependence of seismic velocities. Res-
ervoir rocks are seldom under dry conditions and so more 
realistic characterization of the non-linear rock physical 

properties should be examined under fluid saturated con-
ditions. However, the number of published studies on 
saturated core samples are fewer than those on dry sam-
ples and this is primarily due to the difficulty of carrying 
out fluid saturated stress measurements of core samples 
(e.g., enormous equilibration times are necessary when 
performing saturated core measurements in comparison 
with dry sample measurements). 

In this paper, we compare the microcrack parameters 
of the discrete and analytic microstructural stress-de-
pendent model described in [3] for dry and water satu-
rated core. The data used in this study come from the 
sandstone ultrasonic velocity-stress measurements of [7] 
and so allow a direct comparison between dry and water 
saturated microcrack parameters. This work follows 

Copyright © 2012 SciRes.                                                                                  IJG 



D. A. ANGUS  ET  AL. 823

from [6] who explore the microcrack properties of over 
150 dry-core ultrasonic velocity-stress measurements. 
Given the influence of fluids within microcracks (and 
capillary forces) has important implications on the stress 
sensitivity of reservoir rocks [8], it is necessary to study 
the effect of fluid saturation on non-linear rock physics 
model parameters. Thus, the main objective is the pa-
per is to study the influence of fluid saturation fluid on 
microcrack properties to further calibrate the micro-
structural non-linear rock physics models discussed in 
[6]. 

2. Rock Physics Model 

We examine the microcrack properties of two non-linear 
rock physics models: A discrete microcrack model de-
fined by a second- and a fourth-rank crack density tensor 
[1-3] and an analytic microcrack model defined by an 
initial crack density and initial aspect ratio [3,9]. Al-
though the discrete model describes the non-linear de-
pendence of velocity with stress, the input parameters are 
two tensor quantities that are not necessarily intuitive. 
The analytic formulation provides a model based on phy- 
sically intuitive input parameters to forward model the 
non-linear stress dependence of velocity, yet requires as-
suming that the microcracks are penny-shaped (i.e., the 
scalar crack approximation). Although penny-shaped cracks 
offer intuitive parameterization of the pore space and a 
reduction in the model complexity, the scalar crack ap-
proximation is not totally consistent with ultrasonic core 
data [6,10]. However, it should be noted that the analytic 
formulation still captures some of the essential stress de- 
pendent behaviour of sedimentary rocks and has utility 
for forward modelling applications. 

It should be noted that the non-linear formulation we 
examine in this paper is one of many approaches to mo- 
del the influence of stress on seismic velocity. For in-
stance, [11] present a 1D empirical formulation to de-
scribe vertical travel time perturbation due to changes in 
vertical strain and vertical velocity from 4D seismic data. 
Authors [12-14] use third-order elasticity theory to char-
acterize 3D stress dependence elasticity and anisotropy. 
Authors [15-17] introduce nonlinear models consistent 
with empirically derived phenomenological equations 
[18]. Our interest in the discrete and analytic models de-
scribed earlier (and in more detail below) is based on 
seeking formulations described using few and intuitive 
effective microstructural model parameters that can be 
calibrated with available data (e.g., ultrasonic core da- 
ta). 

2.1. Discrete Microcrack Model 

Reference [19] adopt the excess compliance approach of 
[20] to model the influence of stress dependent elasticity 

due to the deformation of microcracks. The stress de-
pendence and elastic anisotropy is given in terms of an 
excess compliance ΔS (the inverse of the 3 × 3 × 3 × 3 
elasticity tensor C) 

 1

4ijkl ik jl jk il il jk jl ik ijklS                 (1) 

[19,20] where δij is the Kronecker delta and summation 
convention is being used. The second- and fourth-rank 
crack density tensors αij and βijkl are defined 
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where V is volume and n is the unit normal to the dis-
placement discontinuity set m (i.e., microcrack or grain 
boundary). m

NB  and  are the normal and tangential 
compliances across the microcrack set m having surface 
area Sm. The effective compliance S of a rock can be ex-
pressed 

m
TB

0 ,  S S S               (4) 

where S0 is the background (or intact) rock compliance 
estimated from either mineral composition [21] or high 
confining stress behaviour [22]. In this paper, we use the 
high stress approach because we have found using min-
eral composition does not yield consistent and reliable 
velocity predictions compare with observation. 

