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Abstract

Elementary algebric topology is used in the study of the
structure and optimal control of piecewise-linear and nonlinear

systems.

1 Introduction

In this paper we study the behaviour of piecewise-linear systems by dissect-
ing the ambient space into a geometric simplicial complex. This will allow the
application of algebric topology to obtain a numerical procedure for the deter-
mination of the global topology of the trajectories of such systems. Algebric
topology has been applied previously (for example, Easton, 1975) to obtain
the fine structure of choatic attractors; in particular, of their Poincare sections.
Here we wish to determine the global topology of trajectories, so that a structure
‘with one hole in’is a limit cycle, etc.

Particular examples of piecewise-linear systems have alsow been studied in
detail (a notable example is Chua ’s circuit; see Chua, Komuro and Mat-
sumoto, 1986), but little attention has been given, at least from control theory
viewpoint, to the general theory of the these systems . We shall introduce some
ideas in this paper which may be usefu] fmb'thg developing such a general theory.
This would be an important step toWa:les a be§ter ﬁﬁnderstanding of general
nonlinear systems, and the methods proposed here follow closely the ad hoc
methods of local linearization used widely in engineering.

We begin in section 2 with an outline of the results from algebric topolpgy
which we shall need; the proofs of thess results can be found in Hilton and
Wylie, 1965 or Spanier, 1966. In section 3 we shall study piecewise-linear
systems (without cont;irol) by making a simplicial decomposition of IR™ and de-
riving a numerical technique for the recursive evaluation of the homology groups
of a simplicial approximation to a trajectory of the system. This is very simi-

lar to the standard numerical techniques (Runge-Kutta, etc.) for the numerical
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evaluation of the phase-plane trajectories. In section 4 we shall consider optimal
control of piecewise-linear control systems and extend the linear-quadratic regu-
lator problem to these systems. Finally, in section 5 we shall show how to apply
the simplicial approximation theorem to obtain a piecewise-approximation to a
continuous nonlinear systems, and indicate briefly the evaluation of the optimal

control for such a system.

2 Elementary Algebric Topology

In this section we shall review the ideas of algebric topology which we use in the
paper; see Hilton and Wylie, 1965 or Spainer, 1966, If a°,a’,...,a? € R"
then b € R" is dependent on the a’s if there exist Ag,...,A, € R such that

p 3
D> haf=b
=0
If the vectors a* — a®,i = 1,..., p are linearly independent, then a p-simplex Sp
(of dimension p) with vertices a®,al,...,a? is the set of points dependent on

the a's for which the barycentric coordinates X; > 0,1 =0,...,p.

A face of a simplex is a subset of the simplex consisting of points with at
least one A; =0 .

A geometric simplicial complex K in R" is a set of simplexes of IR” such
that if S € K then all the faces of S also belong to K and any two simplexes are
disjoint or intersect in a closed face of each. If K and L are complexes a map
v from the vertices of K to those of L which is such that va®,...,va? spans a
simplex of L if a°, ..., aP spans a simplex of K is called a simplicial map. For
any complex K we let | K | denote the union of all the simplexes of K; note that
| K |C IR™ whereas K is a set of simplexes. | K | is called the polyhedron of
K. Clearly, any simplicial map v : K — L induces amap |v |:| K |—| L | by
linearity in each simplex.

If K is a complex we define the complex K’ (first derived complex) by ap-



plying regular substitution to each simplex of K. Thus, if S, = (a¥°,...,a'r) is

a simplex of K, we define a vertex

5o that b¥o-ir is the centre of mass of Sp . ( If p=0 then b% = 4’ so that the
vertices of K are vertices of K') . If 0y,...,0m are subset of the set of indices
i0, ..., 4p, ... which label the ¥'s , then {671,573, ...,b°™} is a simplex of K'if
and only if the 0’s can be renumbered so that oy D 02 D ... D om . This
process can be continued to produce the complexes K',..., K (",.... Given
a continuous map f :| K || L |, a simplicial map v : K — L is called
a simplicial approximation to f if for each z €| K |,| v | (z) belongs to
the closed simplex of L containing f(x). An important result of combinatorial

topology is

Theorem 2.1 Simplicial Approximation Theorem. If K, L are complezes
and f :| K |—| L | is continuous, then there exists r > 0 and a simplicial

approzimation v : KM L to f. D

Let | L |IKl denote the set of continuous functions f :| K |—| L | and
topologize the space with the topology of uniform convergence on compact sets.

