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Abstract
The exitence of periodic orbits of n-dimensional delay systems of
the form x(£) = —f(x(t-p)) is proved and applied to systems of the form
X(E) = ~x(t-1NxE)

and a cerain type of Hamlltonian system .
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1. Imtroduction
Scalar delay equations of the form

x(E) = -f(x(t-1)) L
have been studied by many authors ; see , for example , Jones (1962) , Nussbaum
(1974) , Kaplan and Yorke (1974) . These equations have luportant applications
in population dynamice and nonlinear equations of the form

2 = —xE-DN ) (1. 2)
can be transformed into equations of type (1.1) , under certain mild conditions.
Moreover , it is well-known that these equations are related to nonlinear

Hamiltonian systems of the form

H

(E) = ~£(y LN

i

FE) = £exe)
(Kaplan and Yorke , (1974) , HNussbaum and Peltgen (1084))

In thi@‘papar we éhall generalize some of the above results to the multi-
dimensional case of ﬁys::*i:es;xn,«:a‘~

(6 = ~£(x(t-p)) (1.3
where x(t)eR” for each t and £:R" 2R 15 a continuously differentiable map
(with further properties to be introduced later ) . Ve shall generalize the
transformation of a system of the form (1.2) to that of (1.3) by solving the
nonlinear overdetermined system oé partial differntial equations
Ve = N

where now WiR™ » BR" , and Vi = (’Bfi/’bxj) .




2, Fixed Point Theory

In this section we shall give a brief introduction to the fixed point index;
for more detalls see Browder (1960) , Nussbaum (1974) , Dold (1965) and Thompson
€1969) . If X is a compact , metric ANR (absolute neighbourhood retract - a
‘space which is such that for any normal space Y and any map f:A+X , where A is a
closed subset of Y , f can be extended to a neighbourhood of A in ¥) and £:X-X
is a continuous map , then we define

ix(f,X) = E_(—l)itr(f

)
130 *,1

where f* 1:H1<X) =+ H, (X is the induced homology morphism (using Cech homology).

, 1

ix<f,X) is also denoted by A(f) and is called the Lefschetz number of X . It is

a classical result of algebraic topology that f has a fixed point if and only if

iX(f,X)#O (See Spanier , 1966) . This invariant can be generalized to the case

of a continuous map £:G » X ﬁhere G is an open subset of X for which the set
8 = {xG : £f(x) = ¥} is compact or empty , and leads to an integer-valued
function ix<f,G> called the fixed point index of £ in G which satisfles the

properties !

(1) 1f 1,(8,0)%0 then £ has a fixed point .

(2) If 8gG, VUG, where G, and G

1 2 are disjoint open subsets of G , then

1

ix(f,G) = ix(f,Gl) + ix(f,Gz) .

(3> If F:6x[0,11 » ¥ is a homotopy such that 8' = {(x,t)eGi[O,l]:F<x,t>zx)

is compact , then

iX(Fl,G) = 1X<F0,G),

where Ft<X) = Fx,t) .



(4> If £:X » X is continuous , then

ix(f,X) = N

Now let X be a general topological space , XOEX , and ¥ an open neighbour-
hood of X, Then if f:W—{xo) + X is a continuous map , we say that X is an

efective point of f if there exists an open neighbourhood U of X such that

there exists an integer m>0 such that t%(x) is defined and fm(x>¢U for all

er"{xo) !

3. An Abstract Form for the Delay Equation
In order to apply fixed polint theory to obtain periodic solutions of the
delay equation
x(t) = ~£(x(t-p)) , x(t-p) = g(t) , tel0,p) 3.1
where ﬂeC([O,p];mn) y we must express the equation in an abstract form on some
space . Nussbaum (1974) uses a space of continuous functions and expresses the
solution of (3.1) in terms of the initial function ¢ . We shall use a different
approach here which allows a direct consideration of n-dimensional equations .
First note the following simple lemma .
Lemma 3.1 A necessary condition for x(t) to be a periodic solution of the
equation (3.1) (with period 1) is that
t
J f(x(t-p)ddt = 0 3.2
t-1
Proof This follows directiy by integrating (3.1) , namely
t
x(t) - x(t-1) = - ft_lf<x<t-p>>dt =0