The key assumptions for this model are that the mi-
crocracks are rotationally invariant and thin. Since ultra-
sonic measurements are only performed in one direction, 
we assume the samples are isotropic [22]. Thus, the 
fourth-rank crack density term can be simplified (i.e., βijkl 
is isotropic) 
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[22]. The scalar N is the number of discontinuities in V, 
and r is the radius of the crack. 

2.2. Analytic Microcrack Model 

To enable forward modelling of 4D seismic effects re-
lated to perturbations in stresses [23-25], [3] extended the 
analytic effective medium formulation of [9] to predict 
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ultrasonic anisotropic and stress-dependent velocities. 
Specifically, the analytic microcrack model introduces 
initial microcrack aspect ratio and number crack density 
to predict stress dependence and crack-induced elastic 
anisotropy. The number crack density is written 

  e
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i ii i e                  (8) 
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0
i  and  are the effective initial number crack den-

sity and effective initial aspect ratio, λi and μi are the 
Lame constants, and 
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in the i-th direction. The second-rank microcrack density 
term is 
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is a normalization factor [26], and  and 0
iE 0

i  are the 
anisotropic intact rock Young’s modulus and Poisson 
ratio. This derivation yields an expression for the effec-
tive elasticity that can model stress-induced elastic ani-
sotropy due to deviatoric stress fields. The key assump-
tions for this model are that the microcracks are penny- 
shaped and that the rock does not undergo brittle or plas-
tic deformation. 

2.3. Microcrack Properties of Dry Core 

Reference [6] compiled a database of over 150 dry-core 
velocity-stress measurements to explore microcrack pro- 
perties of the discrete and analytic non-linear rock physic 
models. Their results indicate that for most lithologies 
the initial aspect ratio are approximately 0.0005, but can 
be larger for shales. The initial crack density is sensitive 
to core damage and consolidation. Most notably, [6] note 
that the global trend of the compliance ratio N TB B  is 
not necessarily unity and, for the samples analyzed, is 
approximately 0.6. This has important implications be-
cause, for most sedimentary rocks, the fourth-rank term 
βijkl is often neglected to enable characterization of the 
nonlinear stress dependent elasticity based solely from 
contribution of the second-rank term αij [2,3,27]. Devia-
tions from the scalar crack assumption (i.e., where βijkl is 
small such that N TB B  = 1) potentially result from 
several factors, namely presence of fluids with nonzero 
bulk modulus, clay within cracks, cementation, and com-
plex crack geometries. In this paper, we know the satu-
rating fluid as well as an estimate of the clay content of 
the rock specimens (see discussion below), but lack 
quantitative measures of cementation or microcrack ge-
ometry. 

In [3,6], the analytic model parameter inversion in 

volved implementing a simple grid search over model 
parameters to minimize the misfit between model predic-
tions and observed ultrasonic data. However, such a sim-
ple grid search may not be an efficient method for deter-
mining the best-fitting model parameters. For the discrete 
model parameter inversion in [3,6], a Newton-Ralphson 
approach was used to minimize the misfit between the 
model predictions and observations based on derivatives 
of the elasticity tensor components with respect to model 
parameters (see Figure 1 in [6], for general workflow). A 
known limitation of the Newton-Ralphson method is that 
for nonlinear inversion problems it is often difficult to 
 

 

 