Then we have

Corollary 2.1 If K, L are complezes, the sel of simplicial maps v : K
L) r,seN,isdensein |L|Kl . O

We next describe the homology groups Hp (k) which are homotopy invariants
of the polyhedron | K | of K. The set of p-chains Cp(K) (or simply Cy) is the
free abelian group generated by the p-simplexes of K. We define the boundary
homomorphism 8, : C, — Cp_1 on each oriented simplex S, = (a%’...a?)
by
8Sp = ) _(-1)i(a" ... o ...aP),
[



and by linearity to Cp . (An oriented simplex is just a simplex with some
fixed ordering of the vertices. Two orientations induced by two orderings are

considered to be identical if the orderings differ by an even permutation).

Clearly,
Op-10p=0 for all p.
put
Zp(K)(= Zp) = kernel of G,
Bp(K)(= Bp) = image of 0p41
and define
Hy(K) = Zp/By
A sequence

Antl a
— Gpgp1 =H Gp 2 Greg — -

of abelian groups G; and homomorphisms o; is exact if ker o, = image a4

for each n. Such a sequence gives rise to the (short) exact sequences
0—G,—G,—G,_,—0

where G}, = ker «, . This process is called splicing the sequence. Let

Ky, K4, K3 be simplicial complexes , and suppose we have the exact sequences
0 —s Cp(K1) =2 Cyp(K2) 22 Cp(Ks) — 0
for each p. Then the homomorphisms oy, 8, induces homomorphisms

aup  Hp(Ky) — Hp(K>)
Bup + Hp(K2) — Hp(Ks)

It is easy to show that the function 8,p defined by
Bup{za} = {0;216,8; "}

is a homomorphism

a.p : HP(K:-]) — Hp-l(]{1).



(Here, {z} denotes the image of z € Z, in H, under the canonical map Z, —

Z,/Bp .) Moreover , it can be shown that the induced sequence
S, Hy(K1) 22 Hy(Ka) 25 Hy(Ks) 2 Hypoy(Ky) = - 2.1
coo = Hy(K1) = Hp(K2) — Hp(K3) = Hp_1(K1) — - (2.1)

is exact.
Finally, we shall derive the Mayer-Vietoris sequence. First,ifv: K — L
is a simplicial map we define Cy(v) : Cp(K) — Cy(L) by

Cp(v)((a®,a,...,aP)) = (v(a®),v(a?),...,v(a"))

where the simplex on the right is replaced by 0 if the vertices are not distinct.
Now if K and K, are subcomplexes of a complex K then X3 N K2 and K1 UK
are also subcomplexes of K and Cp(K1),Cp(K3) € Cp(K) for each p. Moreover,

Cp(K1 NKy) = Cp(K1)NCp(K2) and Cp(Ky) + Cp(Kz) = Cp(Ky U K3) .
If 4:KinNK:CK; , ji:KiCKiUK,, j=1,2, are the inclusions , then

we have short exact sequences
0 — C,(K1 U K2) =2+ Cp(Ky) & Cp(K3) 22+ Cp(Ky U K3) — 0

where
ip(c) = (Cp(ir)e, —Cp(i2)c),
Jpler e2) = Cp(Gr)er + Cp(J2)c2
The Mayer-Vietoris sequence of the triple (K, K, K3) now follows from (2.1):
o P Hy(Ky N K) 5 Hy(Ky) @ Hy(K2) 5
Hy(Ky UKy) 25 Hy_y(Ky N Kp) <5



3 Piecewise-Linear Systems

In this section we shall consider a system of linear equation of the form!

z=Ai1z+ b z€EPR
2= Ax+b ze P
T ? (3.1)

z=Anz+b, 2z€P,

where the P; are polygonal regions in IR™ which form a partition of R" | i.e.
UP,=R" , P.‘ﬂ]%':@ , i#J (3.2)

Let K denote an (infinite) geometric simplicial complex (Hilton and Wylie,
1965) which is compatible with the polygonal dissection { Py,..., Py } of
IR". By this we mean that , for each ¢ € {1,...,m} , there exist a subcomplex
K; of K such that K; = P; (where K, is the polyhedron of K;, i.e. the set of
points in IR" spanned by the closed simplexes of K; ).

In order to simplify the discussion we shall make the following assumptions.