1f x is periodic . O
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Since any solution of (3.1) is differentiable for t>0 , any periodic
solution x(t) must satisfy
x(t) = x(t-1  ,  x@) = x¢-1> , for t>1
and so any such solution determines an element of the space Cl[Sl;Rn] , where Sl

is the unit circle , and conversely . The ‘time' axis {0,1) is mapped onto S1 by

the map t + e°™% | Ve shall parameterize s' by (' : 0¢6¢am . Let X denote

the Banach space Cltsl;mn]xC[Sl;mn] . Ve now define the 'rotation' operator

R :S1 9 Sl by
P

RP(G) = (8 ~ 2xpduwod 2x 0¢0¢2n . 3.3

1

Denote by K the subspace {(x,2n%) ¢ xeC [Sl;Rn] , x(0)=0 )} of X and define the

operator F on X by

Fix,y) = (w,z) (3.4>
where
z(@) = —f(xcRP{e>>> , (3.5)
and
2]
wig) = _1 z(Bl)de1 (3.6
2.1 0

(Note that in the definition of K , % means dx/de.>
More generally , consider the equétion
X(t) = ~£(x{t-p),x(t-q)) 3.7

with two delays p,q . F is defined again by (3.4) where z in (3.95) is replaced
by

z(0) = —f(x(RP<B)),x(Rq<e))> . 3.8
It is even possible to conslder neutral equations of the form

X(£) = —f(x(t-p), x(t+q)) |

in a similar way with (3.5) replaced by
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z(@) = ~f(x(R_(0)),x(R__(8))) ,
P —q

4. Existence of Periodic Solutions

In order to prove the existence of a periodic solution of the equation (3.1)

{(under siutable conditions on £ , to be introduced shortly ) we shall use the

following theorem , due to Nussbaum (1974) .

Theorem 4.1 Let G be a closed , bounded , convex infinite—dimensional subset of

& Banach space X , x €G and F:G - {xo) % G a continuous compact map . Then if x

0

is an ejective point of F and U is an open neighbourhood of x

it

for xeU\{x.) , then 1i_(f,G-1)

0 G

0

0 such that F(x)#x

1 and f has a fixed point in - .

The first task is to find a closed , bounded , convex (infinite-dimensional)

set G such that F:G » G . For this we shall make the following assumption on f:

AF1 : There exists a number A>0 such that
Uzl ¢ A 2 HEGOI ¢ A,
Then we have
Lemma 4.2 If f satisfies'AFl then F maps the subset
G = {(x,2mx) ¢ N(x,2mx) i ¢ 24 )
into iteself .

Proof Since

for (x,2n%)eG we have
Hxl ¢ 2n Wxh .
Hence

20xh ¢ 2r Uxh + Nxll =1 (x,2n00 0 ¢ 24

and s0

HEGON § A,



by AFl1 . Now ,
e
Fl(x,2mx)0) (@) = [~-_1 f(x(R_(O))),~-£(x(R_(BY)
2.1 Y0 P P

and since RP igs just a rotation it is clear that
HF((x, 2nx)) 1 ¢ 2Mf(x(RP(.))>N

¢ 24 a
Next we show that F:G »+ G is a continuous compact map under the assumption
AF2 : f 1s continuously differentiable and
txll ¢ A 2 WVfGON ¢ B
for some B>0 .
Lemua 4.3 If f satisfies AFl and AF2 , then F:G - G 1s a continuous compact
map.
Proof If CSG is a bounded set then , for (x,2n%)eC we have

d Fix,2n0) = (~_1_-f<x<R @) , ~ £(x(R ()% dR
de ‘ 2.1 P P E&p

and so0 by AF2 the set (d/d6)C = (d5/d9 : L eC) is bounded . Hence the lemma
follows from fhe Arzela-Ascoll theofem A

It remalns , therefore , to show that 0 is an ejective point of F . To do
this we restrict attention to the subspace G' of G consisting of elements
(x,2n%) such that x satisfies the condition

G x(w) = 0 , xl(o,ﬂ> 20, x'(n,Zw) <0

xl is symmetric ébout t=x/2

{0, nl

x'(n,Zw] is symmetric about t=3n/2

x is monotonically increasing on [0,n/21U{3n/2,2n]

and monotonically decreasing on [n/2,3m/21 |

Furthermore , suppose that f satifieé the condition
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AF3 fix X)) 2 0 if x.20,....,%x.20 '
n n

e 1

f(xl,....,xn) <0 if x1<0,....,xn<0 .