Figure 1. Microcrack properties for sandstone sample 
10381: dry (top) and saturated (bottom) sample. In this 
figure and Figures 2 and 3, the right panel compares the 
ultrasonic data (Vp is open black circle and Vs is open gray 
triangle), the crack density inversion results (Vp is solid 
black circle and Vs is solid gray circle), and the analytical 
microcrack prediction based on the best fitting initial 
crack density and initial aspect ratio (Vp is black solid 
curve and Vs is gray solid curve). The top-left panel shows 
the BN/BT ratio of the inverted crack densities (open circles) 
and the mean BN/BT ratio (solid line). The bottom-left 
panel compares the best fitting crack densities from the 
crack density inversion (open circles) and the best fitting 
crack densities from the analytic microcrack prediction 
(solid curve). 
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find the true global minimum and so solutions may be 
biased towards local minima if the initial starting model 
is not chosen carefully. In this paper, we use the neigh- 
bourhood algorithm of [28] to improve the model pa-
rameter inversions for both the analytic and discrete 
formulations. The results of the inversion for the discrete 
model are exceptional (e.g., see Figures 1-3, where solid 
symbols represent discrete model predictions and open 
symbols the ultrasonic data). For the most part, the in-
version results for the analytic model are poorer when 
compared to the discrete model. However, the analytic 
model predicts the general trend of the stress dependence 
remarkably well considering it only considers the 

influence of second-rank crack density tensor (e.g., the 
solid curves in Figures 1-3). 

3. Data 

Reference [7] investigated 69 sandstone core samples to 
examine the influence of fluid saturation on ultrasonic 
velocities. The measured porosity ranged between 5% 
and 30%, and the measured clay content ranged between 
0% and 50%. The core samples ranged in length between 
2 cm and 5 cm, and had diameter of 5.0 cm. It was noted 
that the dimensions of the core were approximately two 
orders of magnitude larger than the average grain size. 

 

 

 

Figure 2. Microcrack properties for sandstone sample 12677: Dry (top) and saturated (bottom) sample. 



D. A. ANGUS  ET  AL. 826 

 

 

Figure 3. Microcrack properties for sandstone sample Fountian B: Dry (top) and saturated (bottom) sample. 
 

The P- and S-wave velocities were measured with the 
pulse transmission technique based on picking the first 
arrival peak amplitude. The confining and pore pressure 
were controlled separately, where the differential pres-
sure limited to 50 MPa and the pore pressure to 1 MPa. 
The ultrasonic frequency of the P- and S-wave transduc-
ers were 1.0 MHz and 0.6 MHz, respectively. Based on 
the measured velocities, the average dominant wave-
lengths of the P and S waves were at least five times the 
mean grain size of the samples. Under dry conditions, the 
P-wave arrival times were picked to within 0.003 μsec 
(which equates to ≤1% error in velocity). The S-wave 

velocity errors were estimated to be less than 2%, except 
for the poorly consolidated samples at low confining 
stresses where the velocity errors were up to 3%. The 
samples were preloaded to 50 MPa and the velocities 
were measured on the unloading path to reduce the ef-
fects of hysteresis. Although hysteresis was observed the 
magnitude was small (i.e., ≤1%). For water-saturated 
conditions, the samples were fully saturated with water. 
However, for the samples having high clay content, the 
saturating fluid used was brine to minimize chemical 
alteration effects. [No velocity differences were observed 
between the water and brine saturation samples.] Veloci-
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ties were measure during loading and unloading with 
only minor hysteresis being observed (≤1% for well con- 
solidated samples and ≤2% for poorly consolidated sam-
ples). 

4. Results 

Figures 1-3 show the results of the inversion for three of 
the sandstone samples. Figure 1 is a sandstone sample 
with high clay content (46.0%) and low porosity (13.8%). 
The fit between observation and the discrete and analytic 
predictions are very good. The dry measurements have a 
characteristically higher stress dependence compared to 
the saturated measurements. The N TB B  ratio for the 
dry measurements show a stress dependence, decreasing 
from 1.5 to 0.5 with increasing stress, whereas the ratio 
for saturated measurements is approximately constant at 
0.5. Estimates of initial crack density e0 is smaller where- 
as the initial aspect ratio a0 is greater for the saturated 
measurement compared to the dry measurement. Figure 
2 is a sandstone sample with low clay content 7.0% and 
high porosity 27.05%. This sample shows similar stress 
dependent velocity characteristics to the sample shown in 
Figure 1. However, the N TB B  ratio for the dry meas-
urements is approximately constant around 0.75 and 
there is minimal change in the predicted initial crack 
density and initial aspect ratio between the dry and satu-
rated measurements. Figure 3 is a sandstone sample 