For each linear subsystem
2, = Aiz+b , zeR"

of (3.1) extended to IR" we shall assume that the trajectories are transversal
almost everywhere ( with respect to (n-1)- dimensional measure in IR" ) to the
(n-1)-dimensional boundaries of all simplexes in K; . This implies that there is
no finite piece of a trajectory lying in the (n-1)-dimensional skeleton of K.

To facilitate the study of a system of the form (3.1) we shall first consider

a single homogeneous equation

¢ = Az (3.3)

1P, are an open polytopes. We shall discuss the definition of the systems on their dosures
later,



and write it in simplicial coordinates . To this end , let S be a closed simplex in

R" with vertices vy, v1,...,v, . Then any poiﬁt z € S can be written uniquely
in the form " "
z= &u where Y &=1, &20. (3.4)
i=0 i=0

Thus, the solution x(t) of (3.3) may be written in the form

z(t) = ng(t)vg (3.5)

£=0
where

S am=1, &0

=0

This expansion is valid for all ¢ such that z(t) € S. Note that if we extend the
vector field Az outside S then we may still write the solution x(t) uniquely in
the form (3.2) with

zn:&(t) = 1,

1=0

but now we no longer have & > 0 for each i.
In our first lemma we show how to invert the relation (3.4) in order to express

the barycentric coordinates £ in terms of x.

Lemma 3.1 If the n+1 vectors vo,v1,...,v, € R"™ span a nondegenerate sim-

plez in R" |, then any £ € R" may be writlen uniquely in the form

n

w=2€ivi ) Z€i=1 (3.6)

=0 i=0

and the barycentric coordinates &; of = are given by

¢=V-'z (3.7)

where

and



Proof. We have already seen that the expansion (3.6) holds and so it remains
to prove (3.7).

First note that the (n + 1) x (n + 1) matrix V is nonsingular. This can be
proved as follows. The vectors v,,...,v, are linearly dependent and any n of
them are linearly independent since they span a nondegenerate simplex in R".

Hence we may write

n
v = Za;v.- (3.8)
i=1

for some as, not all zero. Since {v1,...,v,} forms a linearly independent set,
so does {Ty,...,Un}. If V is singular then we can write
n
W=y A
i=1
i.e.

vo = Zﬁi"’i , 1= Zﬁi
=1

$=1

Since the expression (3.8) is unique, we must have oy = f;,1 <1 < n . Hence,

o = Xn:a,'v; with Xn:a; =1
i=1

i=1

This contradicts the uniqueness of expansions (3.6), since we also have
n
vw= v , =1, &=0, i21
1=0

Hence V is vertible and (3.7) now follow directly from (3.6) . T We can now
express a linear system of the form (3.3) in terms of barycentric coordinates.

In fact, we have
Theorem 3.1 Consider the linear system
t = Az , z(0)=z€R" (3.9)

and let vg,vy,...,0, span a nondegenerate simplex in R . If ap,...,ap are

the barycentric coordinates of the origin 0 € R" and &o(t),...,En(t) are the



barycentric coordinates of z(t), i.e.

n n
0= Za;v,- ; Ea; =1,

z(t) = Zsi(t)vi 3 ZEt(t)':l;
i=0 i=0

then the system (3.9) takes the form
é = Z&"a ’ €0=V~IEO
in barycentric coordinates, where

£=(£0a~"a£n)T y = (QO)"‘aaﬂ)T;

— A0
A=vVv! V
01
Proof. From (3.9) we obtain the system
¢\ [A0 z
1 0 1 1

defined on R"*! . Thus

since
y- ( z ) = V-1z = ¢, by (3.7).

Now,

z‘:Zfivi ’ E€i=1’

i=0 =0



and so

&= ie}u; , ig} =0 (3.10)

1=0 i1=0

yi | ®
1
is the barycentric coordinate vector of  and so it equal n where

n n
:b:Emv,- , ‘z:n.-zl (3.11)
=0

=0

However,

Subtracting (3.10) from (3.11) gives

0= (n—&wi , Y (m-&)=1
§=0 i=0

and by uniqueness of barycentric coordinates, a; = n; — E} . The result now

follows. m]
- 0
a=V-=v"! ( )
1

Corollary 3.1 The nonhomogeneous system

Remark. Of course,

z = Az +b

has the expression
E=At—¢ (3.12)

where { is the baryceniric coordinate veclor of —b.