Then it is easy to check that the restriction F' of F to G' maps G' into G' ,
provided

p=1/4 . 4.1
In order to show that 0 is an ejective point of G' we require a final condition

on £, namely ,

AF4 For each i , we have
Qi~‘“1""'x1-1’°’x1+1""’xn) > 2
Gxi
for any (x X X X )e]Rn“1
Ve By _pr Ry ¥y '

such that x 20 for all j or x,¢0 for all i .

J J
Then we have

Theorem 4.4 Under the conditions AF1-AF4 , equation (3.1) has a periodic
golution (of period 1) if p eatiéfies 4.0 .

Proof G' is closed , bounded , convex and infinite-dimensional and so , by
theorem 4.1 it 1s sufficient to show that 0 is an ejective point of F ., If 0 #
(x,Zwﬁ)EG' then , since x is monotonically increasing on [0,n/21V[3rn/2,2n)
there exists 1e{l,....,n) and a)0 such that Ixi<0)l ¢ lvi@)l , tel0,2n) , where
v = asin® . Consider the operation of F on (v,2nv) . Since p=1/4 , F first

rotates v counterclockwise by n/2 , then applies -f and finally integrates the
resulting function (and multiplies by 1/2m ) . If « is sufficiehtly small , then
If(xi....,xiul.av,xi+1,...,xn)l ?» 2rnalvl by AF4 and AF3 now shows that F(V,Qné)ﬂ
(BV,Zﬁﬁé) where B>l ., Hence 0 is an ejective point in G' and the result follows. [
Remark 4.1 In Nussbaum (1974) and Kaplan and Yorke (1974) ,. where scalar

equations are considered with a delay of p=1 , the condition AF4 is replaced by
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Bf ) > /2,

ox
The difference in the growth constants is entirely due to the difference in the
delays . If theorem 4.4 ls reworked for a delay of 1 then in condition AF4 , 2n
ls replaced by n/2 .
Remark 4.2 The above proof does not require a delicate consideration of the
linearized eigenvalue equation of the delay system used in Nussbaum (1974)
5. Example

Several authors (see Hussbaum , 1974) have considered the scalar equation
X(t) = —ax(b-1IF(x(t))

.for some nonlinear function E , Here we shall generalize this to an n-
dimensional equation

() = ~al(x(E)) g (t-p) (5. 1)
where N is a matrix-valued nonlinear function with properties to be specified
later . In order to transform such an equation into the form (3.1) we must
consider the following overdetermined system of nonlinear partial differential
aquations ! |

VEy) = Ny , £40)=0 5.2y
for the function f:mn -3 mn » where |

Tt = | V¢

ig the gradient matrix of £ . We have the following necessary compatibility

i1
condltions for the solubllity of (6.2) |,

v
i

' 2
yL@mm& 5.1 If the equations (5.2) have a solution £feC” , then

N @N}l<2)mpk(2) = § QNﬁl(z)ij<Z) . 5.3
P sz p ‘E\zp

for any polat zerange(f) and for all i,j,k .



