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Abstract

In this paper we define a ’'generalized ffequency

response’ for a nonlinear input-output map 'Sx as the mapping
A ’ 0
2

-1 from é2 to €% where ,g is the Fourie;

$0% oS o@_10$
M '¢

0 .

transform and & _ the usual isomorphism from L2[~w. © ] to

@2. Realization results relative to linear and bilinear
systems are presented. Also sufficient conditions for

22—stabi1ity of bilinear systems are derivéd.




equiyalent.

The paper is organised as follows: In section 2 we shall
éonsider_sufficient conditions for a bilinear system to be
Qz—stable. In section 3 we define a 'GFR ' for a nonlinear

input-output map. We shall illustrate the 'GFR for linear
and bilinear systems. Finally a realization_theory will be
presented in section 4.Ve shallrmake use in the séquel of the

following notation: The Fourier transform F of a square

integrable function f is defined by

) . o R
F(iv) = --12— F(t) e @0 a¢
) Vatr

If x is an n-vector and A is an nxn-matrix,we take as

compatible norms:

Il x Il = max | X, | and I A I = max 3 | a; x I
i=1,n i=1,n k=1 !

ll-ll1 and H-sz are the norms associated with the standard L1
. . &
and Li spaces, the spacg>of absolutely integrable functions

and the space of square integrable functions (with weight w)
respectively. Whereas, 82 designates the space of square

summable sequences.

2.32—stabilitv of bilinear systems:

In this section we shall présent su?fiéient conditions
for the Qz—stability of bilinear systems. By Qz—stability ve
understand that: Yu € Q C Li[o.w] —_— y € Lﬁ[o.w]
where u and y are respectively the input and the output of the
system and Q is defined by the sufficient‘conditioné. The

at ¢ Ll[O.w] for some

weight function w is such that w(t:)e"_2
@20, w(t) 20 for t 2 0. |

Considermfor simplicity the single input-single output system




desbribed by

x = Ax + uNx + Bu , x(0) =

{ (2.1)
y = Cx

where A, N, B, C are constant matrices of suitable dimensions.

As is well known [3], the input-output map is given by:

y(t) = cePx

i... J“z . . N
321 J0 0 0 vj(t'ql’ '”i)u(°1) U(Uj)dal daj

j s e e Joz . . e e e .too e e e
321 J Ja o wj(t.al. .aj)u(al) u(cfj)da1 daj

where A : - - (2.2)

ceA(t-0y)g

et (70 NeA (o570 1IN et (9279008 o1

vl(t.al)

At, o, 0,) =
vi(t.og 3)

and
W (t.al) = CeA(t_Ul)xO
W (t,og.00.0,) = ceh(t70yIneA (05705 ). o oneh (9277 )NeA)
. . ¢ 0
' j>1.

Theorem 1 f

A sufficient condition for the system (2.1) to be Qz—stable is

that the following holds: “
(i) the eigenvalues of A have reallparts less than -a ,
(11) u , e*tu € Ll[0, ®] |

Proof :

It follows from (i) as a standard result in the theory of

‘ differential equationé that there exists a positive constant K

such that |

Aty ¢ ket . ¢t 30

We have,




b s e s e g g i

-at

JO w(t)y (t)dt ¢ IO w(t)°[HCH°Hx0H°K°e
t
+HCH-HBH'K-J e~ (t-0y)a lu(e) ldo,
N J...[02 yoneupneannd-te(tode
RN |
°Kj|u(al)|'~'|u(aj)|da °°°daJ

o p— t_ i
+ ucuouxou-xojo e Ul)alu(dl)ldal

t ' . ’ .
+ 3 f Jaj ceo Jaz HCH*HXOH°HNHJ-Kj°e—at
j22 Y0 YO 0

2 :
°Iu(al)|-°-|u(aJ)|dalo'°daj], dt - (2.3)