Proof. As before we have

é:::Zf-—(Y+-V_1 ( b )
0

10



and since

the results follows. )
Now return to the system (3.1) and let Sy,S52,Ss,... denote the open n-
dimentional simplexes in K .Simplicial coordinates in S; will be denoted by &;

and the linear equation which represent system (3.1) in S; will be denoted by
&=Ti&i—G [0 (3.13)

where T; = Ay for some k € {1,...,m} . Since these equations specify the
system on open simplexes we must define the behaviour of the system on the
simplexes of dimension < n. For simplexes S;, S; with a boundary simplex in
common there are two possibilities. If this boundary simplex lies entirely in a
single polytope P then we merely extend (3.13) by continuity. If, on the other
hand, it lies in the boundary of a pair of polytopes P, and P; then we shall
assume that some arbitrary but well-defined choice has been made for one of
the systems
&= Apz+ by

or

i‘::A::L‘-}-bz

and uniquely extend (3.13) onto the boundary according to this choice. (Of
course, the system will in general be discontinuous).

For any given initial condition £y € IR" the solution of the system (3.13)
will specify a unique sequence of simplexes S;,, Si,, . . . through which to solution
passes ( in that order).

(It is possible that the solution is not defined for all time. Consider , for

example the system

z € {(221,2!2) 1T __<_ 0}

11



zi=x—1
) ze{(zl,zz):x1>0}
Tog = 0
Taking simplexes which have a boundary in common on the z; axis we see that
the solution cannot be extended beyond the z, axis.) For any simplex Si of

this sequence the solution trajectory satisfies the equation (3.13k) i.e.
& = Dube = (i

Assuming that T'; is diagonalizable (a simplex extention to the Jordan form

follows easily) we can find an invertible (complex) matrix Nj such that
£x(t) = Ny teM i Nibo - '/0i NyteM =N (e ds

where A} is the diagonal matrix of eigenvalues of I'y . Thus,
& (t) = Ny e Nibo — Ny UAL (T — €M) NiGi

Hence we can write the it component (1 <i < n+ 1) of £(t) in the form

n+1

@) = > ket + g} (3.14)
J=1

where {);} is the set of eigenvalues of Ty, and al-‘j depends on A; and & and
BF depends on A; and ¢ .

In order to determine the sequence Si,, Si,, ... of simplexes through which
a given trajectory passes suppose that the trajectory has passed through the
simplexes S;,, Si,,- . .,Si, and is on the boundary of S;, at the point z;, . Then

we have

Lemma 3.2 The trajectory will enter simplez Si if
n41
af;(0)A; > 0 (3.15)
=1

i
for all i for which €o; is zero where §o ts the vector of S -simplicial coordinates

sz.'k .

12



Proof. The expression for the simplicial coordinates of the trajectory is given by
(3.14) . If £;o =0 then the trajectory can only enter this simplex if & increases
(where £ is the simplicial coordinate vector of Sy ). Since £(t) is differentiable
in S; the results follows directly from (3.14). ]

Of course, if the trajectory enters the interior of simplex Sy then it will leave

again (if at all) at the smallest time T for which there exists i such that

n+l
S akedT 4+ gE =0 (3.16)
j=1
and
n+1
> Ajak;edT <0 (3.17)
j=1

The expressions (3.15)-(3.17) enable us to determine numerically the sequence
S;,5i,,- .. of simplexes through which a given trajectory passes. Renumber-
ing the simplexes, we can assume that a given trajectory passes through the
sequence of simplexes S1, S2,... . Let Ki denote the simplicial complex gener-
ated by the simplexes S1,...,S; . We shall be interested in the topology of Ky
as reflected in its homology groups H,(K;) . These are , of course, only homo-
topy invariants but are useful in determining the ‘number of holes ’in a global
structure , so that they will distinguish between limit cycles, periodic doubling
phenomena and possibly even the global behaviour of ‘strange attractors ’,
Just as we solve a nonlinear differential equation numerically by evaluating
the current phase space coordinates recursively from the previous ones, we shall
now outline a method for the recursive numerical evaluation of the homology
groups H,(Kj) . For a sufficiently fine simplicial decomposition of R" , this
will provide an approximation to the topology of the trajectories in much
the same way as numerical integration gives an approximation to the phase
plane portraits. This method will not, of course, provide the fine topology of
strange attractors, but will give the topology of some open neighbourhood of

the attractors.