with no clay (0.0%) and moderate porosity (19.8%). 
This sample displays the same velocity stress depend-
ence (i.e., higher stress dependence for the dry meas-
urement). The N TB B  ratio is also stress dependent, 
but displaying a concave upward trend with increasing 
stress compared to the concave downward trend in 
Figure 1. Although the initial crack density is lower for 
the saturated sample, there is no change in the initial 
aspect ratio. [Note, the model parameters are assumed 
to be isotropic only because the data contain only one 
P- and one S-wave measurement for each dry and satu-
rated sample. However, the formulation does consider 
anisotropy in the model parameters if there is sufficient 
ultrasonic data.] 

4.1. Analytic Model Parameters 

Figure 4 displays e0 versus a0 estimates for the analytic 
model for both the dry and saturated measurements. Also 
shown (inset) are histograms for e0 and a0. For the dry 
and saturated measurements, the initial aspect ratios 
show similar clustering centred around 0.0005 and is con- 
sistent with that observed by [6] and references within). 
The initial crack density e0 show more scatter, with val-
ues between 0.0 and 0.4 for the dry measurements and 0.0 
and 0.25 for the saturated measurements. In Figure 5, 
initial crack density is plotted with respect to clay content 
and porosity, and shows no clear relationship 

 

 

Figure 4. Comparison of 0 versus a0 for dry (top) and saturated (bottom) samples. Inset: histograms for 0 and a0. 
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Figure 1. Comparison of 0 versus clay (left column) and porosity (right column) for dry (top) and saturated (bottom) sam-
ples. 

 

Figure 6. Comparison of a0 versus clay (left column) and porosity (right column) for dry (top) and saturated (bottom) sam-
ples. 
between clay and porosity. This is consistent with the 
idea that crack density is more sensitive to core damage, 
degree of cementation, grain boundary geometry and 
grain size. Although clay content (and porosity) can in-
fluence cementation, pore geometry and core damage, 
the relationship is complex and is not straight forward. 
Results from other studies suggest e0 correlates better 
with grain size rather than clay or porosity. Figure 6 

shows initial aspect ratio with respect to clay content and 
porosity, where a very weak trend of increasing aspect 
ratio with increasing porosity. Given that the aspect ratio 
describes the average shape (shape distribution) of the 
stress sensitive microcracks and grain boundaries, it is 
expected that the aspect ratio will be influenced not only 
by the fluid microcrack infill but also by the solid (e.g., 
clay) micorcrack infill. 
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4.2. Discrete Model Parameters 

Figures 7 and 8 display histograms for crack density and 

N TB B  ratio as a function of confining stress. In Figure 
7, both the dry and saturated measurements are charac-
terized by a decrease in crack density with increasing 
confining stress, with a slight bias of higher crack densi-
ties for the saturated measurements. The observation that 
crack density is higher in saturated samples suggests that 
fluids within the microcracks and grain boundaries serve 
to support the compliant pore space. Figure 8 highlights 
the main difference between the dry and saturated sam-
ples. The N TB B  ratios for the dry samples show a 
diffuse distribution between 0.4 and 2.0 for all confining 
stresses (the character of the distribution changes with 
confining stress and this likely represents the complex 
geometry of the microcracks and grain boundaries). 
However, for the saturated samples, the behaviour of the 