therefore,

i 2 i ~2at
t dt £ t dte {lICH llx,ll K
J worta < | v (et s,

(o]
+ HCH-HBH°K'j e?1%|u(o;) |do,
: Yo

® QandTt
-1 .3 a v 1 r
+ 3 NCH-UBN-UNII™* K ~J |u(al)|dal —— :
j22 . 0 (j-1)!
' . " g.a
+ ucuonxou-K-Io 1 Iu(al)ldal
5 ™ 2
+ 3 UCH-Hx Il INI -k ]. (2.4)
j22 - i!
hence,
2 ® oat 2 @ ® oay
“y"2w s Jonw(y)e dt-liCll °[K'onn + K-ﬂBH-Jo el Iu(al)lda1
. |
+ Konsn-J e“1%|u(o,) |do, (K- UNI=Hully 4y
* o.x
+ K~Hx0H°J; e 1 lu(al)ldo1
| K- NNH- il S T
+ Ixglhe (e 1-1-K< INlI-liully ] < (2.5)

3.Ceneralized frequency response of Nonlinear input—output

maps:

e

Consider a system S given in terms of an input-output map




s : R°L2[0, =] » L2[0, ©]  (3.1)
defined by ' y(t) = S(xo ., u(*))(t) (3.2)
where u and y are respectively the input -and the output of
the system and Xg is the initial state in some given
state-space realization. For each fixed initial state x, , Wwe
have a map o
Sxo ds(xg + ) : L2[o0, ] - L2[0, ©] (3.3)

Fo; simplicity.-we have assumed scalar input and scalar

output.

In a recent paper [1].»we introduced the notion of a
'Generalized Frequency Response’ by using #he natural
isomorphism ¢ between Li[o,w]'and 82 in the time-domain, and
then defining the 'G.F.R ' as the induced map from 82 to 82

such that the diagram

. S &
20 X0 2
Lw[O. w] . > LW[o’ ®]
y Sy y ' (3.4)
82 0 82

commutes.

Alternatively, we can use the natural isomorphism between
L2[~w,w] ahd 82 in the frequencydemain ti.é;. we operate on
the Fourier transforms of the input and output ) and then
defining the 'G.F.R ' as the induced map from 82 to 82 such

that the diagram

)




X
g A g
| S, !
L2[_w,w] —_—0 Lz[—w.m] (3.5)
N4 K4 €
¢2 sxo iz
& B e

commutes

Let {e }JZO be a basis of 12 [O o] and E _g{ej} j20 Recalling
the fact that the scalar product is invariant under the
Fourier transform, we deduce that {Ej}jzo is a basis of

Lz[—w.w]. Let ¢ denotes the usual isomorphism

$:L2[-w, @] , 22
given by $(F) = {FJ}JZO (3.6)
vhere F € L2[—w.w] , F= 2 F.Ej
20
explicitly Sy is given by
0 | | : .
54 =‘Qo$on o@—lof_l ® (3.7)
0 . .0

that is . Sxo({uk}kzo) = {Yj}jzo (3.8)
where Uk = < 9(u). Ek> , Yj = < g(Sxo(u))..E >

-

and <+,+> denotes the scalar product in L2[—w;w]. We have

U, = <u.ek> and Yj = <Sxoﬁu)f§j>

Let assume the systems at hand are Qz—stable We shall

k

illustrate: the expression (3 7) for the linear and the

bilinear input-output maps.

Example 1: Linear systems .

Consider the linear system

x = Ax + Bu ' x(0). = Xq (3.9)
{ y = Cx

t

then the”input—output map is given by

VU T s g s S g S




t .
y(t) = Cehlxy j ce? (t-T)py(r)dr (3.10)
0

In this case

S(xg.u(*))(£) = go(t) + (gxu)(t) (3.11)

where go(t) = CeAtxo ., g(t) = CeAtB ' *

andl % denotes the convolution operator

Taking the Fourier transform of both sides of (3.10) we obtain
Y(iw) = Go(iw) + G(iw) U(iw) o (3.12)

Let x4 = 0 and introduce a basis. {Ej}jzo of L[~=,=].