13



The method we propose consists of applying the Mayer-Vietoris sequence
to Ki and Kp41 to obtain the changé in topology from K to Ki41 . Of course
at any given stage we could compute the topology of Kj directly , since an
effective procedure for this exists (Hilton, Wylie, 1965). The use of the
Mayer-Vietoris sequence simplifies the recursive computation since we are
adding a simplex (or rather the geomatric complex of a simplex) each time.

Recall, then, that the Mayer-Vietoris sequence is

oo 2 H (K 0 Segr) 5 Ho(Ke) ® Hy(Sear) 25
H (K U Sk41) L, Hy1(Kx N Sk41) S

However, for any simplex Si41

Hy(Sk+1)=0 , ¢>0

3.18
Ho(Sk41) = J (319

Hence, the Mayer-Vietoris sequence reduces to the exact sequence

H.(Ky N Sk+1) e, H,(Ky) LN Hn(Kk+1) L, Hy 1(Kp N Sk+1)

Sy B Ho (K A Skan) = Ho(Ky) @ F 25 Ho(Kign)  (3.19)
We shall consider two typical case for Ki41;namely, (a). when K1 is such
that K N Sg41 is the complex of an (n-1)-dimentional simplex and (b). when
K} N Sg4q is the union of the complex of an (n-1)-dimentional simplex and its

opposite vertex. (see fig. 3.1.)

14



(a) (b)
Fig. 3.1 Typical situations for K,

In case (a) , since Siy; is contractible we expect that the homology groups
of Ki41 are the same as those of K . This is clear, of course, from the fact
that the homology groups are homotopy invariants. It also follows directly from
(3.18) and (3.19), since H,(KiNSk41) =0 if p> 0 and Ho(Kip NSk41) = J.
In case (b) we have, from (3.19),

0 % Hj(Ky) 25 H(Kign) 220
for j > 1 and so
Hij(Ki) =2 Hi(Ki41) for j>1
Consider the case j = 1. Then we have the exact sequence
0 - Hy(Ki) 25 Hy(Kig1) 25 Ho(Ki N Sipy) 5
Ho(Kx) & J 454 Ho(Kiy) (3.20)

However, since the complex Ki(k > 1) is connected (being derived from a

connected trajectory), we have

Ho(Kk) = HO(Kk-H) =J

e N Y

and so (3.20) reduces to the sequence /JT\ ;\ 0

0 Hy(Ky) 5 Hy(Kpar) 2 J o7 2 JGB]J-”’—> oo e

It follows by splicing the sequence that
Hy(Kk41) = Hi (K)o J

These simple cases illustrate the application of the sequence (3.19) to obtain
recursively the homology groups of K}, . Similar ideas apply in more general

cases.

15



4 Quadratic Control of Piecewise-Linear sys-

tems

We shall now discuss the following optimal control problem: consider the system
of equations

¢=Az+Bu , z€Pi , i€{l,...,m} (4.1)

where P; is again a polygonal dissection of R™ . Then we wish to minimize the

quadratic cost function
1
J(u) = T (4) Falty) + /0 (T WQa(t) + TR (42)

subject to the constraints (4.1). We shall assume that each pair (4;, B;) is
controllable. Suppose we know the optimal control u*(t), 0 < t <ty which
drives the state from zo to #; . We shall assume for the present that the
optimal trajectory #*(t) is transversal to the boundary of any polytope P; which
it intersects (or remains in the same polytope P; if it is tangent to 9F; ). Then

we have

Lemma 4.1 There ezxisis a set of times

A= {tl’t%"',th} (43)
(possibly empty) with
ty>t1>t2> ...t >0

and a sequence (P;,, P,,...) of polytopes (with Pi; € {Py,..., Pn}) such that the

optimal trajectory z*(t) belongs to P;; on the interval (tj-1,t;) , where to = 1.