N TB B  ratio is very different. At low confining stresses, 
the ratio is tightly clustered around 0.5 and slowly be-
comes more diffuse as the confining stress increases. 
Even at high confining stresses the ratio still clusters 
around 0.5. At the lowest stress levels, the BN/BT ratio is 
predomi-nantly 0.5. The interpretation for this pheno- 
menon is that, at these lower stresses, the microcracks are 
open and hence contain sufficient enough volume of 
fluid that the compliance ratio is influenced predomi-
nantly by the normal compliance of the fluid. As the 

stress increases, the microcracks close reducing the vol-
ume of fluid within the microcracks and allowing the ge- 
ometry of the microcracks to influence the BN/BT ratio to 
a greater extent. Clearly the presence of fluid has a strong 
effect in reducing the N TB B  ratio since it offers resis-
tance to microcrack and grain boundary closure in the 
normal direction due to the finite stiffness of the fluid 
bulk modulus. The influence of fluids on the BN/BT ratio 
have been predicted [29,30] as well as observed [31], and 
is generally attributed to the fact that fluids decrease the 
normal compliance (e.g., increase the microcrack normal 
stiffness). The influence of fluids on the tangential com-
pliance has been observed experimentally [32] but it is 
often neglected, primarily because the mechanism is not 
well understood. 

4.3. Summary 

Figure 9 presents the results for the dry and saturated 
measurements: (a)-(b) compare the analytic model pa-
rameters and (c)-(d) compare the discrete model parame-
ters. Figure 9(a) indicates that the initial crack density 
predictions for the dry rock are greater than the saturated 
rock and this relates to the observation that the dry sam-
ples are more stress sensitive than the saturated samples. 
For the initial aspect ratios in Figure 9(b), the saturated 
samples are observed to have microcracks with larger 
aspect ratios and suggests that the fluids within the 

 

 

Figure 7. Histogram of crack density as a function of confining stress for dry (left column) and saturated (right column) sam-
ples. 
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Figure 8. Histogram of BN/BT ratio as a function of confining stress for dry (left column) and saturated (right column) sam-
ples. 
 

 

Figure 9. Comparison of dry and saturated microcrack properties: (a) Initial crack density; (b) Initial aspect ratio; (c) BN/BT 
ratio; and (d) crack density. [Note: for (c) and (d) the black symbols represent the low stress measurements and for increas-
ing confining stress the symbols become lighter.] 
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samples tend to support the compliant pores. Figure 9(c) 
compares estimates of the N TB B  for the dry and satu-
rated samples for all confining stresses and shows re-
markably consistent values (clustering around 0.5) for 
the saturated samples but a diffuse distribution for the 
dry measurements. Figure 9(d) compares the crack den-
sity estimates for all confining stresses and shows that at 
low confining stresses, the crack density of the saturated 
samples are larger than the dry samples. This is in stark 
contrast with the results of 9(a), where the initial crack 
density of the saturated samples are smaller than the dry 
samples. Although this might be considered totally in-
consistent with the idea that the saturated samples are 
stiffer than the dry samples (i.e., higher crack density 
making the rock weaker through excess compliance), the 
stiffness of the saturated samples comes about through 
the N TB B  ratio, where the normal compliance serves 
to strengthen the sample. Thus, there appears to be a re-
lationship between the discrete model parameter N TB B  
and the analytic model parameter a0, both of which ap-
pear to characterize the stiffness of the compliant pore 
space. More research with various saturating fluids is 
needed to explore the relationship between N TB B  and 
a0. 

5. Discussion 

5.1. Results 

Reference [22] invert the data of [7] for the second- and 
fourth-rank crack density terms 2 - 3 as well as the BN/BT 
ratio using Equations (5)-(7). The inverted BN/BT ratios of 
[22] are consistent with our results, showing a diffuse 
distribution for the dry samples and a tighter distribution 
for the saturated samples at low confining stresses. This 
distribution is more diffuse at higher stresses; these stress 
levels are more typical of in situ reservoir rock condi-
tions. However, there are some distinct differences. First, 
the inverted N TB B  ratios for the saturated samples of 
[22] cluster around 0.25, whereas our estimates cluster 
around 0.5. Second, [22] observe ratios up to 3.0 whereas 
ours do not exceed 2.0. Finally, it appears that we have 
many more BN/BT ratio estimates with respect to that of 
[22]. This is possibly due to the fact that [22] assume that 
BN/BT is stress independent and hence have only 138 (69 
dry and 69 saturated) estimates compared to our 730 (365 
dry and 365 saturated). 