Proof Clearly we have

2 - 2
2%, = 2%,
Ay dy,  QyQy,

and so , from (5.2) ,

N (yN QL Gy = & OF, FyN yy 4
; ll<f y 'y y N!l y) ;gfp y?) | 5, 4)
sz Gyk sz v

However , again by (5.2) we have
:;;p(y) = Npk(f<y)) -
k
'In order to find sufficient conditions for the existence of a (nontrivial)
solution of (5.2) , suppose that f£(y) is a solution of this equation which
satisfies (6,4) . Then , if VL:IQIR %mn ls a path in IRn , we have
Foqan = Ve

and so

y
£(y) =S F(E(9)d
Jo Age/}

where the integral is taken ﬂlonsfthe‘Path.YL . Howaver , by (5.4 ,.yhe; i

integral is independent of path and so f must satisfy the integral equation
y :
£ = [ Wy 5. 5)
0

for any path jolaing 0 to y .

The following theorem is proved in a similar way to the proof of theorem
4! 40
.
Theorem 5.2 Suppose first that N is such that the set G of functions feC” which

satisfy £(0) = 0 , AF3 and (5.4) is nonempty , closed , bounded , convex and
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infinite-dimensional . Next assume that N(z) is strictly positive in some

neighbourhood of 0 . Then (5.5) has a solution for small enough #yll . I
y

(Ve consider the operator JUnf(y) a‘g W y)¥dy on G , which is well~defined
0

by (B5.4) and use the stated properties to show that (Aris compact and that the
zaro function is an ejective point of JUP.>
Corollary 5.3 Under the condltions of theorem 5.2 , 1f , in addition , ¥ is an
analytic function , then f 1s analytic and has an analytic extension to some
maxlmal region in R, B

If the ooﬁdition@ of corollary 5.3 hold , let £ be a solution of (5.2) and
define |

x = £y

Then

NE) .y

it

2 (t)

]

~oN (g (E) Y x(t-p)

it

~ol (£ (y CE) M) £y (b~pd)
1f x(t) satifies equation (5.1) . Hence , if y(t)eU for all t we have
yt) = —af (y(t-p)) (5.6
and a pericdic solution of (6.6) satisfying y(t)eU 18 also a periodic solution
of (56.1) .
vConsid@r y for example , the system

x(t) = ~a {1 4 x, (£) x,0)  \x-p (5.7)

1

xz(t) 1+ xl(t)

Then condition (6.3) ls satisfled by

Nez) = § 1 + %
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and the conditions in (5.4) become

’)j‘_l ='b__f_a (5.,8)
Yo Vg

'a_f_l-:’_a_& 5.9

@y, 9y,

The equations (5.2) reduce to

ngl(yl,yz) = 1 + f1<y1,y2)

’éyl
GB.10
PE Yy = £
le
with £¢0,00=0 , Solving these equations gives
1
f, = -1 + e “coshiy,) G 10
1 2
Yy 5
fz_— e sinh(yz) . B.12)
Note that fl does not satisfy AF3 everywhere , but 1t does so on the region

iy1| b ly2| .
An easy extension of theorem 4.4 shows that the result remains valid in this
case . Condition AF4 now shows that 1f o>2n then equation (5.7) has a periodic

solution .

As a second application we recall that Kaplan and Yorke (1974) used the two-

dimensional Hamiltonian system

it

x = ~£(y) 5,13

L

y

ta prove the existence of periodic orbits in a scalar delay system of the form

it

f(x)

(3.1 . To do this they use a Lyapunov argument to prove the existence of a
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family of periodic solutions of (5.13) . This argument no longer works for 2n-
dimensional systems of the form (6.13) . However , we can use theorem 4.4 to
reverse the argument and show the existence of periodic solutions of (5.13) from
the existence of periodic solutions of (3.1) . In fact , if f satisfies the

conditions of theorem 4.4 and moreover , f is odd , 1i.e.

£-x) = ~f(x) (5, 14)
then we put
yt) = x{t-p)
in (3.1) and obtain
®(E) = ~£(y(t))
y) = ~£(xt-2p)) .

Vith p=1/4 , using (5.14) and the fact that
x(t-2p) = -x{(t) ,

the result follows .
6. Conclusions

In this paper we have generalized the existence theory of periodic solutions
of scalar FDE's to the vector case . This has been achieved by the use of the
fixed point index . Using a transformation which depends on the solution of the
systen _

Vi = 5
we have given a simple example which generalizes the well-known one-dimensional
case .
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