Proof. If z; € Pj, then we set i; = k . Suppose first that z; € p. Consider

the linear-quadratic problem

£ = Az 4+ Byu , zeR" (4.4)

16



together with cost function (4.2). (Note that we are considering the extension of
the linear system (4.1) to the whole of R" .) The solution of this optimization

is of course, well-known and is given by
u(t) = —R™!BI Pi(t)=(t)
where P satisfies the Riccati equation

Pi(t) = —Pu(t)Ax — AT Pi(t) — Q + Po(t) By R™'BT Pi(1)

(45)
P(t f) = F .
The optimal trajectory is then the following solution of the the equation
z(t) = Aga(t) - BkR—lBZ‘Pk(t)x(t) , (4.6)

z(ty) =21
Solving the system (4.5) and (4.6) backwards in time from t; will then de-
termine the optimal trajectory Z(t) . Let t; <ty be the largest time at which
2(t1) € 0P and for any T < t; ,z(f) € P, ,i2 # k . It may be , of course,
that £ < 0 , in which case the set A is empty and the optimal solution to
(4.1),(4.2) with final state &, is just the classical solution . Let zp = 2(t1) . If
1 is on the boundary of a polytope , then we can use the same argument , since
we have assumed that the optimal trajectory does not stay on the boundary of
a polytope. In this case we would consider all the extended linear problems
(4.2) and (4.4) for which z; is on the boundary of the corresponding polytope.
Then the optimal solution must belong to the interior of some polytope, say p;
again, for some finite time #; <t < t; and z; = z(t;) € 9P, . Of course, in
either case, we have z*(t) = Z1(t), u*(t) = G(t),t € ({1,ts). The argument is
now repeated with ¢, replaced by t; and z, replaced by ; .This time we write

the cost functional in the form
ty
J(u) = 2T (t;)Fz(ty) + / (zT(t)Qz(t) + uT(t)Ru(t)) dt
1

+ / N (=T (1)Q=(t) + uT (t) Ru(t)) dt
1]

17



=zT Fz; + / (z*T@)Qz*(t) + u*T(t)Ru* (1)) dt

+ / (27 ©Qu(t) + u” () Ru(t) dt

= 23 P(t1)zs + ‘/01l (=T ()Qz(t) + uT(t)Ru(i)) di

since, as is well known, z3 P(t;)z, is the optimal cost of the control on the
interval (t;,t7). The argument of the first part follows directly with F replaced
by P(t;). O

Remark. The number of swiches h of course, depends on z; .

In the above discussion we have assumed that no finite piece of an optimal
trajectory remains on the boundary of any polytope. This will clearly be the case
when the optimal trajectories of the extended linear systems are all transversal
to the boundaries in of any polytope , in such a way that the optimal trajectories
of linear systems which meet on a boundary point in the same direction
(Fig.4.1.).

L Xz Ay +B1\L
1

ophmul hn\)utorj
of s\\.)stem 1.

oPUMa\
trajector
of s:;stem 2

Fig. 4.1. Optimal trajectories at a boundary.

If the optimal trajectories both point away from a boundary as in Fig.4.2

then the same argument as in lemma 4.1 holds since we are tracing the solutions

18



backwards in time. However, only those final states which trace back to this
boundary in exactly time t; can lie on optimal trajectories, and not those which

trace back to the boundary in a time < t; .

Px lx= A +Bu

oPUm&LL tl‘&\jact'orj
. Bow A '
Y= Aot o‘km«\.
\:m")mc’c orj

Fig. 4.2 Optimal trajectories which diverge at a boundary.

The most interesting situation occurs when optimal trajectories converge

from both sides of a boundary, as in Fig.4.3.

/oftmud tra\)LCtbF y

g?k 'uv\tLL
tm\')u*-DP Y

Fig. 4.3. Optimal trajectories which converge to a boundary.

The general conditions for a sliding mode to occur then exist. Consider an
optimal trajectory which reaches 8P, N P, at some (minimal) time 7 < t; .
Then the trajectory will continue on a sliding mode until it reaches a point at

which the optimal trajectories are transversal to the boundary of a polytope
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and then continue as described in lemma 4.1. Of course, the trajectory may
remain on the sliding mode for t € {f,¢;} . Moreover, it may reach a point on
8(dP;) for some i and then move along a lower-dimentional sliding mode.

Summing up, we have proved.

Theorem 4.1 Let t; be fized and consider the optimal problem:
minimize  J(v) = 27(t;)Fa(tr) + f;’ (e7(t)Qz(t) + uT (t)Ru(?)) dt
(with R > 0), subject to the piecewise-linear dynamics

t=Aiz+Bu , z€P ,i€{l,...,m}.
(We assume some well-defined extension of the dynamics to Ui8P; ; for ezample,

¢ =Az+Bu ,z€P
¢ =Asx+ Bu ,z€PU (6P2\6P1)
z = Asz+ Bsu ,z€ Pz U (6P3\(6P2 (W] 6P1))

& = Amz+ Bmu ,& € PnU(OP,\(UZT'0R)). )

