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Abstract

The aim of this paper is to introduce two nonlinear input-output repre-
sentations of bilinear systems. Sufficient conditions for £ -stability are de-
rived. These representations are believed to compare favorably with the stan-

dard Volterra series representation.
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1 Introduction:

Functional expansions known as Volterra series are one of the most useful tools
in nonlinear system theory [5], (see also [7]). Since their introduction by Weiner
in the 1940%, papers deéling with the subject appeared periodically. Formulas
and/or computational schemes were derived for terms in these expansions.For
bilinear systems, explicit formulas for the calculation of the kernels were ob-
tained [1]. Despite its use in realization theory [6], [2], [3] and optimal control
[9], to cite a few, the method presented a major drawback, its rate of conver-
gence. One has to compute a large number of terms in order to get a ‘reasonable

approximation ’,

In this paper, we introduce two input-output representations for bilinear sys-
tems, and derive some stability results. To our knowledge the method is new,
and we believe that, due to the nonlinear nature of the kernels involved, this
may lead to a ‘reasonable approximation’ in a smaller number of terms, a point

which will be investigated in future papers.

The paper is organised as follows: In section 2, we shall present a new
input-output map which reduces to the standard Volterra series expansion un- '
der a suitable assumption. In section 3, a more general input-output map is
introduced. Finally, in section 4, stability results are derived from these repre-

sentations.




In the following, we use the notation below:

If x is an n-vector and A is an nxn matrix, we take as compatible norms:

n
|2 |l= mazizin |2 | and || All= mazizin Y | aik |
k=1

2 A nonlinear input-output map for bilinear
systems I:

Consider the bilinear system

-
il

m
Az + Zu.ijx, z(0) = g
i=1

y = Cu (2.1)

where A, N;,C are constant matrices of suitable dimensions. We shall present
in this section a new input-output map to represent this system.

Let ug(t) = 1, ¢t > 0 and Ny = A, then (2.1) becomes

m
& = Y wlNjz, 2(0)= z
j=0
y = Cz (2.2)
Consider the change of variable

s M f:uk(r)d'rz (2.3)



we have z(0) = 29 = o . Differentiating and taking into account (2.2) and
(2.3), we get

1 t
s =~ [ uk(r)dvpk(t)emfo ux(r)dr (2.4)
where Py(t) = 3 oy u; Ny
Let U(r) = [y w(o)do
Then,

t
z(t) = 29 +/ e~ NeUk(T) P (1)eNeUR(T) 5 (1) d 7 (2.5)
0

Using standard Picard iteration, define

2(t) = 2o
t

alt) = /e‘N"U"(”Pk(T)eN“U*(T)zl_l('r)dr I>1 (2.6)
0

It is easy to prove that the solution of the integral equation is given by

()= ult) (2.7)
1>0
Thus,
y(1) = CeMUltlg,
t T} T2
N Z// / CeM UM D=ULn p, () NelUk(r)=U(n1-1)]
0 0 0

1>1
Pk(Tl—l) . Pk(TZ)eNk[Uk(Tz)—Uk(TI)]

Pi(m)eMVe(Tgodr | dn (2.8)
From which we obtain the nonlinear input-output map given by

y(t) = CeMPlizg




t T To
o o
21512k ik

CeNUx()=Un(n )]N_,-,eN" [Vr ()= Ux (71 )]NJ':_1

L NerNk[Uk(TQ)"Uk(Tl )]leeNkUk(Tl)xo

u(m) . oug(m)dr . dn (2.9)

Remarks:
1. The first remark we can make at this point is that ‘N, Uy ()’ appears as
exponent whereas in the standard Volterra representation (8] ‘At’ appears as
exponent. This fact is very important from the stability point of view. We shall
see in the next section how we derive a new stability criterion based on this
representation.

2. This new representation reduces to the standard Volterra series for k = 0.

3 A nonlinear input-output map for bilinear
systems II:

Returning to (2.1), We shall present in this section another input-output map
to represent this system.

Let T" be an nxn matrix solution of the equation

f:-PZuij , T0)=1 (3.1)
j=1



where I is the identity matrix, and consider the change of variable
z=Tz (3.2)
we have 2(0) = zo = zo . Differentiating and taking into account, we get

; = Tz+Ts

[-T Z u; Nj]z + T[Az + Z u; N;z)

j=1m Jj=1m
= - Y wIN;T™'2 +TAr Y 4+ S wIN;T™1: (3.3)
j=1lm j=1lm
hence,
#=TAl 'z | 2(0) = zo (3.4)

Again, using standard Picard iteration, define

z(t) = 2

/t T(MAT YD)z (r)dr , k> 1 (3.5)
0

2k (1)

As before, the solution of the integral equation is given by

(1) = ) = t) (3.6)
E>0
Defining,
o(t,7) =T~ H)I(r) (3.7
we obtain,

y(t) = C®(t,0)zo

. 2/01/0",,,/Ohcq>(z,rk)A¢>(mrk-1)A

k21
‘e .A‘I’(Tg, Tl)A@(Tl N 0).’!.‘0(17'1 o Th (38)



4 Input-Output stability of bilinear systems:

In this section we shall present sufficient conditions for the L® — stability of

bilinear systems. We claim the following:

Theorem 1.
A sufficient condition for the system (2.2) to be L — stable is that the following
hold:
(1) There exist at least one N; (7 =0,...,m) (say Ni) having all its eigenvalues
with negative real parts,
(1) limico fo[—pru(r) + o || Pe(r) [[ld7 < o0
where o > 0 and px > 0 are such that || eM<! ||< age™ !, Pu(t) = 2ik Ui N
and u > 0.