We obtain, Y, = 3 G,.°U, , 120 _ 1 (3.13)
1 . 1i 7 :
j20
where Y(iw) = 2 YliEl(iw) , U(iw) = 2 Uj~E (1w)
120 j20
G1j = < G(iw)-Ej(iw). El(iw) >
We therefore see that the matrix representation of the linear
operator s 82 —_— 82 for the linear system above, with

respect to the basis (1,0,0,++),(0,1,0,5+%),+** of 2% 1s ;
. &

’

(1301, 530

Example 2=~Bilinear systems

Consider the bilinear system (2.1). Let N = N1°N2 where the

S

dimensions of N, Nl' N2 are respectively nxn, nxh, mxn, and
At At

go(t) = Ce” B , glﬁt) ='9e N,
At At ~
-g2(t) = Nye N, g3(t) = Nyoe ™ 'B (3.14)
At At
g(t) = Ce x5 . g4(t) = Nye™ "x

Equation (2.2) can therefore be rewritten as
y(t) = g(t) + (gg*u)(t)

+j§2(g1*[u(g2*[u(-'°u(gz*[u(g2*[u(g3*u)])])-°')])])(t)
+ (g*u)(t) |

3 (g,¥[u(gg*u (- *ulg¥[u(gx*[u(Bg* (248 D= IDD(®)
J . -

(3.15)




where g, appears (j-2) times in the first summation and (j-1)
times in the second.
Taking the Fourier transform of both sides of (3.15) and using

its properties we obtain

: _ ST 1
Y(iw) = G(iw) + Go(im) U(iw) +j§2 o 71

s+ 2 U%(Gy+ [Ux(Gy [UX(Gy NN IND (1) + (1) U(iv)

1
p> = (G, o [U*(Gge[U%(*>
j22 V2w I R

cee (6y [UX(Gyr [UX(Gy (6,01 NT) =) DI (H0)  (3.16)

. . 2
Let x4 = 0 and introduce a basis {Ej}jZO of F [-o.o].

(Glo[U*(Gzo[U*(oo.

+

If U(iw) = 2 UjEj(iw) then (3.16) becomes

j20
Y(iw) = 2 U, G~(iw)E, (iw)
k20 F1° kg
1
4+ 3 S ese 3 U seel, e————— (G +[E, *(G,-[E
522 k20 ky20 ky kg g 371 TTL Tk 2 Tk
*(‘..Ek4*(G2.[EkB*(G2’[Ekz*(G3.Ek1)])]).'.)])])(iw) (3.17)
Therefore,
Y. = S S eee 3 Voo qcU U (3.18)
71 k20 k)20 Jkyeerkgl Tky o Tk
where V1k11 = <G0(iw)Ek1(iw) . El(iw)> (3.19)
and
1
VY. veo - ~— o<(G o[E *(G o[E *(.oo
Slyreckyl T an 301 17 M
e++E. %(Gg*[E, %(G,*[E, *(Gz*Ey )1)1)---
k4 2 k3 2 k2 3 k1
c+ )N (10).E{(10)> . for §>1 (3.20)
Hence, the diagram (3.5) induces the map s : 82 —_— 82
. 0
given by
s ((Up, Uy, 2%2))y; = 3 I eee2 \' v U, ++°U (3.21)
X 0’1 1 i1 k120 kao jk1 kjl k1 kj

4. Realization theory:

In this section we shall consider the problem of the



realizability and the state space realization of an analytic

map S 22 —_— 82 which defines a ' Generalized Frequency

Response'.We shall present conditions under which such s is

realized by a linear or 2 bilinear system.

4.A: Linear system :

Theorem 2

A necessary and sufficient condition for a sequence of numbers

{Glj}l 3§20 to be the 'Generalized Frequency Response ' of a

linear system with zero jnitial condition (with respect to a

given basis {Ek}k>o of L2[—w.®] ) is that there exists a

strictly proper rational function G(iw) such that

s G
1>0 4

for all j»0 . G(iw) is then the Fourier transform of the

l'El(im) = G(im)'EJ(im) (4.1)

impulse response of the linear system.

Proof

immediate and shall be ommited.