Then, for any xo € R™ there ezist an optimal trajectory x(t; zo)and a sequence
of times {ti,13,...} such that 0 < t; < ty such that, for t € (ti,ti-1)(i =
0,1,2,...;t0 = ty),z(t; zo) belongs to an open polytope Py, for some k; oris a

sliding mode in 8Py, . Moreover , for fired t; , there is an invertible function
E:R*"—EZCR"
given by E(zo) = z(1y; o). ]

Remark. As we have seen above, £ may be a proper subset of R" .
In order to determine the times ¢; for each z; = z(ts,%0) in E we must first
discuss the motion on the sliding mode and obtain the optimal cost of such a

trajectory. For simplicity we shall consider the case of a scalar control u.
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Suppose that a sliding mode occurs on the n-1 dimentional boundary of the

gystem
= Az + Biu (47)

and suppose that the hyperplane is given by the equation
dTz =« (4.8)

Writting the equation (4.7) in phase-canonical form, we have

Y1 = A1y + bu
where
[0 1 0o . 0 \
0 0 1 0 0
A =
0 0 0 © 1
\ V1 Vs VUn

for some v;, w;, where
n =Ciz
By (4.8), we have
dTCilyi = a (4.9)
Let y1 = (71,...,7). Then we have
=11 , 1<i<n—-1
T 2SS (4.10)
T = 2j=1 Vi +u

From (4.9) we have

n
D Gmi=a
i=1
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for some numbers §; . Without loss of generality, we shall assume that 6, # 0
and normalize 6, to 1. Then

n-1

ﬂn’—'a"zaiﬂj (4.11)

§=1

and so by (4.10) the equation of motion on the sliding mode is
i=nit1 , 1<i<n-2
n-1
el = — Z&jnj.
=1
This can be written in the form
N=Mij+g

for an appropriate matrix M and vector g where = (1,...,9a-1) . Thusif a

sliding mode occurs during the time interval ({;,%;-1) , we have
ti—1
A(t) = e~ ME-1=5(1_1) - / e~ ME=tgds (4.12)
!

Since 7y, is given by (4.11), this specifies y; on the sliding mode and also u,
since by (4.10),

n
A .
Us = v lgliding mode = Tl = D ¥ (4.13)
j=1
Finally, we have
A -
z, =z Isliding mode = Cr'n
= Gl m) (4.14)

If the trajectory lies on a lower dimentional hyperspace then we can use similar
reasoning to determine the equation of motion on the subspace . For example,
if the motion takes place on a subspace of dimention (n-2) given by a pair of
equations

dC'p =
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d3CT My = e
then we can assume that we can solve these equations for (a1, ) in terms of

(M- 1Mn-2) , 83y

et} _ [ od | _ [ ZiI e
-2
Tin o z?=1 6_72'71'
for some numbers a;c,éf , k=12 ,j=1, ... n-2. Then, as before we have
hi=n4 , 1<i<n-3

. - (4.15)
fn—2 =01 — 3021 6inj

and proceed as before.

We now have the main ingredients necessary to solve the piecewise-linear
-quadratic control problem. We must solve backwards in time from the final
state z(f;) either a normal Riccati equation (4.15) together with the dynamics
(4.6) or a sliding mode equation of the form (4.15) over certain intervals of
time. In the ordinary linear- quadratic problem we must store values for the
Riccati matrix P(t) at discrete times between 0 and ¢{; . The main drawback
with the piecewise-linear-quadratic problem is that the swiching times and the
Riccati matrix Py (t) depend on the final state and so we must store these values
for a large number of final states, perhaps at the vertices of some sufficient by
fine triangulation of a bounded subject of R" .

One way around the problem of large storage requirments in piecewise- linear
regulator design is to use receding horizon control.(see Banks, 1986). For any

controllable linear system
z(t) = Az(t) + Bu(t) , z(0)==zo
we can choose the suboptimal control
u(t) = —R™'BTW-Y(T)z(t)

where

T
W(T):/O exp(—AT)BR™1BTexp(— AT r)dr
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The horizen time T is then chosen to depend on the state x, in such a way that
we obtain a stabilizing control. One such choice is known to be given by (Shaw,
1979)