Reference [10] also analyse the results of [7] as well as 
the sonic and ultrasonic data of [33] to invert for the com- 
pliance ratio N TB B . Reference [10] use the non-linear 
model of [16] and estimate the compliance ratio after 
inverting for Poisson’s ratio. They observe that the com-
pliance ratios show large scatter between 0 and 2 and 
conclude that the scalar crack (or spheroidal crack theory) 
is inconsistent with the data. However, [10] note large 

relative systematic errors in their estimates of the com-
pliance ratio which results from error propagation in the 
method of computing N TB B . In our approach, error in 
estimating N TB B  does not result from propagation of 
error from other model parameter estimates, but is en-
tirely influenced by the velocity measurement errors 
(between 1% and 3%). However, it should be stressed 
that our estimate of N TB B  is model dependent. 

5.2. General Comment on Rock Physics Models 

There is often criticism of rock physics models in terms 
of the model idealizations of the rock architecture. For 
example, how often are penny-shaped cracks are not ob-
served in real rocks? However, it is important to realize 
that ultrasonic seismic signals are band-limited and the 
limited information seismic signals contain are travel- 
times, amplitudes and phase. For transmission type ex-
periments, such as ultrasonic measurements, the seismic 
wavefield experiences the averaging effects [34,35] of 
sub-wavelength scale features in the rock. Furthermore, 
most ultrasonic measurements typical consider observa-
tions based on a single-source and single-receiver setup. 
Hence these experiments tend to be biased towards the 
fastest ray path neglecting potentially important wave-
form effects diagnostic of rock heterogeneity on the scale 
and less than the ultrasonic wavelength. Thus, what the 
seismic wavefield “sees” is not at all comparable to what 
the human eye sees. All that is for certain is that rocks 
have an excess compliance (paraphrased from Mike Scho- 
enberg). However, rock physics models allow us to con-
struct “semi-intuitive” model idealizations that have 
some correlation to measurable parameters. In this paper, 
we have investigated two microstructural models by con-
straining the range of their input parameters for both dry 
and saturated cases. In doing so, we can apply the micro-
structural models based on laboratory core data to predict 
the stress dependence of seismic velocity (and anisotropy) 
for dynamic geomechanical effects on time-lapse seismic 
attributes. 

Application of Equation (8) suggests that the model 
can only contain three sets of orthogonal cracks align 
with the principal stress. Cracks in rock have been ob-
served to be rarely in random orientations and this is 
primarily the result of non-uniform temperature and/or 
non-hydrostatic stress conditions [36-38]. 

6. Conclusion 

We have inverted for the non-linear microstructural pa-
rameters of 69 dry and saturated sandstone core samples 
and have evaluated the results in terms of the model in-
put parameters of a discrete and analytic stress-dependent 
rock physic models. The results for the analytic model 
indicate that the global trend of initial crack density is 
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lower and initial aspect ratio is larger for saturated sam-
ples compared to the equivalent dry samples. The initial 
aspect ratios for both the dry and saturated samples are 
tightly clustered between 0.0002 and 0.001, whereas the 
initial crack densities show more scatter. However, the 
overall trend is consistent with that found by Angus et al. 
(2009). The results for the discrete model indicate higher 
crack densities for the saturated samples compared to the 
dry samples, with crack density decreasing to almost iden- 
tical values with increasing confining stress. A noticeable 
deviation is observed with the compliance ratio N TB B , 
showing diffuse distribution between 0.4 and 2.0 for dry 
samples and very tight clustering around 0.5 for saturated 
samples. As confining stresses increase the compliance 
ratio distributions for the dry and saturated samples be-
come more diffuse but still noticeably different. 
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