4.B Bilinear systems

k>0 be the Laguerre functions defined by

k m
-t/2 s g—}) (k) 0
m! m

Let ek .

e (t) = e
k m=0

They constitute a complete orthonormal basis for L2[O.w]§

Consider Ek the Fourier transform of e, we have

Lo k
E 1 1 2
g(1e) = 1 1
Vor 5 + 1w 3 + iw

{Ek}kzo is therefore a complete basis for Lz[-w,w].
Remark 1 : The coefficients in the expansion of F(iw) with
respect to the basis {Ek}kzo are the coefficients in the

Taylor expansion of F



K
at z=0. So Fo= Y21 [ L pl 111)]( )

k = "kt |1-z

where F(iw) = 3 F, *E, (i0).
k>0 k 7k

Theorem 3

A necessary and sufficient condition for a sequence of numbers

to be the ' Generalized

{V' R }' eeoe
Jkyveokg17 21 ky 00 kg 120

J
Frequency Response °' of a bilinear system with zero initial
condition (with respect to the given basis {Ek}k20 of

L2[—w.w] ) is that there exist four matrices Go(iq), Gl(iw),

Gz(iw). GB(iw) with dimensions respectively 1x1, 1xm, mxm, mxl

of strictly proper rational functions such that

(1) TV E. (iv) = G,(iw)*E, (i) (4.2)
150 1k11 1 0 k1
k k
s . 1 3 2
(i1) 3 V., ..., 1E;(iw) = —=———— D “---D,""
150 Jkgrorkyltd K teeky! J 2

ﬁ[Gl(iw)-G2(im—zj)°G2(iw—zj—zj_1)'-'

"°G2(iw—zj—'°-—z3)'G3(iw—zj—'°°—z2).

oE (iw—z —0 e e —7 )o(—l 4+ z )kz'oo(—l + zZ )kj]
k, j 2 2 2 2 j | _ 1
z _Q..:Z-=——
2 2
for all k1.°'°.kJ20 . 31 (4.3)
k, kj kj
where D.J= 8 Y/0z,
J J
Proof :

(i) (4.2) can readily be obtained from (3.9) by premultiplying
| by El(im) and summing over 120. Whereas (3.14) yields

Gy(iw) = C(iw—A)'lB.

(ii) From (3.20) we obtain

2V

1
e veey 1Ey(10) = —5=7 (G <[E} *(Gy*[E,  *(--*
150  dkpreckylnl var 3-1 1Rk bk

1 b j-1
eeel %(G_TE (G_.TE G.*E coe i
i, (O By ¥(85° [Ey *(G3°Ey I DI)-+ )N (10)

Starting from the inner square bracket and proceeding outward,

- 11 -



We Obtajp, after 4 change

Tesidye theory,

- {Ekg*(c k )}(lw) Yor

\_

]
k2.

-(—% + z

{E x{c [E

kg
0D2 [G3(1w~19—

- “5; (-1) qu

_1m

kg
D2 [Gs(iw-zs—z2)-E

<v2v22 k3
= , D3

k3!k

[&2(im~23)'
k

2
‘D26 (16-gy - ‘E
2 [T3l10mz3-2,)

k

1 3

"+ zy) ] 1
23573

— {Ekj*(c2o[Ekj—l*(oooEk3*02oEE
5= J-1 k.

k\?ir'-k ; Dj‘][z(w “2;)+D J~1
5! 9!

3 kg
°--D3 [52(iw—zj~-"—23)'D2 [b (1o-

oEkl(iw—zj—coo-z

—

2

k k
¢ o q —.i J-l . -l' J
( 5 + ZJ_I) ] ( 3 + zj) ]

1
Hence, (4.3).

2. =

From (3.14) we get

S0(10) = c(101-4)" 1

-1
Gy (1) = No(1wI-p4)~ 1y

1+ Gy(iw) = No(1wI-A)~1p

_12.,

5" B ) o) - [

22)°Ek (lo-10-
, 1
kl(lm—zs—z2)‘(-§ + z,)

X
. 1 2
k (1omz3-7,) (-5 + z,) ]

321 [ 2(iw—zj—z

k
25 + 25) 2]

Gl(iw) =

of variable 10

-—
=

Z and the Use of

k
2 ;
D2 [Ca(iw-22)~Ek1(1w~z2)
k
2

) “]
2 l, __1

27 2
Yo
(i0)¢ (1o-10y¥2m
@ k3 2 k2!
k
1 2
22)'(-54- 22) ] dQ

1
“2575

k (23)G2(1m-23)-

k

*]

*(Q «F o e e { =
k2 ( 3 kl)J )J)}(lw)

j__l)...

zj—.oo—z

+ 2 ) 3]

AT TSN

- C(mz-A)‘lN1

(4.6)