V(z,T) = F(T) (4.16)
where F is monotonicall); decreasing in T and
V(z,T)=zTW (D) (4.17)
Thus, if we consider the piecewise-linear system
i=Aiz+Bu , teP ,ie{l,...,m}
again we can consider the control law
ui(t) = —R-BIW 1 (T)z(t) , =z(t)€ P © (4.18)

where

T
W,-(T):/; exp(—Air)B;R™* BT exp(—AT r)dr

of course, for the same reason as before we may have trajectories which form
sliding modes on the boundaries of the polytope P; .These can be determined
in the same way as above. The horizon time may be chosen in accordance with

(4.16) and (4.17) in each polytope. Then we have

Theorem 4.2 If the motion along any sliding mode is stable then the conirol
law (4.18) with horizon time which salisfies (4.16) and (4.17) is stabilizing.
Proof. Since the control law (4.18) is stabilizing for each linear system the

vesult follows from the the assumption on the sliding mode dynamics. O

5 Application to Nonlinear Systems

In this section we shall consider the nonlinear analytic system
z = f(z,u) (5.1)
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We wish to obtain a piecewise-linear approximation to (5.1) for simplicial de-
composition of R™ .The application of the simplicial approximation theorem to
f(z,u) is not entirely straightforward since we would obtain such an approxima-
tion for each u and the resulting system would only be linear in x. to overcome

this difficulty we consider the extended system (see Banks, 1988.)

£= 1) } i =T0) + ( ; ) , 62
U= I

where y = (2T,uT)T,F = (f7,0)T and work with this system rather than
(5.1). We shall assume that the system (5.2) is controllable. Note that this
is a stronger condition than the cotrollability of (5.1). One main result is that
there is a controllable piecewise-linear approximation to (5.2) which is linear

in each simplex.

Theorem 5.1 Given @ controllable system of the form (5.2), any € > 0 and

any compact set | C |C R™™ |there ezisls a piecewise-linear system

.= 0
v=Ffuly) + ( ; ) v, yeR™M™™ (5.3)
which is controllable and satisfies

suppec || | Fu(w) | =F(v) li<e (5.4)

Proof. Since (5.2) is controllable, it is accessible (Sussmann, Jurdjevic,

1972) and hence the lie algebra of vector fields L(F') generated by the vector

fields
F:{'f(.)+ ( O)v : vEIR'"}
I

has dimension (n+m). Assume without loss of generality that | C | is a com-

pact polyhedron with geometric complex C and let | D | denote some convex
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polyhedron with complex D containing f(| C]) . Then, by the corollary to the

simplicial approximation theorem (corollary 2.1), there exist a simplicial map
fpl " — p®

for some r,s such that (5.4) holds. Since the dimention of L(F) is n we can

choose € > 0 small enough so that £(Fp;) , where

Fu= {fp,(.)+ ( 2 ) v o velR'"}

has dimension n. However, for linear systems controllability is equivalent to
accessibillity and so the result follows from the fact that each linear system

which is obtained by extending the linear map
7pl s 8 — D

where S is a simplex of C(") , to R®*™ is controllable. 0
The piecewise-linear system (5.3) can be written in simplicial coordinates in

the form

£ = At +B; ( (; ) v (5.5)

for some matrix B; where §; is the simplicial coordinates vector of (=T, u?)T .
Suppose again that we wish to study the nonlinear system (5.1) with the

standard quadratic cost

J = 2T (t))Fz(t;) + /0 Y (T Qa(t) + T () Rult))dt (5.6)

= yT () Fryty) + /0 ! v ()Quy(t)dt

yTz(zT’“T) ’F1=(F 0) ’Q1=(Q 0)
0 0 0 R
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In order to obtain a nonsingular control we shall augment the cost (5.6) to

include v ; i.e. we define

Jo =y (t) Fuy(ty) + /0 ! (T (MQuy(t) + vT () R'v(2)) dt (5.7)

for some invertible matrix R’ . (This has the effect of weighting the derivative
of u, and can be removed by considering the limit R’ — 0 ). We can now apply
the method of section 4 by transformig the cost function J, into simplicial

coordinates.

6 Conclusions

In this paper we have presented a framework within which one can study
piecewise-linear systems by making use of certain results from combinatorial
topology . We have deliberately chosen the homology theory of geometric com-
plexes because of its computational simplicity. Other homology theories would
not lead to such a direct computational algorithm as the one given in section
3, based on the Mayer-Vietoris sequence. We emphasize that the ideas given
here are merely a starting point for a complete homological study of nonlinear

systems and we shall persue these methods in future papers.
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