Furthermore, if the limit is —oo then y(t) — 0 as t — oo .

Proof:
It follows from (i) as a standard result in the theory of differential equations
that there exist positive constants ax and py such that || eMk? ||< ape™xt

Combining (2.3) and (2.5) we obtain

1.
2(t) = MUy 4 / eNelUO=Un(MI Py (£) 2 (7)dr (4.1)
0



which yields,

1
| 2(0) IS ok | 2o || e7*Ux®) 4 ak/ e~ eI O=U DN || Py(r) || || () |} dT
0
(4.2)

Therefore,
1
PO | 2(t) 1S ax oo |+ [ e | PL(r) |2 [la(r) 1 dr (43)
0
Using Gronwall’s lemma, we obtain

1
610 | a(t) IS | o0 [l exnl [ e || Pe(r) | ) (44)

Hence,

ly@) IS ar [[C 2o || exp/o [=ovuwi(r) + ap || Pi(7) |)dr (4.5)

Thus the theorem is proved.

Corollary 1.
A sufficient condition for the system (2.2) to be L™ — stable is that the following
hold:
(i) There exist at least one N; (j = 0,...,m) (say Ni) having all its eigenvalues
with negative real parts,
(1) limyoo fo[=prur(r) + ar mp | wi(7) ||| Nj Jdr < o0
where ag > 0 and pi > 0 are such that || e+ ||< age™P!, Pp(1) = ik Ui Ny

and u > 0.



Furthermore, if the limit is —oo then y(t) = 0 ast — oo .

Theorem 2:
A sufficient condition for the system (2.2) to be L™ — stable is that the following
hold:
(i) There exist a positive constant a and a non-decreasing function p satisfying
p(0) = 0 such that || @(¢,7) ||< ce[P®=2(] for ¢ > r > 0
(i) limieool—p(t) + o || A || ) # 00

Furthermore, if the limit is —co then y(t) — 0 as t — oo,

Proof:

Combining (3.2) and (3.4) will yield
¢
z(t) = ®(t,0)zo + / O, r)Az(r)dr (4.6)
0

from which we obtain

2@ [I<Il @, 0) [|]] o || +/0 eI AN () |l dr (4.7)

thus,
1
2 (2) <] 2o || ae=?® 4 / 1A | ae=P®=rON | o(r) 1 dr  (4.8)
Therefore,
4
) || 2(t) ||<] 20 || o + / 14 ) ae?) || a() | dr (4.9)

g




Using Gronwall’s lemma, we obtain
e’ || 2(t) ||< o || 2o || e*l41 (4.10)

Hence,

19 IS a || C Il || 2o || = POl4ll (4.11)

Therefore, we have proved the theorem.

Corollary 2:
A sufficient condition for the system to be L™ ~ stable is that u; , j=1,...,m
satisfy the following inequality:
min{p1— o || By + 7L wy Ny ||, —patan || Ba= 0L, wiN |1} 2 ases || A ||
where E) and Ej are stable matrices satisfying || ef'! ||< aje=?t | ¢ > 0 for

some oy, p; > 0.

Proof:

Let T be a solution of (3.1) then I'"! is a solution of the adjoint system

d m
Gl = wNyr, TN =1 (412)
i=1
We have
. m
P=TE - T[E + Y u;Ny] (4.13)
j=1
thus
t m
I(t) = eF? —/ D(L)[Er + ) u(tg)Ny]ePr =1 gy, (4.14)
0 :
i=1



Similarly, for 1, we obtain
1 m
I1(t) = b -/ P21 [Ey — > " uj (to) Nj T~ (12) dt (4.15)
0 j=1
hence,

I S ase+ [T 1B+ 3wt s C=at, (4.16)
Jj=1

and

1 m
I T7°@) I ape™?! +/0 age™ 2071 || By — 3 uy(ta) Ny || || T2 (ta) || dt
j=1
(4.17)

Therefore,

eht || T(2) H<01+o:1/ ||E1+Zuj (1N | et | T() || dty (4.18)
i=1

e | T (1) IS o +0'2/0 e | T3 k) (|| B2 = 3 wy(t2)N; || dtz (4.10)

j=1
Using Gronwall’s lemma, we obtain
efil ” F(i) ” < 01 f ”E1+E u;,(i;)NJ [}ty (420)
ef2! ” F—l(t) ” < 0260(? f;]lEz—Z;’_‘__l uj(t2)N;||dio (421)

which yield,

190 | < mvazeeri-put+ar [ 1B+ D) |

i=1
= poron [ Bm Y w1 ) (4.22)
j=1
Thus,
| 8(t,7) |I< cre=lo(=(7)] (4.23)

10



where o = o103 and,

1 m m

pt) = / maz {p1—ay || Bi+Y_wi(r)Nj ||, =potos || Ba= u;(r)N; || } dr
0 j=1 j=1

(4.24)

Therefore, there exists a non-decreasing function p such that p(0) = 0 and sat-

isfying the hypothesis of theorem 3.

This ends the proof.

Remark:
The sufficient condition in corollary 2 has a nice geometric interpretation in
terms of the location of E;nzl u; N; with respect to the balls centered at —F;
and Ey with radius £+ —ay || A || and £2 + oy || A || respectively.

@

5 Conclusion:

In this paper we have presented two input-output maps for multivariable bilinear
systems. Sufficient conditions for the £ -stability were derived. It is believed
that, due to the nonlinear nature of the kernels involved, these representations
will compare favorably with the standard Volterra series expansion, a point

which will be investigated in future papers.
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